lasd5 Interface

public interface lasd5

This subroutine computes the square root of the I-th eigenvalue of a positive symmetric rank-one modification of a 2-by-2 diagonal matrix diag( D ) * diag( D ) + RHO * Z * transpose(Z) . The diagonal entries in the array D are assumed to satisfy 0 <= D(i) < D(j) for i < j . We also assume RHO > 0 and that the Euclidean norm of the vector Z is one.


Subroutines

public pure subroutine dlasd5(i, d, z, delta, rho, dsigma, work)

Arguments

Type IntentOptional Attributes Name
integer(kind=ilp), intent(in) :: i
real(kind=dp), intent(in) :: d(2)
real(kind=dp), intent(in) :: z(2)
real(kind=dp), intent(out) :: delta(2)
real(kind=dp), intent(in) :: rho
real(kind=dp), intent(out) :: dsigma
real(kind=dp), intent(out) :: work(2)

public pure subroutine slasd5(i, d, z, delta, rho, dsigma, work)

Arguments

Type IntentOptional Attributes Name
integer(kind=ilp), intent(in) :: i
real(kind=sp), intent(in) :: d(2)
real(kind=sp), intent(in) :: z(2)
real(kind=sp), intent(out) :: delta(2)
real(kind=sp), intent(in) :: rho
real(kind=sp), intent(out) :: dsigma
real(kind=sp), intent(out) :: work(2)

Module Procedures

public interface stdlib_dlasd5()

Arguments

None

public interface stdlib_slasd5()

Arguments

None