public interface lagtf
LAGTF factorizes the matrix (T - lambdaI), where T is an n by n
tridiagonal matrix and lambda is a scalar, as
T - lambdaI = PLU,
where P is a permutation matrix, L is a unit lower tridiagonal matrix
with at most one non-zero sub-diagonal elements per column and U is
an upper triangular matrix with at most two non-zero super-diagonal
elements per column.
The factorization is obtained by Gaussian elimination with partial
pivoting and implicit row scaling.
The parameter LAMBDA is included in the routine so that LAGTF may
be used, in conjunction with DLAGTS, to obtain eigenvectors of T by
inverse iteration.
Subroutines
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
real(kind=dp),
|
intent(inout) |
|
|
:: |
a(*) |
|
|
real(kind=dp),
|
intent(in) |
|
|
:: |
lambda |
|
|
real(kind=dp),
|
intent(inout) |
|
|
:: |
b(*) |
|
|
real(kind=dp),
|
intent(inout) |
|
|
:: |
c(*) |
|
|
real(kind=dp),
|
intent(in) |
|
|
:: |
tol |
|
|
real(kind=dp),
|
intent(out) |
|
|
:: |
d(*) |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
in(*) |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
real(kind=sp),
|
intent(inout) |
|
|
:: |
a(*) |
|
|
real(kind=sp),
|
intent(in) |
|
|
:: |
lambda |
|
|
real(kind=sp),
|
intent(inout) |
|
|
:: |
b(*) |
|
|
real(kind=sp),
|
intent(inout) |
|
|
:: |
c(*) |
|
|
real(kind=sp),
|
intent(in) |
|
|
:: |
tol |
|
|
real(kind=sp),
|
intent(out) |
|
|
:: |
d(*) |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
in(*) |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Module Procedures