public interface larfg
LARFG generates a complex elementary reflector H of order n, such
that
HH * ( alpha ) = ( beta ), HH * H = I.
( x ) ( 0 )
where alpha and beta are scalars, with beta real, and x is an
(n-1)-element complex vector. H is represented in the form
H = I - tau * ( 1 ) * ( 1 v**H ) ,
( v )
where tau is a complex scalar and v is a complex (n-1)-element
vector. Note that H is not hermitian.
If the elements of x are all zero and alpha is real, then tau = 0
and H is taken to be the unit matrix.
Otherwise 1 <= real(tau) <= 2 and abs(tau-1) <= 1 .
Subroutines
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
complex(kind=sp),
|
intent(inout) |
|
|
:: |
alpha |
|
|
complex(kind=sp),
|
intent(inout) |
|
|
:: |
x(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
incx |
|
|
complex(kind=sp),
|
intent(out) |
|
|
:: |
tau |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
real(kind=dp),
|
intent(inout) |
|
|
:: |
alpha |
|
|
real(kind=dp),
|
intent(inout) |
|
|
:: |
x(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
incx |
|
|
real(kind=dp),
|
intent(out) |
|
|
:: |
tau |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
real(kind=sp),
|
intent(inout) |
|
|
:: |
alpha |
|
|
real(kind=sp),
|
intent(inout) |
|
|
:: |
x(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
incx |
|
|
real(kind=sp),
|
intent(out) |
|
|
:: |
tau |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
complex(kind=dp),
|
intent(inout) |
|
|
:: |
alpha |
|
|
complex(kind=dp),
|
intent(inout) |
|
|
:: |
x(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
incx |
|
|
complex(kind=dp),
|
intent(out) |
|
|
:: |
tau |
|
Module Procedures