hetrf_rk Interface

public interface hetrf_rk

HETRF_RK computes the factorization of a complex Hermitian matrix A using the bounded Bunch-Kaufman (rook) diagonal pivoting method: A = PUD(UH)(PT) or A = PLD*(LH)(PT), where U (or L) is unit upper (or lower) triangular matrix, UH (or LH) is the conjugate of U (or L), P is a permutation matrix, P*T is the transpose of P, and D is Hermitian and block diagonal with 1-by-1 and 2-by-2 diagonal blocks. This is the blocked version of the algorithm, calling Level 3 BLAS. For more information see Further Details section.


Subroutines

public pure subroutine chetrf_rk(uplo, n, a, lda, e, ipiv, work, lwork, info)

Arguments

Type IntentOptional Attributes Name
character(len=1), intent(in) :: uplo
integer(kind=ilp), intent(in) :: n
complex(kind=sp), intent(inout) :: a(lda,*)
integer(kind=ilp), intent(in) :: lda
complex(kind=sp), intent(out) :: e(*)
integer(kind=ilp), intent(out) :: ipiv(*)
complex(kind=sp), intent(out) :: work(*)
integer(kind=ilp), intent(in) :: lwork
integer(kind=ilp), intent(out) :: info

public pure subroutine zhetrf_rk(uplo, n, a, lda, e, ipiv, work, lwork, info)

Arguments

Type IntentOptional Attributes Name
character(len=1), intent(in) :: uplo
integer(kind=ilp), intent(in) :: n
complex(kind=dp), intent(inout) :: a(lda,*)
integer(kind=ilp), intent(in) :: lda
complex(kind=dp), intent(out) :: e(*)
integer(kind=ilp), intent(out) :: ipiv(*)
complex(kind=dp), intent(out) :: work(*)
integer(kind=ilp), intent(in) :: lwork
integer(kind=ilp), intent(out) :: info

Module Procedures

public interface stdlib_chetrf_rk()

Arguments

None

public interface stdlib_zhetrf_rk()

Arguments

None