ZDOTU forms the dot product of two complex vectors ZDOTU = X^T * Y
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer(kind=ilp), | intent(in) | :: | n | |||
complex(kind=dp), | intent(in) | :: | zx(*) | |||
integer(kind=ilp), | intent(in) | :: | incx | |||
complex(kind=dp), | intent(in) | :: | zy(*) | |||
integer(kind=ilp), | intent(in) | :: | incy |
pure complex(dp) function stdlib_zdotu(n,zx,incx,zy,incy) !! ZDOTU forms the dot product of two complex vectors !! ZDOTU = X^T * Y ! -- reference blas level1 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments integer(ilp), intent(in) :: incx, incy, n ! Array Arguments complex(dp), intent(in) :: zx(*), zy(*) ! ===================================================================== ! Local Scalars complex(dp) :: ztemp integer(ilp) :: i, ix, iy ztemp = (0.0_dp,0.0_dp) stdlib_zdotu = (0.0_dp,0.0_dp) if (n<=0) return if (incx==1 .and. incy==1) then ! code for both increments equal to 1 do i = 1,n ztemp = ztemp + zx(i)*zy(i) end do else ! code for unequal increments or equal increments ! not equal to 1 ix = 1 iy = 1 if (incx<0) ix = (-n+1)*incx + 1 if (incy<0) iy = (-n+1)*incy + 1 do i = 1,n ztemp = ztemp + zx(ix)*zy(iy) ix = ix + incx iy = iy + incy end do end if stdlib_zdotu = ztemp return end function stdlib_zdotu