public interface laqz0
LAQZ0 computes the eigenvalues of a matrix pair (H,T),
where H is an upper Hessenberg matrix and T is upper triangular,
using the double-shift QZ method.
Matrix pairs of this type are produced by the reduction to
generalized upper Hessenberg form of a matrix pair (A,B):
A = Q1HZ1H, B = Q1TZ1H,
as computed by CGGHRD.
If JOB='S', then the Hessenberg-triangular pair (H,T) is
also reduced to generalized Schur form,
H = QSZH, T = QPZH,
where Q and Z are unitary matrices, P and S are an upper triangular
matrices.
Optionally, the unitary matrix Q from the generalized Schur
factorization may be postmultiplied into an input matrix Q1, and the
unitary matrix Z may be postmultiplied into an input matrix Z1.
If Q1 and Z1 are the unitary matrices from CGGHRD that reduced
the matrix pair (A,B) to generalized upper Hessenberg form, then the
output matrices Q1Q and Z1Z are the unitary factors from the
generalized Schur factorization of (A,B):
A = (Q1Q)S(Z1Z)H, B = (Q1Q)P(Z1Z)H.
To avoid overflow, eigenvalues of the matrix pair (H,T) (equivalently,
of (A,B)) are computed as a pair of values (alpha,beta), where alpha is
complex and beta real.
If beta is nonzero, lambda = alpha / beta is an eigenvalue of the
generalized nonsymmetric eigenvalue problem (GNEP)
Ax = lambdaBx
and if alpha is nonzero, mu = beta / alpha is an eigenvalue of the
alternate form of the GNEP
muAy = By.
Eigenvalues can be read directly from the generalized Schur
form:
alpha = S(i,i), beta = P(i,i).
Ref: C.B. Moler
Eigenvalue Problems", SIAM J. Numer. Anal., 10(1973),
pp. 241--256.
Ref: B. Kagstrom, D. Kressner, "Multishift Variants of the QZ
Algorithm with Aggressive Early Deflation", SIAM J. Numer.
Anal., 29(2006), pp. 199--227.
Ref: T. Steel, D. Camps, K. Meerbergen, R. Vandebril "A multishift,
multipole rational QZ method with agressive early deflation"
Subroutines
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
wants |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
wantq |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
wantz |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ilo |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ihi |
|
|
complex(kind=sp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
|
complex(kind=sp),
|
intent(inout) |
|
|
:: |
b(ldb,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldb |
|
|
complex(kind=sp),
|
intent(inout) |
|
|
:: |
alpha(*) |
|
|
complex(kind=sp),
|
intent(inout) |
|
|
:: |
beta(*) |
|
|
complex(kind=sp),
|
intent(inout) |
|
|
:: |
q(ldq,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldq |
|
|
complex(kind=sp),
|
intent(inout) |
|
|
:: |
z(ldz,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldz |
|
|
complex(kind=sp),
|
intent(inout) |
|
|
:: |
work(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lwork |
|
|
real(kind=sp),
|
intent(out) |
|
|
:: |
rwork(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
rec |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
wants |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
wantq |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
wantz |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ilo |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ihi |
|
|
real(kind=dp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
|
real(kind=dp),
|
intent(inout) |
|
|
:: |
b(ldb,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldb |
|
|
real(kind=dp),
|
intent(inout) |
|
|
:: |
alphar(*) |
|
|
real(kind=dp),
|
intent(inout) |
|
|
:: |
alphai(*) |
|
|
real(kind=dp),
|
intent(inout) |
|
|
:: |
beta(*) |
|
|
real(kind=dp),
|
intent(inout) |
|
|
:: |
q(ldq,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldq |
|
|
real(kind=dp),
|
intent(inout) |
|
|
:: |
z(ldz,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldz |
|
|
real(kind=dp),
|
intent(inout) |
|
|
:: |
work(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lwork |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
rec |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
wants |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
wantq |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
wantz |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ilo |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ihi |
|
|
real(kind=sp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
|
real(kind=sp),
|
intent(inout) |
|
|
:: |
b(ldb,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldb |
|
|
real(kind=sp),
|
intent(inout) |
|
|
:: |
alphar(*) |
|
|
real(kind=sp),
|
intent(inout) |
|
|
:: |
alphai(*) |
|
|
real(kind=sp),
|
intent(inout) |
|
|
:: |
beta(*) |
|
|
real(kind=sp),
|
intent(inout) |
|
|
:: |
q(ldq,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldq |
|
|
real(kind=sp),
|
intent(inout) |
|
|
:: |
z(ldz,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldz |
|
|
real(kind=sp),
|
intent(inout) |
|
|
:: |
work(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lwork |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
rec |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
wants |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
wantq |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
wantz |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ilo |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ihi |
|
|
complex(kind=dp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
|
complex(kind=dp),
|
intent(inout) |
|
|
:: |
b(ldb,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldb |
|
|
complex(kind=dp),
|
intent(inout) |
|
|
:: |
alpha(*) |
|
|
complex(kind=dp),
|
intent(inout) |
|
|
:: |
beta(*) |
|
|
complex(kind=dp),
|
intent(inout) |
|
|
:: |
q(ldq,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldq |
|
|
complex(kind=dp),
|
intent(inout) |
|
|
:: |
z(ldz,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldz |
|
|
complex(kind=dp),
|
intent(inout) |
|
|
:: |
work(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lwork |
|
|
real(kind=dp),
|
intent(out) |
|
|
:: |
rwork(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
rec |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Module Procedures