public interface laqr0
LAQR0 computes the eigenvalues of a Hessenberg matrix H
and, optionally, the matrices T and Z from the Schur decomposition
H = Z T ZH, where T is an upper triangular matrix (the
Schur form), and Z is the unitary matrix of Schur vectors.
Optionally Z may be postmultiplied into an input unitary
matrix Q so that this routine can give the Schur factorization
of a matrix A which has been reduced to the Hessenberg form H
by the unitary matrix Q: A = QHQH = (QZ)H(QZ)**H.
Subroutines
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
logical(kind=lk),
|
intent(in) |
|
|
:: |
wantt |
|
|
logical(kind=lk),
|
intent(in) |
|
|
:: |
wantz |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ilo |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ihi |
|
|
complex(kind=sp),
|
intent(inout) |
|
|
:: |
h(ldh,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldh |
|
|
complex(kind=sp),
|
intent(out) |
|
|
:: |
w(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
iloz |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ihiz |
|
|
complex(kind=sp),
|
intent(inout) |
|
|
:: |
z(ldz,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldz |
|
|
complex(kind=sp),
|
intent(out) |
|
|
:: |
work(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lwork |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
logical(kind=lk),
|
intent(in) |
|
|
:: |
wantt |
|
|
logical(kind=lk),
|
intent(in) |
|
|
:: |
wantz |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ilo |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ihi |
|
|
real(kind=dp),
|
intent(inout) |
|
|
:: |
h(ldh,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldh |
|
|
real(kind=dp),
|
intent(out) |
|
|
:: |
wr(*) |
|
|
real(kind=dp),
|
intent(out) |
|
|
:: |
wi(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
iloz |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ihiz |
|
|
real(kind=dp),
|
intent(inout) |
|
|
:: |
z(ldz,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldz |
|
|
real(kind=dp),
|
intent(out) |
|
|
:: |
work(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lwork |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
logical(kind=lk),
|
intent(in) |
|
|
:: |
wantt |
|
|
logical(kind=lk),
|
intent(in) |
|
|
:: |
wantz |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ilo |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ihi |
|
|
real(kind=sp),
|
intent(inout) |
|
|
:: |
h(ldh,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldh |
|
|
real(kind=sp),
|
intent(out) |
|
|
:: |
wr(*) |
|
|
real(kind=sp),
|
intent(out) |
|
|
:: |
wi(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
iloz |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ihiz |
|
|
real(kind=sp),
|
intent(inout) |
|
|
:: |
z(ldz,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldz |
|
|
real(kind=sp),
|
intent(out) |
|
|
:: |
work(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lwork |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
logical(kind=lk),
|
intent(in) |
|
|
:: |
wantt |
|
|
logical(kind=lk),
|
intent(in) |
|
|
:: |
wantz |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ilo |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ihi |
|
|
complex(kind=dp),
|
intent(inout) |
|
|
:: |
h(ldh,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldh |
|
|
complex(kind=dp),
|
intent(out) |
|
|
:: |
w(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
iloz |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ihiz |
|
|
complex(kind=dp),
|
intent(inout) |
|
|
:: |
z(ldz,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldz |
|
|
complex(kind=dp),
|
intent(out) |
|
|
:: |
work(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lwork |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Module Procedures