lasd1 Interface

public interface lasd1

LASD1 computes the SVD of an upper bidiagonal N-by-M matrix B, where N = NL + NR + 1 and M = N + SQRE. LASD1 is called from DLASD0. A related subroutine DLASD7 handles the case in which the singular values (and the singular vectors in factored form) are desired. LASD1 computes the SVD as follows: ( D1(in) 0 0 0 ) B = U(in) * ( Z1T a Z2T b ) * VT(in) ( 0 0 D2(in) 0 ) = U(out) * ( D(out) 0) * VT(out) where ZT = (Z1T a Z2T b) = uT VT**T, and u is a vector of dimension M with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros elsewhere; and the entry b is empty if SQRE = 0. The left singular vectors of the original matrix are stored in U, and the transpose of the right singular vectors are stored in VT, and the singular values are in D. The algorithm consists of three stages: The first stage consists of deflating the size of the problem when there are multiple singular values or when there are zeros in the Z vector. For each such occurrence the dimension of the secular equation problem is reduced by one. This stage is performed by the routine DLASD2. The second stage consists of calculating the updated singular values. This is done by finding the square roots of the roots of the secular equation via the routine DLASD4 (as called by DLASD3). This routine also calculates the singular vectors of the current problem. The final stage consists of computing the updated singular vectors directly using the updated singular values. The singular vectors for the current problem are multiplied with the singular vectors from the overall problem.


Subroutines

public pure subroutine dlasd1(nl, nr, sqre, d, alpha, beta, u, ldu, vt, ldvt, idxq, iwork, work, info)

Arguments

Type IntentOptional Attributes Name
integer(kind=ilp), intent(in) :: nl
integer(kind=ilp), intent(in) :: nr
integer(kind=ilp), intent(in) :: sqre
real(kind=dp), intent(inout) :: d(*)
real(kind=dp), intent(inout) :: alpha
real(kind=dp), intent(inout) :: beta
real(kind=dp), intent(inout) :: u(ldu,*)
integer(kind=ilp), intent(in) :: ldu
real(kind=dp), intent(inout) :: vt(ldvt,*)
integer(kind=ilp), intent(in) :: ldvt
integer(kind=ilp), intent(inout) :: idxq(*)
integer(kind=ilp), intent(out) :: iwork(*)
real(kind=dp), intent(out) :: work(*)
integer(kind=ilp), intent(out) :: info

public pure subroutine slasd1(nl, nr, sqre, d, alpha, beta, u, ldu, vt, ldvt, idxq, iwork, work, info)

Arguments

Type IntentOptional Attributes Name
integer(kind=ilp), intent(in) :: nl
integer(kind=ilp), intent(in) :: nr
integer(kind=ilp), intent(in) :: sqre
real(kind=sp), intent(inout) :: d(*)
real(kind=sp), intent(inout) :: alpha
real(kind=sp), intent(inout) :: beta
real(kind=sp), intent(inout) :: u(ldu,*)
integer(kind=ilp), intent(in) :: ldu
real(kind=sp), intent(inout) :: vt(ldvt,*)
integer(kind=ilp), intent(in) :: ldvt
integer(kind=ilp), intent(inout) :: idxq(*)
integer(kind=ilp), intent(out) :: iwork(*)
real(kind=sp), intent(out) :: work(*)
integer(kind=ilp), intent(out) :: info

Module Procedures

public interface stdlib_dlasd1()

Arguments

None

public interface stdlib_slasd1()

Arguments

None