public interface ggrqf
GGRQF computes a generalized RQ factorization of an M-by-N matrix A
and a P-by-N matrix B:
A = RQ, B = ZTQ,
where Q is an N-by-N unitary matrix, Z is a P-by-P unitary
matrix, and R and T assume one of the forms:
if M <= N, R = ( 0 R12 ) M, or if M > N, R = ( R11 ) M-N,
N-M M ( R21 ) N
N
where R12 or R21 is upper triangular, and
if P >= N, T = ( T11 ) N , or if P < N, T = ( T11 T12 ) P,
( 0 ) P-N P N-P
N
where T11 is upper triangular.
In particular, if B is square and nonsingular, the GRQ factorization
of A and B implicitly gives the RQ factorization of Ainv(B):
Ainv(B) = (Rinv(T))ZH
where inv(B) denotes the inverse of the matrix B, and Z*H denotes the
conjugate transpose of the matrix Z.
Subroutines
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
m |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
p |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
complex(kind=sp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
|
complex(kind=sp),
|
intent(out) |
|
|
:: |
taua(*) |
|
|
complex(kind=sp),
|
intent(inout) |
|
|
:: |
b(ldb,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldb |
|
|
complex(kind=sp),
|
intent(out) |
|
|
:: |
taub(*) |
|
|
complex(kind=sp),
|
intent(out) |
|
|
:: |
work(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lwork |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
m |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
p |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
real(kind=dp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
|
real(kind=dp),
|
intent(out) |
|
|
:: |
taua(*) |
|
|
real(kind=dp),
|
intent(inout) |
|
|
:: |
b(ldb,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldb |
|
|
real(kind=dp),
|
intent(out) |
|
|
:: |
taub(*) |
|
|
real(kind=dp),
|
intent(out) |
|
|
:: |
work(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lwork |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
m |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
p |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
real(kind=sp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
|
real(kind=sp),
|
intent(out) |
|
|
:: |
taua(*) |
|
|
real(kind=sp),
|
intent(inout) |
|
|
:: |
b(ldb,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldb |
|
|
real(kind=sp),
|
intent(out) |
|
|
:: |
taub(*) |
|
|
real(kind=sp),
|
intent(out) |
|
|
:: |
work(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lwork |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
m |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
p |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
complex(kind=dp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
|
complex(kind=dp),
|
intent(out) |
|
|
:: |
taua(*) |
|
|
complex(kind=dp),
|
intent(inout) |
|
|
:: |
b(ldb,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldb |
|
|
complex(kind=dp),
|
intent(out) |
|
|
:: |
taub(*) |
|
|
complex(kind=dp),
|
intent(out) |
|
|
:: |
work(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lwork |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Module Procedures