public interface heevr
HEEVR computes selected eigenvalues and, optionally, eigenvectors
of a complex Hermitian matrix A. Eigenvalues and eigenvectors can
be selected by specifying either a range of values or a range of
indices for the desired eigenvalues.
HEEVR first reduces the matrix A to tridiagonal form T with a call
to CHETRD. Then, whenever possible, HEEVR calls CSTEMR to compute
the eigenspectrum using Relatively Robust Representations. CSTEMR
computes eigenvalues by the dqds algorithm, while orthogonal
eigenvectors are computed from various "good" L D L^T representations
(also known as Relatively Robust Representations). Gram-Schmidt
orthogonalization is avoided as far as possible. More specifically,
the various steps of the algorithm are as follows.
For each unreduced block (submatrix) of T,
(a) Compute T - sigma I = L D L^T, so that L and D
define all the wanted eigenvalues to high relative accuracy.
This means that small relative changes in the entries of D and L
cause only small relative changes in the eigenvalues and
eigenvectors. The standard (unfactored) representation of the
tridiagonal matrix T does not have this property in general.
(b) Compute the eigenvalues to suitable accuracy.
If the eigenvectors are desired, the algorithm attains full
accuracy of the computed eigenvalues only right before
the corresponding vectors have to be computed, see steps c) and d).
(c) For each cluster of close eigenvalues, select a new
shift close to the cluster, find a new factorization, and refine
the shifted eigenvalues to suitable accuracy.
(d) For each eigenvalue with a large enough relative separation compute
the corresponding eigenvector by forming a rank revealing twisted
factorization. Go back to (c) for any clusters that remain.
The desired accuracy of the output can be specified by the input
parameter ABSTOL.
For more details, see CSTEMR's documentation and:
- Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
- Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
2004. Also LAPACK Working Note 154.
- Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
tridiagonal eigenvalue/eigenvector problem",
Computer Science Division Technical Report No. UCB/CSD-97-971,
UC Berkeley, May 1997.
Note 1 : HEEVR calls CSTEMR when the full spectrum is requested
on machines which conform to the ieee-754 floating point standard.
HEEVR calls SSTEBZ and CSTEIN on non-ieee machines and
when partial spectrum requests are made.
Normal execution of CSTEMR may create NaNs and infinities and
hence may abort due to a floating point exception in environments
which do not handle NaNs and infinities in the ieee standard default
manner.
Subroutines
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
jobz |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
range |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
uplo |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
complex(kind=sp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
|
real(kind=sp),
|
intent(in) |
|
|
:: |
vl |
|
|
real(kind=sp),
|
intent(in) |
|
|
:: |
vu |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
il |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
iu |
|
|
real(kind=sp),
|
intent(in) |
|
|
:: |
abstol |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
m |
|
|
real(kind=sp),
|
intent(out) |
|
|
:: |
w(*) |
|
|
complex(kind=sp),
|
intent(out) |
|
|
:: |
z(ldz,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldz |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
isuppz(*) |
|
|
complex(kind=sp),
|
intent(out) |
|
|
:: |
work(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lwork |
|
|
real(kind=sp),
|
intent(out) |
|
|
:: |
rwork(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lrwork |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
iwork(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
liwork |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
jobz |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
range |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
uplo |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
complex(kind=dp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
|
real(kind=dp),
|
intent(in) |
|
|
:: |
vl |
|
|
real(kind=dp),
|
intent(in) |
|
|
:: |
vu |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
il |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
iu |
|
|
real(kind=dp),
|
intent(in) |
|
|
:: |
abstol |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
m |
|
|
real(kind=dp),
|
intent(out) |
|
|
:: |
w(*) |
|
|
complex(kind=dp),
|
intent(out) |
|
|
:: |
z(ldz,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldz |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
isuppz(*) |
|
|
complex(kind=dp),
|
intent(out) |
|
|
:: |
work(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lwork |
|
|
real(kind=dp),
|
intent(out) |
|
|
:: |
rwork(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lrwork |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
iwork(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
liwork |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Module Procedures