public interface lasr
LASR applies a sequence of real plane rotations to a complex matrix
A, from either the left or the right.
When SIDE = 'L', the transformation takes the form
A := PA
and when SIDE = 'R', the transformation takes the form
A := APT
where P is an orthogonal matrix consisting of a sequence of z plane
rotations, with z = M when SIDE = 'L' and z = N when SIDE = 'R',
and PT is the transpose of P.
When DIRECT = 'F' (Forward sequence), then
P = P(z-1) * ... * P(2) * P(1)
and when DIRECT = 'B' (Backward sequence), then
P = P(1) * P(2) * ... * P(z-1)
where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
R(k) = ( c(k) s(k) )
= ( -s(k) c(k) ).
When PIVOT = 'V' (Variable pivot), the rotation is performed
for the plane (k,k+1), i.e., P(k) has the form
P(k) = ( 1 )
( ... )
( 1 )
( c(k) s(k) )
( -s(k) c(k) )
( 1 )
( ... )
( 1 )
where R(k) appears as a rank-2 modification to the identity matrix in
rows and columns k and k+1.
When PIVOT = 'T' (Top pivot), the rotation is performed for the
plane (1,k+1), so P(k) has the form
P(k) = ( c(k) s(k) )
( 1 )
( ... )
( 1 )
( -s(k) c(k) )
( 1 )
( ... )
( 1 )
where R(k) appears in rows and columns 1 and k+1.
Similarly, when PIVOT = 'B' (Bottom pivot), the rotation is
performed for the plane (k,z), giving P(k) the form
P(k) = ( 1 )
( ... )
( 1 )
( c(k) s(k) )
( 1 )
( ... )
( 1 )
( -s(k) c(k) )
where R(k) appears in rows and columns k and z. The rotations are
performed without ever forming P(k) explicitly.
Subroutines
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
side |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
pivot |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
direct |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
m |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
real(kind=sp),
|
intent(in) |
|
|
:: |
c(*) |
|
|
real(kind=sp),
|
intent(in) |
|
|
:: |
s(*) |
|
|
complex(kind=sp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
side |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
pivot |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
direct |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
m |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
real(kind=dp),
|
intent(in) |
|
|
:: |
c(*) |
|
|
real(kind=dp),
|
intent(in) |
|
|
:: |
s(*) |
|
|
real(kind=dp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
side |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
pivot |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
direct |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
m |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
real(kind=sp),
|
intent(in) |
|
|
:: |
c(*) |
|
|
real(kind=sp),
|
intent(in) |
|
|
:: |
s(*) |
|
|
real(kind=sp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
side |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
pivot |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
direct |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
m |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
real(kind=dp),
|
intent(in) |
|
|
:: |
c(*) |
|
|
real(kind=dp),
|
intent(in) |
|
|
:: |
s(*) |
|
|
complex(kind=dp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
Module Procedures