laqtr Interface

public interface laqtr

LAQTR solves the real quasi-triangular system op(T)p = scalec, if LREAL = .TRUE. or the complex quasi-triangular systems op(T + iB)(p+iq) = scale(c+id), if LREAL = .FALSE. in real arithmetic, where T is upper quasi-triangular. If LREAL = .FALSE., then the first diagonal block of T must be 1 by 1, B is the specially structured matrix B = [ b(1) b(2) ... b(n) ] [ w ] [ w ] [ . ] [ w ] op(A) = A or AT, AT denotes the transpose of matrix A. On input, X = [ c ]. On output, X = [ p ]. [ d ] [ q ] This subroutine is designed for the condition number estimation in routine DTRSNA.


Subroutines

public subroutine dlaqtr(ltran, lreal, n, t, ldt, b, w, scale, x, work, info)

Arguments

Type IntentOptional Attributes Name
logical(kind=lk), intent(in) :: ltran
logical(kind=lk), intent(in) :: lreal
integer(kind=ilp), intent(in) :: n
real(kind=dp), intent(in) :: t(ldt,*)
integer(kind=ilp), intent(in) :: ldt
real(kind=dp), intent(in) :: b(*)
real(kind=dp), intent(in) :: w
real(kind=dp), intent(out) :: scale
real(kind=dp), intent(inout) :: x(*)
real(kind=dp), intent(out) :: work(*)
integer(kind=ilp), intent(out) :: info

public subroutine slaqtr(ltran, lreal, n, t, ldt, b, w, scale, x, work, info)

Arguments

Type IntentOptional Attributes Name
logical(kind=lk), intent(in) :: ltran
logical(kind=lk), intent(in) :: lreal
integer(kind=ilp), intent(in) :: n
real(kind=sp), intent(in) :: t(ldt,*)
integer(kind=ilp), intent(in) :: ldt
real(kind=sp), intent(in) :: b(*)
real(kind=sp), intent(in) :: w
real(kind=sp), intent(out) :: scale
real(kind=sp), intent(inout) :: x(*)
real(kind=sp), intent(out) :: work(*)
integer(kind=ilp), intent(out) :: info

Module Procedures

public interface stdlib_dlaqtr()

Arguments

None

public interface stdlib_slaqtr()

Arguments

None