public interface sytf2_rook
SYTF2_ROOK computes the factorization of a complex symmetric matrix A
using the bounded Bunch-Kaufman ("rook") diagonal pivoting method:
A = UDUT or A = LDLT
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, U**T is the transpose of U, and D is symmetric and
block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
This is the unblocked version of the algorithm, calling Level 2 BLAS.
Subroutines
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
uplo |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
complex(kind=sp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
ipiv(*) |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
uplo |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
real(kind=dp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
ipiv(*) |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
uplo |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
real(kind=sp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
ipiv(*) |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Arguments
| Type |
Intent | Optional | Attributes |
|
Name |
|
|
character(len=1),
|
intent(in) |
|
|
:: |
uplo |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
n |
|
|
complex(kind=dp),
|
intent(inout) |
|
|
:: |
a(lda,*) |
|
|
integer(kind=ilp),
|
intent(in) |
|
|
:: |
lda |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
ipiv(*) |
|
|
integer(kind=ilp),
|
intent(out) |
|
|
:: |
info |
|
Module Procedures