public interface stedc
STEDC computes all eigenvalues and, optionally, eigenvectors of a
symmetric tridiagonal matrix using the divide and conquer method.
The eigenvectors of a full or band complex Hermitian matrix can also
be found if CHETRD or CHPTRD or CHBTRD has been used to reduce this
matrix to tridiagonal form.
This code makes very mild assumptions about floating point
arithmetic. It will work on machines with a guard digit in
add/subtract, or on those binary machines without guard digits
which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
It could conceivably fail on hexadecimal or decimal machines
without guard digits, but we know of none. See SLAED3 for details.
Subroutines
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
compz |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
real(kind=sp),
|
intent(inout) |
|
|
:: |
d(*) |
|
|
real(kind=sp),
|
intent(inout) |
|
|
:: |
e(*) |
|
|
complex(kind=sp),
|
intent(inout) |
|
|
:: |
z(ldz,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldz |
|
|
complex(kind=sp),
|
intent(out) |
|
|
:: |
work(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lwork |
|
|
real(kind=sp),
|
intent(out) |
|
|
:: |
rwork(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lrwork |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
iwork(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
liwork |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
compz |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
real(kind=dp),
|
intent(inout) |
|
|
:: |
d(*) |
|
|
real(kind=dp),
|
intent(inout) |
|
|
:: |
e(*) |
|
|
real(kind=dp),
|
intent(inout) |
|
|
:: |
z(ldz,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldz |
|
|
real(kind=dp),
|
intent(out) |
|
|
:: |
work(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lwork |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
iwork(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
liwork |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
compz |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
real(kind=sp),
|
intent(inout) |
|
|
:: |
d(*) |
|
|
real(kind=sp),
|
intent(inout) |
|
|
:: |
e(*) |
|
|
real(kind=sp),
|
intent(inout) |
|
|
:: |
z(ldz,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldz |
|
|
real(kind=sp),
|
intent(out) |
|
|
:: |
work(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lwork |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
iwork(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
liwork |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
compz |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
real(kind=dp),
|
intent(inout) |
|
|
:: |
d(*) |
|
|
real(kind=dp),
|
intent(inout) |
|
|
:: |
e(*) |
|
|
complex(kind=dp),
|
intent(inout) |
|
|
:: |
z(ldz,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
ldz |
|
|
complex(kind=dp),
|
intent(out) |
|
|
:: |
work(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lwork |
|
|
real(kind=dp),
|
intent(out) |
|
|
:: |
rwork(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lrwork |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
iwork(*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
liwork |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Module Procedures