public interface potrf2
POTRF2 computes the Cholesky factorization of a Hermitian
positive definite matrix A using the recursive algorithm.
The factorization has the form
A = UH * U, if UPLO = 'U', or
A = L * LH, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
This is the recursive version of the algorithm. It divides
the matrix into four submatrices:
[ A11 | A12 ] where A11 is n1 by n1 and A22 is n2 by n2
A = [ -----|----- ] with n1 = n/2
[ A21 | A22 ] n2 = n-n1
The subroutine calls itself to factor A11. Update and scale A21
or A12, update A22 then calls itself to factor A22.
Subroutines
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
uplo |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
complex(kind=sp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
uplo |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
real(kind=dp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
uplo |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
real(kind=sp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
uplo |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
complex(kind=dp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Module Procedures