geqr2p Interface

public interface geqr2p

GEQR2P computes a QR factorization of a complex m-by-n matrix A: A = Q * ( R ), ( 0 ) where: Q is a m-by-m orthogonal matrix; R is an upper-triangular n-by-n matrix with nonnegative diagonal entries; 0 is a (m-n)-by-n zero matrix, if m > n.


Subroutines

public subroutine cgeqr2p(m, n, a, lda, tau, work, info)

Arguments

Type IntentOptional Attributes Name
integer(kind=ilp), intent(in) :: m
integer(kind=ilp), intent(in) :: n
complex(kind=sp), intent(inout) :: a(lda,*)
integer(kind=ilp), intent(in) :: lda
complex(kind=sp), intent(out) :: tau(*)
complex(kind=sp), intent(out) :: work(*)
integer(kind=ilp), intent(out) :: info

public subroutine dgeqr2p(m, n, a, lda, tau, work, info)

Arguments

Type IntentOptional Attributes Name
integer(kind=ilp), intent(in) :: m
integer(kind=ilp), intent(in) :: n
real(kind=dp), intent(inout) :: a(lda,*)
integer(kind=ilp), intent(in) :: lda
real(kind=dp), intent(out) :: tau(*)
real(kind=dp), intent(out) :: work(*)
integer(kind=ilp), intent(out) :: info

public subroutine sgeqr2p(m, n, a, lda, tau, work, info)

Arguments

Type IntentOptional Attributes Name
integer(kind=ilp), intent(in) :: m
integer(kind=ilp), intent(in) :: n
real(kind=sp), intent(inout) :: a(lda,*)
integer(kind=ilp), intent(in) :: lda
real(kind=sp), intent(out) :: tau(*)
real(kind=sp), intent(out) :: work(*)
integer(kind=ilp), intent(out) :: info

public subroutine zgeqr2p(m, n, a, lda, tau, work, info)

Arguments

Type IntentOptional Attributes Name
integer(kind=ilp), intent(in) :: m
integer(kind=ilp), intent(in) :: n
complex(kind=dp), intent(inout) :: a(lda,*)
integer(kind=ilp), intent(in) :: lda
complex(kind=dp), intent(out) :: tau(*)
complex(kind=dp), intent(out) :: work(*)
integer(kind=ilp), intent(out) :: info

Module Procedures

public interface stdlib_cgeqr2p()

Arguments

None

public interface stdlib_dgeqr2p()

Arguments

None

public interface stdlib_sgeqr2p()

Arguments

None

public interface stdlib_zgeqr2p()

Arguments

None