public interface hesv
HESV computes the solution to a complex system of linear equations
A * X = B,
where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS
matrices.
The diagonal pivoting method is used to factor A as
A = U * D * UH, if UPLO = 'U', or
A = L * D * LH, if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is Hermitian and block diagonal with
1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then
used to solve the system of equations A * X = B.
Subroutines
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
uplo |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
nrhs |
|
|
complex(kind=sp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
ipiv(*) |
|
|
complex(kind=sp),
|
intent(inout) |
|
|
:: |
b(ldb,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldb |
|
|
complex(kind=sp),
|
intent(out) |
|
|
:: |
work(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lwork |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
uplo |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
nrhs |
|
|
complex(kind=dp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
ipiv(*) |
|
|
complex(kind=dp),
|
intent(inout) |
|
|
:: |
b(ldb,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldb |
|
|
complex(kind=dp),
|
intent(out) |
|
|
:: |
work(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lwork |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Module Procedures