public interface getrf2
GETRF2 computes an LU factorization of a general M-by-N matrix A
using partial pivoting with row interchanges.
The factorization has the form
A = P * L * U
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).
This is the recursive version of the algorithm. It divides
the matrix into four submatrices:
[ A11 | A12 ] where A11 is n1 by n1 and A22 is n2 by n2
A = [ -----|----- ] with n1 = min(m,n)/2
[ A21 | A22 ] n2 = n-n1
[ A11 ]
The subroutine calls itself to factor [ --- ],
[ A12 ]
[ A12 ]
do the swaps on [ --- ], solve A12, update A22,
[ A22 ]
then calls itself to factor A22 and do the swaps on A21.
Subroutines
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
m |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
complex(kind=sp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
ipiv(*) |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
m |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
real(kind=dp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
ipiv(*) |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
m |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
real(kind=sp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
ipiv(*) |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
m |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
complex(kind=dp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
ipiv(*) |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Module Procedures