#:include "common.fypp" submodule(stdlib_lapack_solve) stdlib_lapack_solve_ldl_comp implicit none contains #:for ik,it,ii in LINALG_INT_KINDS_TYPES pure module subroutine stdlib${ii}$_ssycon( uplo, n, a, lda, ipiv, anorm, rcond, work,iwork, info ) !! SSYCON estimates the reciprocal of the condition number (in the !! 1-norm) of a real symmetric matrix A using the factorization !! A = U*D*U**T or A = L*D*L**T computed by SSYTRF. !! An estimate is obtained for norm(inv(A)), and the reciprocal of the !! condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n real(sp), intent(in) :: anorm real(sp), intent(out) :: rcond ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) integer(${ik}$), intent(out) :: iwork(*) real(sp), intent(in) :: a(lda,*) real(sp), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, kase real(sp) :: ainvnm ! Local Arrays integer(${ik}$) :: isave(3_${ik}$) ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ else if( anorm<zero ) then info = -6_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'SSYCON', -info ) return end if ! quick return if possible rcond = zero if( n==0_${ik}$ ) then rcond = one return else if( anorm<=zero ) then return end if ! check that the diagonal matrix d is nonsingular. if( upper ) then ! upper triangular storage: examine d from bottom to top do i = n, 1, -1 if( ipiv( i )>0 .and. a( i, i )==zero )return end do else ! lower triangular storage: examine d from top to bottom. do i = 1, n if( ipiv( i )>0 .and. a( i, i )==zero )return end do end if ! estimate the 1-norm of the inverse. kase = 0_${ik}$ 30 continue call stdlib${ii}$_slacn2( n, work( n+1 ), work, iwork, ainvnm, kase, isave ) if( kase/=0_${ik}$ ) then ! multiply by inv(l*d*l**t) or inv(u*d*u**t). call stdlib${ii}$_ssytrs( uplo, n, 1_${ik}$, a, lda, ipiv, work, n, info ) go to 30 end if ! compute the estimate of the reciprocal condition number. if( ainvnm/=zero )rcond = ( one / ainvnm ) / anorm return end subroutine stdlib${ii}$_ssycon pure module subroutine stdlib${ii}$_dsycon( uplo, n, a, lda, ipiv, anorm, rcond, work,iwork, info ) !! DSYCON estimates the reciprocal of the condition number (in the !! 1-norm) of a real symmetric matrix A using the factorization !! A = U*D*U**T or A = L*D*L**T computed by DSYTRF. !! An estimate is obtained for norm(inv(A)), and the reciprocal of the !! condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n real(dp), intent(in) :: anorm real(dp), intent(out) :: rcond ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) integer(${ik}$), intent(out) :: iwork(*) real(dp), intent(in) :: a(lda,*) real(dp), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, kase real(dp) :: ainvnm ! Local Arrays integer(${ik}$) :: isave(3_${ik}$) ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ else if( anorm<zero ) then info = -6_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'DSYCON', -info ) return end if ! quick return if possible rcond = zero if( n==0_${ik}$ ) then rcond = one return else if( anorm<=zero ) then return end if ! check that the diagonal matrix d is nonsingular. if( upper ) then ! upper triangular storage: examine d from bottom to top do i = n, 1, -1 if( ipiv( i )>0 .and. a( i, i )==zero )return end do else ! lower triangular storage: examine d from top to bottom. do i = 1, n if( ipiv( i )>0 .and. a( i, i )==zero )return end do end if ! estimate the 1-norm of the inverse. kase = 0_${ik}$ 30 continue call stdlib${ii}$_dlacn2( n, work( n+1 ), work, iwork, ainvnm, kase, isave ) if( kase/=0_${ik}$ ) then ! multiply by inv(l*d*l**t) or inv(u*d*u**t). call stdlib${ii}$_dsytrs( uplo, n, 1_${ik}$, a, lda, ipiv, work, n, info ) go to 30 end if ! compute the estimate of the reciprocal condition number. if( ainvnm/=zero )rcond = ( one / ainvnm ) / anorm return end subroutine stdlib${ii}$_dsycon #:for rk,rt,ri in REAL_KINDS_TYPES #:if not rk in ["sp","dp"] pure module subroutine stdlib${ii}$_${ri}$sycon( uplo, n, a, lda, ipiv, anorm, rcond, work,iwork, info ) !! DSYCON: estimates the reciprocal of the condition number (in the !! 1-norm) of a real symmetric matrix A using the factorization !! A = U*D*U**T or A = L*D*L**T computed by DSYTRF. !! An estimate is obtained for norm(inv(A)), and the reciprocal of the !! condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${rk}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n real(${rk}$), intent(in) :: anorm real(${rk}$), intent(out) :: rcond ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) integer(${ik}$), intent(out) :: iwork(*) real(${rk}$), intent(in) :: a(lda,*) real(${rk}$), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, kase real(${rk}$) :: ainvnm ! Local Arrays integer(${ik}$) :: isave(3_${ik}$) ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ else if( anorm<zero ) then info = -6_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'DSYCON', -info ) return end if ! quick return if possible rcond = zero if( n==0_${ik}$ ) then rcond = one return else if( anorm<=zero ) then return end if ! check that the diagonal matrix d is nonsingular. if( upper ) then ! upper triangular storage: examine d from bottom to top do i = n, 1, -1 if( ipiv( i )>0 .and. a( i, i )==zero )return end do else ! lower triangular storage: examine d from top to bottom. do i = 1, n if( ipiv( i )>0 .and. a( i, i )==zero )return end do end if ! estimate the 1-norm of the inverse. kase = 0_${ik}$ 30 continue call stdlib${ii}$_${ri}$lacn2( n, work( n+1 ), work, iwork, ainvnm, kase, isave ) if( kase/=0_${ik}$ ) then ! multiply by inv(l*d*l**t) or inv(u*d*u**t). call stdlib${ii}$_${ri}$sytrs( uplo, n, 1_${ik}$, a, lda, ipiv, work, n, info ) go to 30 end if ! compute the estimate of the reciprocal condition number. if( ainvnm/=zero )rcond = ( one / ainvnm ) / anorm return end subroutine stdlib${ii}$_${ri}$sycon #:endif #:endfor pure module subroutine stdlib${ii}$_csycon( uplo, n, a, lda, ipiv, anorm, rcond, work,info ) !! CSYCON estimates the reciprocal of the condition number (in the !! 1-norm) of a complex symmetric matrix A using the factorization !! A = U*D*U**T or A = L*D*L**T computed by CSYTRF. !! An estimate is obtained for norm(inv(A)), and the reciprocal of the !! condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n real(sp), intent(in) :: anorm real(sp), intent(out) :: rcond ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) complex(sp), intent(in) :: a(lda,*) complex(sp), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, kase real(sp) :: ainvnm ! Local Arrays integer(${ik}$) :: isave(3_${ik}$) ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ else if( anorm<zero ) then info = -6_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'CSYCON', -info ) return end if ! quick return if possible rcond = zero if( n==0_${ik}$ ) then rcond = one return else if( anorm<=zero ) then return end if ! check that the diagonal matrix d is nonsingular. if( upper ) then ! upper triangular storage: examine d from bottom to top do i = n, 1, -1 if( ipiv( i )>0 .and. a( i, i )==zero )return end do else ! lower triangular storage: examine d from top to bottom. do i = 1, n if( ipiv( i )>0 .and. a( i, i )==zero )return end do end if ! estimate the 1-norm of the inverse. kase = 0_${ik}$ 30 continue call stdlib${ii}$_clacn2( n, work( n+1 ), work, ainvnm, kase, isave ) if( kase/=0_${ik}$ ) then ! multiply by inv(l*d*l**t) or inv(u*d*u**t). call stdlib${ii}$_csytrs( uplo, n, 1_${ik}$, a, lda, ipiv, work, n, info ) go to 30 end if ! compute the estimate of the reciprocal condition number. if( ainvnm/=zero )rcond = ( one / ainvnm ) / anorm return end subroutine stdlib${ii}$_csycon pure module subroutine stdlib${ii}$_zsycon( uplo, n, a, lda, ipiv, anorm, rcond, work,info ) !! ZSYCON estimates the reciprocal of the condition number (in the !! 1-norm) of a complex symmetric matrix A using the factorization !! A = U*D*U**T or A = L*D*L**T computed by ZSYTRF. !! An estimate is obtained for norm(inv(A)), and the reciprocal of the !! condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n real(dp), intent(in) :: anorm real(dp), intent(out) :: rcond ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) complex(dp), intent(in) :: a(lda,*) complex(dp), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, kase real(dp) :: ainvnm ! Local Arrays integer(${ik}$) :: isave(3_${ik}$) ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ else if( anorm<zero ) then info = -6_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZSYCON', -info ) return end if ! quick return if possible rcond = zero if( n==0_${ik}$ ) then rcond = one return else if( anorm<=zero ) then return end if ! check that the diagonal matrix d is nonsingular. if( upper ) then ! upper triangular storage: examine d from bottom to top do i = n, 1, -1 if( ipiv( i )>0 .and. a( i, i )==zero )return end do else ! lower triangular storage: examine d from top to bottom. do i = 1, n if( ipiv( i )>0 .and. a( i, i )==zero )return end do end if ! estimate the 1-norm of the inverse. kase = 0_${ik}$ 30 continue call stdlib${ii}$_zlacn2( n, work( n+1 ), work, ainvnm, kase, isave ) if( kase/=0_${ik}$ ) then ! multiply by inv(l*d*l**t) or inv(u*d*u**t). call stdlib${ii}$_zsytrs( uplo, n, 1_${ik}$, a, lda, ipiv, work, n, info ) go to 30 end if ! compute the estimate of the reciprocal condition number. if( ainvnm/=zero )rcond = ( one / ainvnm ) / anorm return end subroutine stdlib${ii}$_zsycon #:for ck,ct,ci in CMPLX_KINDS_TYPES #:if not ck in ["sp","dp"] pure module subroutine stdlib${ii}$_${ci}$sycon( uplo, n, a, lda, ipiv, anorm, rcond, work,info ) !! ZSYCON: estimates the reciprocal of the condition number (in the !! 1-norm) of a complex symmetric matrix A using the factorization !! A = U*D*U**T or A = L*D*L**T computed by ZSYTRF. !! An estimate is obtained for norm(inv(A)), and the reciprocal of the !! condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${ck}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n real(${ck}$), intent(in) :: anorm real(${ck}$), intent(out) :: rcond ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) complex(${ck}$), intent(in) :: a(lda,*) complex(${ck}$), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, kase real(${ck}$) :: ainvnm ! Local Arrays integer(${ik}$) :: isave(3_${ik}$) ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ else if( anorm<zero ) then info = -6_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZSYCON', -info ) return end if ! quick return if possible rcond = zero if( n==0_${ik}$ ) then rcond = one return else if( anorm<=zero ) then return end if ! check that the diagonal matrix d is nonsingular. if( upper ) then ! upper triangular storage: examine d from bottom to top do i = n, 1, -1 if( ipiv( i )>0 .and. a( i, i )==zero )return end do else ! lower triangular storage: examine d from top to bottom. do i = 1, n if( ipiv( i )>0 .and. a( i, i )==zero )return end do end if ! estimate the 1-norm of the inverse. kase = 0_${ik}$ 30 continue call stdlib${ii}$_${ci}$lacn2( n, work( n+1 ), work, ainvnm, kase, isave ) if( kase/=0_${ik}$ ) then ! multiply by inv(l*d*l**t) or inv(u*d*u**t). call stdlib${ii}$_${ci}$sytrs( uplo, n, 1_${ik}$, a, lda, ipiv, work, n, info ) go to 30 end if ! compute the estimate of the reciprocal condition number. if( ainvnm/=zero )rcond = ( one / ainvnm ) / anorm return end subroutine stdlib${ii}$_${ci}$sycon #:endif #:endfor pure module subroutine stdlib${ii}$_ssytrf( uplo, n, a, lda, ipiv, work, lwork, info ) !! SSYTRF computes the factorization of a real symmetric matrix A using !! the Bunch-Kaufman diagonal pivoting method. The form of the !! factorization is !! A = U**T*D*U or A = L*D*L**T !! where U (or L) is a product of permutation and unit upper (lower) !! triangular matrices, and D is symmetric and block diagonal with !! 1-by-1 and 2-by-2 diagonal blocks. !! This is the blocked version of the algorithm, calling Level 3 BLAS. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, lwork, n ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) real(sp), intent(inout) :: a(lda,*) real(sp), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: lquery, upper integer(${ik}$) :: iinfo, iws, j, k, kb, ldwork, lwkopt, nb, nbmin ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) lquery = ( lwork==-1_${ik}$ ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ else if( lwork<1_${ik}$ .and. .not.lquery ) then info = -7_${ik}$ end if if( info==0_${ik}$ ) then ! determine the block size nb = stdlib${ii}$_ilaenv( 1_${ik}$, 'SSYTRF', uplo, n, -1_${ik}$, -1_${ik}$, -1_${ik}$ ) lwkopt = n*nb work( 1_${ik}$ ) = lwkopt end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'SSYTRF', -info ) return else if( lquery ) then return end if nbmin = 2_${ik}$ ldwork = n if( nb>1_${ik}$ .and. nb<n ) then iws = ldwork*nb if( lwork<iws ) then nb = max( lwork / ldwork, 1_${ik}$ ) nbmin = max( 2_${ik}$, stdlib${ii}$_ilaenv( 2_${ik}$, 'SSYTRF', uplo, n, -1_${ik}$, -1_${ik}$, -1_${ik}$ ) ) end if else iws = 1_${ik}$ end if if( nb<nbmin )nb = n if( upper ) then ! factorize a as u**t*d*u using the upper triangle of a ! k is the main loop index, decreasing from n to 1 in steps of ! kb, where kb is the number of columns factorized by stdlib${ii}$_slasyf; ! kb is either nb or nb-1, or k for the last block k = n 10 continue ! if k < 1, exit from loop if( k<1 )go to 40 if( k>nb ) then ! factorize columns k-kb+1:k of a and use blocked code to ! update columns 1:k-kb call stdlib${ii}$_slasyf( uplo, k, nb, kb, a, lda, ipiv, work, ldwork,iinfo ) else ! use unblocked code to factorize columns 1:k of a call stdlib${ii}$_ssytf2( uplo, k, a, lda, ipiv, iinfo ) kb = k end if ! set info on the first occurrence of a zero pivot if( info==0_${ik}$ .and. iinfo>0_${ik}$ )info = iinfo ! decrease k and return to the start of the main loop k = k - kb go to 10 else ! factorize a as l*d*l**t using the lower triangle of a ! k is the main loop index, increasing from 1 to n in steps of ! kb, where kb is the number of columns factorized by stdlib${ii}$_slasyf; ! kb is either nb or nb-1, or n-k+1 for the last block k = 1_${ik}$ 20 continue ! if k > n, exit from loop if( k>n )go to 40 if( k<=n-nb ) then ! factorize columns k:k+kb-1 of a and use blocked code to ! update columns k+kb:n call stdlib${ii}$_slasyf( uplo, n-k+1, nb, kb, a( k, k ), lda, ipiv( k ),work, ldwork, & iinfo ) else ! use unblocked code to factorize columns k:n of a call stdlib${ii}$_ssytf2( uplo, n-k+1, a( k, k ), lda, ipiv( k ), iinfo ) kb = n - k + 1_${ik}$ end if ! set info on the first occurrence of a zero pivot if( info==0_${ik}$ .and. iinfo>0_${ik}$ )info = iinfo + k - 1_${ik}$ ! adjust ipiv do j = k, k + kb - 1 if( ipiv( j )>0_${ik}$ ) then ipiv( j ) = ipiv( j ) + k - 1_${ik}$ else ipiv( j ) = ipiv( j ) - k + 1_${ik}$ end if end do ! increase k and return to the start of the main loop k = k + kb go to 20 end if 40 continue work( 1_${ik}$ ) = lwkopt return end subroutine stdlib${ii}$_ssytrf pure module subroutine stdlib${ii}$_dsytrf( uplo, n, a, lda, ipiv, work, lwork, info ) !! DSYTRF computes the factorization of a real symmetric matrix A using !! the Bunch-Kaufman diagonal pivoting method. The form of the !! factorization is !! A = U**T*D*U or A = L*D*L**T !! where U (or L) is a product of permutation and unit upper (lower) !! triangular matrices, and D is symmetric and block diagonal with !! 1-by-1 and 2-by-2 diagonal blocks. !! This is the blocked version of the algorithm, calling Level 3 BLAS. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, lwork, n ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) real(dp), intent(inout) :: a(lda,*) real(dp), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: lquery, upper integer(${ik}$) :: iinfo, iws, j, k, kb, ldwork, lwkopt, nb, nbmin ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) lquery = ( lwork==-1_${ik}$ ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ else if( lwork<1_${ik}$ .and. .not.lquery ) then info = -7_${ik}$ end if if( info==0_${ik}$ ) then ! determine the block size nb = stdlib${ii}$_ilaenv( 1_${ik}$, 'DSYTRF', uplo, n, -1_${ik}$, -1_${ik}$, -1_${ik}$ ) lwkopt = n*nb work( 1_${ik}$ ) = lwkopt end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'DSYTRF', -info ) return else if( lquery ) then return end if nbmin = 2_${ik}$ ldwork = n if( nb>1_${ik}$ .and. nb<n ) then iws = ldwork*nb if( lwork<iws ) then nb = max( lwork / ldwork, 1_${ik}$ ) nbmin = max( 2_${ik}$, stdlib${ii}$_ilaenv( 2_${ik}$, 'DSYTRF', uplo, n, -1_${ik}$, -1_${ik}$, -1_${ik}$ ) ) end if else iws = 1_${ik}$ end if if( nb<nbmin )nb = n if( upper ) then ! factorize a as u**t*d*u using the upper triangle of a ! k is the main loop index, decreasing from n to 1 in steps of ! kb, where kb is the number of columns factorized by stdlib${ii}$_dlasyf; ! kb is either nb or nb-1, or k for the last block k = n 10 continue ! if k < 1, exit from loop if( k<1 )go to 40 if( k>nb ) then ! factorize columns k-kb+1:k of a and use blocked code to ! update columns 1:k-kb call stdlib${ii}$_dlasyf( uplo, k, nb, kb, a, lda, ipiv, work, ldwork,iinfo ) else ! use unblocked code to factorize columns 1:k of a call stdlib${ii}$_dsytf2( uplo, k, a, lda, ipiv, iinfo ) kb = k end if ! set info on the first occurrence of a zero pivot if( info==0_${ik}$ .and. iinfo>0_${ik}$ )info = iinfo ! decrease k and return to the start of the main loop k = k - kb go to 10 else ! factorize a as l*d*l**t using the lower triangle of a ! k is the main loop index, increasing from 1 to n in steps of ! kb, where kb is the number of columns factorized by stdlib${ii}$_dlasyf; ! kb is either nb or nb-1, or n-k+1 for the last block k = 1_${ik}$ 20 continue ! if k > n, exit from loop if( k>n )go to 40 if( k<=n-nb ) then ! factorize columns k:k+kb-1 of a and use blocked code to ! update columns k+kb:n call stdlib${ii}$_dlasyf( uplo, n-k+1, nb, kb, a( k, k ), lda, ipiv( k ),work, ldwork, & iinfo ) else ! use unblocked code to factorize columns k:n of a call stdlib${ii}$_dsytf2( uplo, n-k+1, a( k, k ), lda, ipiv( k ), iinfo ) kb = n - k + 1_${ik}$ end if ! set info on the first occurrence of a zero pivot if( info==0_${ik}$ .and. iinfo>0_${ik}$ )info = iinfo + k - 1_${ik}$ ! adjust ipiv do j = k, k + kb - 1 if( ipiv( j )>0_${ik}$ ) then ipiv( j ) = ipiv( j ) + k - 1_${ik}$ else ipiv( j ) = ipiv( j ) - k + 1_${ik}$ end if end do ! increase k and return to the start of the main loop k = k + kb go to 20 end if 40 continue work( 1_${ik}$ ) = lwkopt return end subroutine stdlib${ii}$_dsytrf #:for rk,rt,ri in REAL_KINDS_TYPES #:if not rk in ["sp","dp"] pure module subroutine stdlib${ii}$_${ri}$sytrf( uplo, n, a, lda, ipiv, work, lwork, info ) !! DSYTRF: computes the factorization of a real symmetric matrix A using !! the Bunch-Kaufman diagonal pivoting method. The form of the !! factorization is !! A = U**T*D*U or A = L*D*L**T !! where U (or L) is a product of permutation and unit upper (lower) !! triangular matrices, and D is symmetric and block diagonal with !! 1-by-1 and 2-by-2 diagonal blocks. !! This is the blocked version of the algorithm, calling Level 3 BLAS. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${rk}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, lwork, n ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) real(${rk}$), intent(inout) :: a(lda,*) real(${rk}$), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: lquery, upper integer(${ik}$) :: iinfo, iws, j, k, kb, ldwork, lwkopt, nb, nbmin ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) lquery = ( lwork==-1_${ik}$ ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ else if( lwork<1_${ik}$ .and. .not.lquery ) then info = -7_${ik}$ end if if( info==0_${ik}$ ) then ! determine the block size nb = stdlib${ii}$_ilaenv( 1_${ik}$, 'DSYTRF', uplo, n, -1_${ik}$, -1_${ik}$, -1_${ik}$ ) lwkopt = n*nb work( 1_${ik}$ ) = lwkopt end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'DSYTRF', -info ) return else if( lquery ) then return end if nbmin = 2_${ik}$ ldwork = n if( nb>1_${ik}$ .and. nb<n ) then iws = ldwork*nb if( lwork<iws ) then nb = max( lwork / ldwork, 1_${ik}$ ) nbmin = max( 2_${ik}$, stdlib${ii}$_ilaenv( 2_${ik}$, 'DSYTRF', uplo, n, -1_${ik}$, -1_${ik}$, -1_${ik}$ ) ) end if else iws = 1_${ik}$ end if if( nb<nbmin )nb = n if( upper ) then ! factorize a as u**t*d*u using the upper triangle of a ! k is the main loop index, decreasing from n to 1 in steps of ! kb, where kb is the number of columns factorized by stdlib${ii}$_${ri}$lasyf; ! kb is either nb or nb-1, or k for the last block k = n 10 continue ! if k < 1, exit from loop if( k<1 )go to 40 if( k>nb ) then ! factorize columns k-kb+1:k of a and use blocked code to ! update columns 1:k-kb call stdlib${ii}$_${ri}$lasyf( uplo, k, nb, kb, a, lda, ipiv, work, ldwork,iinfo ) else ! use unblocked code to factorize columns 1:k of a call stdlib${ii}$_${ri}$sytf2( uplo, k, a, lda, ipiv, iinfo ) kb = k end if ! set info on the first occurrence of a zero pivot if( info==0_${ik}$ .and. iinfo>0_${ik}$ )info = iinfo ! decrease k and return to the start of the main loop k = k - kb go to 10 else ! factorize a as l*d*l**t using the lower triangle of a ! k is the main loop index, increasing from 1 to n in steps of ! kb, where kb is the number of columns factorized by stdlib${ii}$_${ri}$lasyf; ! kb is either nb or nb-1, or n-k+1 for the last block k = 1_${ik}$ 20 continue ! if k > n, exit from loop if( k>n )go to 40 if( k<=n-nb ) then ! factorize columns k:k+kb-1 of a and use blocked code to ! update columns k+kb:n call stdlib${ii}$_${ri}$lasyf( uplo, n-k+1, nb, kb, a( k, k ), lda, ipiv( k ),work, ldwork, & iinfo ) else ! use unblocked code to factorize columns k:n of a call stdlib${ii}$_${ri}$sytf2( uplo, n-k+1, a( k, k ), lda, ipiv( k ), iinfo ) kb = n - k + 1_${ik}$ end if ! set info on the first occurrence of a zero pivot if( info==0_${ik}$ .and. iinfo>0_${ik}$ )info = iinfo + k - 1_${ik}$ ! adjust ipiv do j = k, k + kb - 1 if( ipiv( j )>0_${ik}$ ) then ipiv( j ) = ipiv( j ) + k - 1_${ik}$ else ipiv( j ) = ipiv( j ) - k + 1_${ik}$ end if end do ! increase k and return to the start of the main loop k = k + kb go to 20 end if 40 continue work( 1_${ik}$ ) = lwkopt return end subroutine stdlib${ii}$_${ri}$sytrf #:endif #:endfor pure module subroutine stdlib${ii}$_csytrf( uplo, n, a, lda, ipiv, work, lwork, info ) !! CSYTRF computes the factorization of a complex symmetric matrix A !! using the Bunch-Kaufman diagonal pivoting method. The form of the !! factorization is !! A = U*D*U**T or A = L*D*L**T !! where U (or L) is a product of permutation and unit upper (lower) !! triangular matrices, and D is symmetric and block diagonal with !! 1-by-1 and 2-by-2 diagonal blocks. !! This is the blocked version of the algorithm, calling Level 3 BLAS. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, lwork, n ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) complex(sp), intent(inout) :: a(lda,*) complex(sp), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: lquery, upper integer(${ik}$) :: iinfo, iws, j, k, kb, ldwork, lwkopt, nb, nbmin ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) lquery = ( lwork==-1_${ik}$ ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ else if( lwork<1_${ik}$ .and. .not.lquery ) then info = -7_${ik}$ end if if( info==0_${ik}$ ) then ! determine the block size nb = stdlib${ii}$_ilaenv( 1_${ik}$, 'CSYTRF', uplo, n, -1_${ik}$, -1_${ik}$, -1_${ik}$ ) lwkopt = n*nb work( 1_${ik}$ ) = lwkopt end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'CSYTRF', -info ) return else if( lquery ) then return end if nbmin = 2_${ik}$ ldwork = n if( nb>1_${ik}$ .and. nb<n ) then iws = ldwork*nb if( lwork<iws ) then nb = max( lwork / ldwork, 1_${ik}$ ) nbmin = max( 2_${ik}$, stdlib${ii}$_ilaenv( 2_${ik}$, 'CSYTRF', uplo, n, -1_${ik}$, -1_${ik}$, -1_${ik}$ ) ) end if else iws = 1_${ik}$ end if if( nb<nbmin )nb = n if( upper ) then ! factorize a as u*d*u**t using the upper triangle of a ! k is the main loop index, decreasing from n to 1 in steps of ! kb, where kb is the number of columns factorized by stdlib${ii}$_clasyf; ! kb is either nb or nb-1, or k for the last block k = n 10 continue ! if k < 1, exit from loop if( k<1 )go to 40 if( k>nb ) then ! factorize columns k-kb+1:k of a and use blocked code to ! update columns 1:k-kb call stdlib${ii}$_clasyf( uplo, k, nb, kb, a, lda, ipiv, work, n, iinfo ) else ! use unblocked code to factorize columns 1:k of a call stdlib${ii}$_csytf2( uplo, k, a, lda, ipiv, iinfo ) kb = k end if ! set info on the first occurrence of a zero pivot if( info==0_${ik}$ .and. iinfo>0_${ik}$ )info = iinfo ! decrease k and return to the start of the main loop k = k - kb go to 10 else ! factorize a as l*d*l**t using the lower triangle of a ! k is the main loop index, increasing from 1 to n in steps of ! kb, where kb is the number of columns factorized by stdlib${ii}$_clasyf; ! kb is either nb or nb-1, or n-k+1 for the last block k = 1_${ik}$ 20 continue ! if k > n, exit from loop if( k>n )go to 40 if( k<=n-nb ) then ! factorize columns k:k+kb-1 of a and use blocked code to ! update columns k+kb:n call stdlib${ii}$_clasyf( uplo, n-k+1, nb, kb, a( k, k ), lda, ipiv( k ),work, n, & iinfo ) else ! use unblocked code to factorize columns k:n of a call stdlib${ii}$_csytf2( uplo, n-k+1, a( k, k ), lda, ipiv( k ), iinfo ) kb = n - k + 1_${ik}$ end if ! set info on the first occurrence of a zero pivot if( info==0_${ik}$ .and. iinfo>0_${ik}$ )info = iinfo + k - 1_${ik}$ ! adjust ipiv do j = k, k + kb - 1 if( ipiv( j )>0_${ik}$ ) then ipiv( j ) = ipiv( j ) + k - 1_${ik}$ else ipiv( j ) = ipiv( j ) - k + 1_${ik}$ end if end do ! increase k and return to the start of the main loop k = k + kb go to 20 end if 40 continue work( 1_${ik}$ ) = lwkopt return end subroutine stdlib${ii}$_csytrf pure module subroutine stdlib${ii}$_zsytrf( uplo, n, a, lda, ipiv, work, lwork, info ) !! ZSYTRF computes the factorization of a complex symmetric matrix A !! using the Bunch-Kaufman diagonal pivoting method. The form of the !! factorization is !! A = U*D*U**T or A = L*D*L**T !! where U (or L) is a product of permutation and unit upper (lower) !! triangular matrices, and D is symmetric and block diagonal with !! 1-by-1 and 2-by-2 diagonal blocks. !! This is the blocked version of the algorithm, calling Level 3 BLAS. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, lwork, n ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) complex(dp), intent(inout) :: a(lda,*) complex(dp), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: lquery, upper integer(${ik}$) :: iinfo, iws, j, k, kb, ldwork, lwkopt, nb, nbmin ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) lquery = ( lwork==-1_${ik}$ ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ else if( lwork<1_${ik}$ .and. .not.lquery ) then info = -7_${ik}$ end if if( info==0_${ik}$ ) then ! determine the block size nb = stdlib${ii}$_ilaenv( 1_${ik}$, 'ZSYTRF', uplo, n, -1_${ik}$, -1_${ik}$, -1_${ik}$ ) lwkopt = n*nb work( 1_${ik}$ ) = lwkopt end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZSYTRF', -info ) return else if( lquery ) then return end if nbmin = 2_${ik}$ ldwork = n if( nb>1_${ik}$ .and. nb<n ) then iws = ldwork*nb if( lwork<iws ) then nb = max( lwork / ldwork, 1_${ik}$ ) nbmin = max( 2_${ik}$, stdlib${ii}$_ilaenv( 2_${ik}$, 'ZSYTRF', uplo, n, -1_${ik}$, -1_${ik}$, -1_${ik}$ ) ) end if else iws = 1_${ik}$ end if if( nb<nbmin )nb = n if( upper ) then ! factorize a as u*d*u**t using the upper triangle of a ! k is the main loop index, decreasing from n to 1 in steps of ! kb, where kb is the number of columns factorized by stdlib${ii}$_zlasyf; ! kb is either nb or nb-1, or k for the last block k = n 10 continue ! if k < 1, exit from loop if( k<1 )go to 40 if( k>nb ) then ! factorize columns k-kb+1:k of a and use blocked code to ! update columns 1:k-kb call stdlib${ii}$_zlasyf( uplo, k, nb, kb, a, lda, ipiv, work, n, iinfo ) else ! use unblocked code to factorize columns 1:k of a call stdlib${ii}$_zsytf2( uplo, k, a, lda, ipiv, iinfo ) kb = k end if ! set info on the first occurrence of a zero pivot if( info==0_${ik}$ .and. iinfo>0_${ik}$ )info = iinfo ! decrease k and return to the start of the main loop k = k - kb go to 10 else ! factorize a as l*d*l**t using the lower triangle of a ! k is the main loop index, increasing from 1 to n in steps of ! kb, where kb is the number of columns factorized by stdlib${ii}$_zlasyf; ! kb is either nb or nb-1, or n-k+1 for the last block k = 1_${ik}$ 20 continue ! if k > n, exit from loop if( k>n )go to 40 if( k<=n-nb ) then ! factorize columns k:k+kb-1 of a and use blocked code to ! update columns k+kb:n call stdlib${ii}$_zlasyf( uplo, n-k+1, nb, kb, a( k, k ), lda, ipiv( k ),work, n, & iinfo ) else ! use unblocked code to factorize columns k:n of a call stdlib${ii}$_zsytf2( uplo, n-k+1, a( k, k ), lda, ipiv( k ), iinfo ) kb = n - k + 1_${ik}$ end if ! set info on the first occurrence of a zero pivot if( info==0_${ik}$ .and. iinfo>0_${ik}$ )info = iinfo + k - 1_${ik}$ ! adjust ipiv do j = k, k + kb - 1 if( ipiv( j )>0_${ik}$ ) then ipiv( j ) = ipiv( j ) + k - 1_${ik}$ else ipiv( j ) = ipiv( j ) - k + 1_${ik}$ end if end do ! increase k and return to the start of the main loop k = k + kb go to 20 end if 40 continue work( 1_${ik}$ ) = lwkopt return end subroutine stdlib${ii}$_zsytrf #:for ck,ct,ci in CMPLX_KINDS_TYPES #:if not ck in ["sp","dp"] pure module subroutine stdlib${ii}$_${ci}$sytrf( uplo, n, a, lda, ipiv, work, lwork, info ) !! ZSYTRF: computes the factorization of a complex symmetric matrix A !! using the Bunch-Kaufman diagonal pivoting method. The form of the !! factorization is !! A = U*D*U**T or A = L*D*L**T !! where U (or L) is a product of permutation and unit upper (lower) !! triangular matrices, and D is symmetric and block diagonal with !! 1-by-1 and 2-by-2 diagonal blocks. !! This is the blocked version of the algorithm, calling Level 3 BLAS. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${ck}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, lwork, n ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) complex(${ck}$), intent(inout) :: a(lda,*) complex(${ck}$), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: lquery, upper integer(${ik}$) :: iinfo, iws, j, k, kb, ldwork, lwkopt, nb, nbmin ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) lquery = ( lwork==-1_${ik}$ ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ else if( lwork<1_${ik}$ .and. .not.lquery ) then info = -7_${ik}$ end if if( info==0_${ik}$ ) then ! determine the block size nb = stdlib${ii}$_ilaenv( 1_${ik}$, 'ZSYTRF', uplo, n, -1_${ik}$, -1_${ik}$, -1_${ik}$ ) lwkopt = n*nb work( 1_${ik}$ ) = lwkopt end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZSYTRF', -info ) return else if( lquery ) then return end if nbmin = 2_${ik}$ ldwork = n if( nb>1_${ik}$ .and. nb<n ) then iws = ldwork*nb if( lwork<iws ) then nb = max( lwork / ldwork, 1_${ik}$ ) nbmin = max( 2_${ik}$, stdlib${ii}$_ilaenv( 2_${ik}$, 'ZSYTRF', uplo, n, -1_${ik}$, -1_${ik}$, -1_${ik}$ ) ) end if else iws = 1_${ik}$ end if if( nb<nbmin )nb = n if( upper ) then ! factorize a as u*d*u**t using the upper triangle of a ! k is the main loop index, decreasing from n to 1 in steps of ! kb, where kb is the number of columns factorized by stdlib${ii}$_${ci}$lasyf; ! kb is either nb or nb-1, or k for the last block k = n 10 continue ! if k < 1, exit from loop if( k<1 )go to 40 if( k>nb ) then ! factorize columns k-kb+1:k of a and use blocked code to ! update columns 1:k-kb call stdlib${ii}$_${ci}$lasyf( uplo, k, nb, kb, a, lda, ipiv, work, n, iinfo ) else ! use unblocked code to factorize columns 1:k of a call stdlib${ii}$_${ci}$sytf2( uplo, k, a, lda, ipiv, iinfo ) kb = k end if ! set info on the first occurrence of a zero pivot if( info==0_${ik}$ .and. iinfo>0_${ik}$ )info = iinfo ! decrease k and return to the start of the main loop k = k - kb go to 10 else ! factorize a as l*d*l**t using the lower triangle of a ! k is the main loop index, increasing from 1 to n in steps of ! kb, where kb is the number of columns factorized by stdlib${ii}$_${ci}$lasyf; ! kb is either nb or nb-1, or n-k+1 for the last block k = 1_${ik}$ 20 continue ! if k > n, exit from loop if( k>n )go to 40 if( k<=n-nb ) then ! factorize columns k:k+kb-1 of a and use blocked code to ! update columns k+kb:n call stdlib${ii}$_${ci}$lasyf( uplo, n-k+1, nb, kb, a( k, k ), lda, ipiv( k ),work, n, & iinfo ) else ! use unblocked code to factorize columns k:n of a call stdlib${ii}$_${ci}$sytf2( uplo, n-k+1, a( k, k ), lda, ipiv( k ), iinfo ) kb = n - k + 1_${ik}$ end if ! set info on the first occurrence of a zero pivot if( info==0_${ik}$ .and. iinfo>0_${ik}$ )info = iinfo + k - 1_${ik}$ ! adjust ipiv do j = k, k + kb - 1 if( ipiv( j )>0_${ik}$ ) then ipiv( j ) = ipiv( j ) + k - 1_${ik}$ else ipiv( j ) = ipiv( j ) - k + 1_${ik}$ end if end do ! increase k and return to the start of the main loop k = k + kb go to 20 end if 40 continue work( 1_${ik}$ ) = lwkopt return end subroutine stdlib${ii}$_${ci}$sytrf #:endif #:endfor pure module subroutine stdlib${ii}$_slasyf( uplo, n, nb, kb, a, lda, ipiv, w, ldw, info ) !! SLASYF computes a partial factorization of a real symmetric matrix A !! using the Bunch-Kaufman diagonal pivoting method. The partial !! factorization has the form: !! A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: !! ( 0 U22 ) ( 0 D ) ( U12**T U22**T ) !! A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L' !! ( L21 I ) ( 0 A22 ) ( 0 I ) !! where the order of D is at most NB. The actual order is returned in !! the argument KB, and is either NB or NB-1, or N if N <= NB. !! SLASYF is an auxiliary routine called by SSYTRF. It uses blocked code !! (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or !! A22 (if UPLO = 'L'). ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info, kb integer(${ik}$), intent(in) :: lda, ldw, n, nb ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) real(sp), intent(inout) :: a(lda,*) real(sp), intent(out) :: w(ldw,*) ! ===================================================================== ! Parameters real(sp), parameter :: sevten = 17.0e+0_sp ! Local Scalars integer(${ik}$) :: imax, j, jb, jj, jmax, jp, k, kk, kkw, kp, kstep, kw real(sp) :: absakk, alpha, colmax, d11, d21, d22, r1, rowmax, t ! Intrinsic Functions ! Executable Statements info = 0_${ik}$ ! initialize alpha for use in choosing pivot block size. alpha = ( one+sqrt( sevten ) ) / eight if( stdlib_lsame( uplo, 'U' ) ) then ! factorize the trailing columns of a using the upper triangle ! of a and working backwards, and compute the matrix w = u12*d ! for use in updating a11 ! k is the main loop index, decreasing from n in steps of 1 or 2 ! kw is the column of w which corresponds to column k of a k = n 10 continue kw = nb + k - n ! exit from loop if( ( k<=n-nb+1 .and. nb<n ) .or. k<1 )go to 30 ! copy column k of a to column kw of w and update it call stdlib${ii}$_scopy( k, a( 1_${ik}$, k ), 1_${ik}$, w( 1_${ik}$, kw ), 1_${ik}$ ) if( k<n )call stdlib${ii}$_sgemv( 'NO TRANSPOSE', k, n-k, -one, a( 1_${ik}$, k+1 ), lda,w( k, kw+& 1_${ik}$ ), ldw, one, w( 1_${ik}$, kw ), 1_${ik}$ ) kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = abs( w( k, kw ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value. ! determine both colmax and imax. if( k>1_${ik}$ ) then imax = stdlib${ii}$_isamax( k-1, w( 1_${ik}$, kw ), 1_${ik}$ ) colmax = abs( w( imax, kw ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero or underflow: set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! copy column imax to column kw-1 of w and update it call stdlib${ii}$_scopy( imax, a( 1_${ik}$, imax ), 1_${ik}$, w( 1_${ik}$, kw-1 ), 1_${ik}$ ) call stdlib${ii}$_scopy( k-imax, a( imax, imax+1 ), lda,w( imax+1, kw-1 ), 1_${ik}$ ) if( k<n )call stdlib${ii}$_sgemv( 'NO TRANSPOSE', k, n-k, -one, a( 1_${ik}$, k+1 ),lda, w( & imax, kw+1 ), ldw, one,w( 1_${ik}$, kw-1 ), 1_${ik}$ ) ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value jmax = imax + stdlib${ii}$_isamax( k-imax, w( imax+1, kw-1 ), 1_${ik}$ ) rowmax = abs( w( jmax, kw-1 ) ) if( imax>1_${ik}$ ) then jmax = stdlib${ii}$_isamax( imax-1, w( 1_${ik}$, kw-1 ), 1_${ik}$ ) rowmax = max( rowmax, abs( w( jmax, kw-1 ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( abs( w( imax, kw-1 ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax ! copy column kw-1 of w to column kw of w call stdlib${ii}$_scopy( k, w( 1_${ik}$, kw-1 ), 1_${ik}$, w( 1_${ik}$, kw ), 1_${ik}$ ) else ! interchange rows and columns k-1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if ! ============================================================ ! kk is the column of a where pivoting step stopped kk = k - kstep + 1_${ik}$ ! kkw is the column of w which corresponds to column kk of a kkw = nb + kk - n ! interchange rows and columns kp and kk. ! updated column kp is already stored in column kkw of w. if( kp/=kk ) then ! copy non-updated column kk to column kp of submatrix a ! at step k. no need to copy element into column k ! (or k and k-1 for 2-by-2 pivot) of a, since these columns ! will be later overwritten. a( kp, kp ) = a( kk, kk ) call stdlib${ii}$_scopy( kk-1-kp, a( kp+1, kk ), 1_${ik}$, a( kp, kp+1 ),lda ) if( kp>1_${ik}$ )call stdlib${ii}$_scopy( kp-1, a( 1_${ik}$, kk ), 1_${ik}$, a( 1_${ik}$, kp ), 1_${ik}$ ) ! interchange rows kk and kp in last k+1 to n columns of a ! (columns k (or k and k-1 for 2-by-2 pivot) of a will be ! later overwritten). interchange rows kk and kp ! in last kkw to nb columns of w. if( k<n )call stdlib${ii}$_sswap( n-k, a( kk, k+1 ), lda, a( kp, k+1 ),lda ) call stdlib${ii}$_sswap( n-kk+1, w( kk, kkw ), ldw, w( kp, kkw ),ldw ) end if if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column kw of w now holds ! w(kw) = u(k)*d(k), ! where u(k) is the k-th column of u ! store subdiag. elements of column u(k) ! and 1-by-1 block d(k) in column k of a. ! note: diagonal element u(k,k) is a unit element ! and not stored. ! a(k,k) := d(k,k) = w(k,kw) ! a(1:k-1,k) := u(1:k-1,k) = w(1:k-1,kw)/d(k,k) call stdlib${ii}$_scopy( k, w( 1_${ik}$, kw ), 1_${ik}$, a( 1_${ik}$, k ), 1_${ik}$ ) r1 = one / a( k, k ) call stdlib${ii}$_sscal( k-1, r1, a( 1_${ik}$, k ), 1_${ik}$ ) else ! 2-by-2 pivot block d(k): columns kw and kw-1 of w now hold ! ( w(kw-1) w(kw) ) = ( u(k-1) u(k) )*d(k) ! where u(k) and u(k-1) are the k-th and (k-1)-th columns ! of u ! store u(1:k-2,k-1) and u(1:k-2,k) and 2-by-2 ! block d(k-1:k,k-1:k) in columns k-1 and k of a. ! note: 2-by-2 diagonal block u(k-1:k,k-1:k) is a unit ! block and not stored. ! a(k-1:k,k-1:k) := d(k-1:k,k-1:k) = w(k-1:k,kw-1:kw) ! a(1:k-2,k-1:k) := u(1:k-2,k:k-1:k) = ! = w(1:k-2,kw-1:kw) * ( d(k-1:k,k-1:k)**(-1) ) if( k>2_${ik}$ ) then ! compose the columns of the inverse of 2-by-2 pivot ! block d in the following way to reduce the number ! of flops when we myltiply panel ( w(kw-1) w(kw) ) by ! this inverse ! d**(-1) = ( d11 d21 )**(-1) = ! ( d21 d22 ) ! = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) = ! ( (-d21 ) ( d11 ) ) ! = 1/d21 * 1/((d11/d21)*(d22/d21)-1) * ! * ( ( d22/d21 ) ( -1 ) ) = ! ( ( -1 ) ( d11/d21 ) ) ! = 1/d21 * 1/(d22*d11-1) * ( ( d11 ) ( -1 ) ) = ! ( ( -1 ) ( d22 ) ) ! = 1/d21 * t * ( ( d11 ) ( -1 ) ) ! ( ( -1 ) ( d22 ) ) ! = d21 * ( ( d11 ) ( -1 ) ) ! ( ( -1 ) ( d22 ) ) d21 = w( k-1, kw ) d11 = w( k, kw ) / d21 d22 = w( k-1, kw-1 ) / d21 t = one / ( d11*d22-one ) d21 = t / d21 ! update elements in columns a(k-1) and a(k) as ! dot products of rows of ( w(kw-1) w(kw) ) and columns ! of d**(-1) do j = 1, k - 2 a( j, k-1 ) = d21*( d11*w( j, kw-1 )-w( j, kw ) ) a( j, k ) = d21*( d22*w( j, kw )-w( j, kw-1 ) ) end do end if ! copy d(k) to a a( k-1, k-1 ) = w( k-1, kw-1 ) a( k-1, k ) = w( k-1, kw ) a( k, k ) = w( k, kw ) end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k-1 ) = -kp end if ! decrease k and return to the start of the main loop k = k - kstep go to 10 30 continue ! update the upper triangle of a11 (= a(1:k,1:k)) as ! a11 := a11 - u12*d*u12**t = a11 - u12*w**t ! computing blocks of nb columns at a time do j = ( ( k-1 ) / nb )*nb + 1, 1, -nb jb = min( nb, k-j+1 ) ! update the upper triangle of the diagonal block do jj = j, j + jb - 1 call stdlib${ii}$_sgemv( 'NO TRANSPOSE', jj-j+1, n-k, -one,a( j, k+1 ), lda, w( jj, & kw+1 ), ldw, one,a( j, jj ), 1_${ik}$ ) end do ! update the rectangular superdiagonal block call stdlib${ii}$_sgemm( 'NO TRANSPOSE', 'TRANSPOSE', j-1, jb, n-k, -one,a( 1_${ik}$, k+1 ), & lda, w( j, kw+1 ), ldw, one,a( 1_${ik}$, j ), lda ) end do ! put u12 in standard form by partially undoing the interchanges ! in columns k+1:n looping backwards from k+1 to n j = k + 1_${ik}$ 60 continue ! undo the interchanges (if any) of rows jj and jp at each ! step j ! (here, j is a diagonal index) jj = j jp = ipiv( j ) if( jp<0_${ik}$ ) then jp = -jp ! (here, j is a diagonal index) j = j + 1_${ik}$ end if ! (note: here, j is used to determine row length. length n-j+1 ! of the rows to swap back doesn't include diagonal element) j = j + 1_${ik}$ if( jp/=jj .and. j<=n )call stdlib${ii}$_sswap( n-j+1, a( jp, j ), lda, a( jj, j ), & lda ) if( j<n )go to 60 ! set kb to the number of columns factorized kb = n - k else ! factorize the leading columns of a using the lower triangle ! of a and working forwards, and compute the matrix w = l21*d ! for use in updating a22 ! k is the main loop index, increasing from 1 in steps of 1 or 2 k = 1_${ik}$ 70 continue ! exit from loop if( ( k>=nb .and. nb<n ) .or. k>n )go to 90 ! copy column k of a to column k of w and update it call stdlib${ii}$_scopy( n-k+1, a( k, k ), 1_${ik}$, w( k, k ), 1_${ik}$ ) call stdlib${ii}$_sgemv( 'NO TRANSPOSE', n-k+1, k-1, -one, a( k, 1_${ik}$ ), lda,w( k, 1_${ik}$ ), ldw, & one, w( k, k ), 1_${ik}$ ) kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = abs( w( k, k ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value. ! determine both colmax and imax. if( k<n ) then imax = k + stdlib${ii}$_isamax( n-k, w( k+1, k ), 1_${ik}$ ) colmax = abs( w( imax, k ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero or underflow: set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! copy column imax to column k+1 of w and update it call stdlib${ii}$_scopy( imax-k, a( imax, k ), lda, w( k, k+1 ), 1_${ik}$ ) call stdlib${ii}$_scopy( n-imax+1, a( imax, imax ), 1_${ik}$, w( imax, k+1 ),1_${ik}$ ) call stdlib${ii}$_sgemv( 'NO TRANSPOSE', n-k+1, k-1, -one, a( k, 1_${ik}$ ),lda, w( imax, & 1_${ik}$ ), ldw, one, w( k, k+1 ), 1_${ik}$ ) ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value jmax = k - 1_${ik}$ + stdlib${ii}$_isamax( imax-k, w( k, k+1 ), 1_${ik}$ ) rowmax = abs( w( jmax, k+1 ) ) if( imax<n ) then jmax = imax + stdlib${ii}$_isamax( n-imax, w( imax+1, k+1 ), 1_${ik}$ ) rowmax = max( rowmax, abs( w( jmax, k+1 ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( abs( w( imax, k+1 ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax ! copy column k+1 of w to column k of w call stdlib${ii}$_scopy( n-k+1, w( k, k+1 ), 1_${ik}$, w( k, k ), 1_${ik}$ ) else ! interchange rows and columns k+1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if ! ============================================================ ! kk is the column of a where pivoting step stopped kk = k + kstep - 1_${ik}$ ! interchange rows and columns kp and kk. ! updated column kp is already stored in column kk of w. if( kp/=kk ) then ! copy non-updated column kk to column kp of submatrix a ! at step k. no need to copy element into column k ! (or k and k+1 for 2-by-2 pivot) of a, since these columns ! will be later overwritten. a( kp, kp ) = a( kk, kk ) call stdlib${ii}$_scopy( kp-kk-1, a( kk+1, kk ), 1_${ik}$, a( kp, kk+1 ),lda ) if( kp<n )call stdlib${ii}$_scopy( n-kp, a( kp+1, kk ), 1_${ik}$, a( kp+1, kp ), 1_${ik}$ ) ! interchange rows kk and kp in first k-1 columns of a ! (columns k (or k and k+1 for 2-by-2 pivot) of a will be ! later overwritten). interchange rows kk and kp ! in first kk columns of w. if( k>1_${ik}$ )call stdlib${ii}$_sswap( k-1, a( kk, 1_${ik}$ ), lda, a( kp, 1_${ik}$ ), lda ) call stdlib${ii}$_sswap( kk, w( kk, 1_${ik}$ ), ldw, w( kp, 1_${ik}$ ), ldw ) end if if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k of w now holds ! w(k) = l(k)*d(k), ! where l(k) is the k-th column of l ! store subdiag. elements of column l(k) ! and 1-by-1 block d(k) in column k of a. ! (note: diagonal element l(k,k) is a unit element ! and not stored) ! a(k,k) := d(k,k) = w(k,k) ! a(k+1:n,k) := l(k+1:n,k) = w(k+1:n,k)/d(k,k) call stdlib${ii}$_scopy( n-k+1, w( k, k ), 1_${ik}$, a( k, k ), 1_${ik}$ ) if( k<n ) then r1 = one / a( k, k ) call stdlib${ii}$_sscal( n-k, r1, a( k+1, k ), 1_${ik}$ ) end if else ! 2-by-2 pivot block d(k): columns k and k+1 of w now hold ! ( w(k) w(k+1) ) = ( l(k) l(k+1) )*d(k) ! where l(k) and l(k+1) are the k-th and (k+1)-th columns ! of l ! store l(k+2:n,k) and l(k+2:n,k+1) and 2-by-2 ! block d(k:k+1,k:k+1) in columns k and k+1 of a. ! (note: 2-by-2 diagonal block l(k:k+1,k:k+1) is a unit ! block and not stored) ! a(k:k+1,k:k+1) := d(k:k+1,k:k+1) = w(k:k+1,k:k+1) ! a(k+2:n,k:k+1) := l(k+2:n,k:k+1) = ! = w(k+2:n,k:k+1) * ( d(k:k+1,k:k+1)**(-1) ) if( k<n-1 ) then ! compose the columns of the inverse of 2-by-2 pivot ! block d in the following way to reduce the number ! of flops when we myltiply panel ( w(k) w(k+1) ) by ! this inverse ! d**(-1) = ( d11 d21 )**(-1) = ! ( d21 d22 ) ! = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) = ! ( (-d21 ) ( d11 ) ) ! = 1/d21 * 1/((d11/d21)*(d22/d21)-1) * ! * ( ( d22/d21 ) ( -1 ) ) = ! ( ( -1 ) ( d11/d21 ) ) ! = 1/d21 * 1/(d22*d11-1) * ( ( d11 ) ( -1 ) ) = ! ( ( -1 ) ( d22 ) ) ! = 1/d21 * t * ( ( d11 ) ( -1 ) ) ! ( ( -1 ) ( d22 ) ) ! = d21 * ( ( d11 ) ( -1 ) ) ! ( ( -1 ) ( d22 ) ) d21 = w( k+1, k ) d11 = w( k+1, k+1 ) / d21 d22 = w( k, k ) / d21 t = one / ( d11*d22-one ) d21 = t / d21 ! update elements in columns a(k) and a(k+1) as ! dot products of rows of ( w(k) w(k+1) ) and columns ! of d**(-1) do j = k + 2, n a( j, k ) = d21*( d11*w( j, k )-w( j, k+1 ) ) a( j, k+1 ) = d21*( d22*w( j, k+1 )-w( j, k ) ) end do end if ! copy d(k) to a a( k, k ) = w( k, k ) a( k+1, k ) = w( k+1, k ) a( k+1, k+1 ) = w( k+1, k+1 ) end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k+1 ) = -kp end if ! increase k and return to the start of the main loop k = k + kstep go to 70 90 continue ! update the lower triangle of a22 (= a(k:n,k:n)) as ! a22 := a22 - l21*d*l21**t = a22 - l21*w**t ! computing blocks of nb columns at a time do j = k, n, nb jb = min( nb, n-j+1 ) ! update the lower triangle of the diagonal block do jj = j, j + jb - 1 call stdlib${ii}$_sgemv( 'NO TRANSPOSE', j+jb-jj, k-1, -one,a( jj, 1_${ik}$ ), lda, w( jj, & 1_${ik}$ ), ldw, one,a( jj, jj ), 1_${ik}$ ) end do ! update the rectangular subdiagonal block if( j+jb<=n )call stdlib${ii}$_sgemm( 'NO TRANSPOSE', 'TRANSPOSE', n-j-jb+1, jb,k-1, -& one, a( j+jb, 1_${ik}$ ), lda, w( j, 1_${ik}$ ), ldw,one, a( j+jb, j ), lda ) end do ! put l21 in standard form by partially undoing the interchanges ! of rows in columns 1:k-1 looping backwards from k-1 to 1 j = k - 1_${ik}$ 120 continue ! undo the interchanges (if any) of rows jj and jp at each ! step j ! (here, j is a diagonal index) jj = j jp = ipiv( j ) if( jp<0_${ik}$ ) then jp = -jp ! (here, j is a diagonal index) j = j - 1_${ik}$ end if ! (note: here, j is used to determine row length. length j ! of the rows to swap back doesn't include diagonal element) j = j - 1_${ik}$ if( jp/=jj .and. j>=1_${ik}$ )call stdlib${ii}$_sswap( j, a( jp, 1_${ik}$ ), lda, a( jj, 1_${ik}$ ), lda ) if( j>1 )go to 120 ! set kb to the number of columns factorized kb = k - 1_${ik}$ end if return end subroutine stdlib${ii}$_slasyf pure module subroutine stdlib${ii}$_dlasyf( uplo, n, nb, kb, a, lda, ipiv, w, ldw, info ) !! DLASYF computes a partial factorization of a real symmetric matrix A !! using the Bunch-Kaufman diagonal pivoting method. The partial !! factorization has the form: !! A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: !! ( 0 U22 ) ( 0 D ) ( U12**T U22**T ) !! A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L' !! ( L21 I ) ( 0 A22 ) ( 0 I ) !! where the order of D is at most NB. The actual order is returned in !! the argument KB, and is either NB or NB-1, or N if N <= NB. !! DLASYF is an auxiliary routine called by DSYTRF. It uses blocked code !! (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or !! A22 (if UPLO = 'L'). ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info, kb integer(${ik}$), intent(in) :: lda, ldw, n, nb ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) real(dp), intent(inout) :: a(lda,*) real(dp), intent(out) :: w(ldw,*) ! ===================================================================== ! Parameters real(dp), parameter :: sevten = 17.0e+0_dp ! Local Scalars integer(${ik}$) :: imax, j, jb, jj, jmax, jp, k, kk, kkw, kp, kstep, kw real(dp) :: absakk, alpha, colmax, d11, d21, d22, r1, rowmax, t ! Intrinsic Functions ! Executable Statements info = 0_${ik}$ ! initialize alpha for use in choosing pivot block size. alpha = ( one+sqrt( sevten ) ) / eight if( stdlib_lsame( uplo, 'U' ) ) then ! factorize the trailing columns of a using the upper triangle ! of a and working backwards, and compute the matrix w = u12*d ! for use in updating a11 ! k is the main loop index, decreasing from n in steps of 1 or 2 ! kw is the column of w which corresponds to column k of a k = n 10 continue kw = nb + k - n ! exit from loop if( ( k<=n-nb+1 .and. nb<n ) .or. k<1 )go to 30 ! copy column k of a to column kw of w and update it call stdlib${ii}$_dcopy( k, a( 1_${ik}$, k ), 1_${ik}$, w( 1_${ik}$, kw ), 1_${ik}$ ) if( k<n )call stdlib${ii}$_dgemv( 'NO TRANSPOSE', k, n-k, -one, a( 1_${ik}$, k+1 ), lda,w( k, kw+& 1_${ik}$ ), ldw, one, w( 1_${ik}$, kw ), 1_${ik}$ ) kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = abs( w( k, kw ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value. ! determine both colmax and imax. if( k>1_${ik}$ ) then imax = stdlib${ii}$_idamax( k-1, w( 1_${ik}$, kw ), 1_${ik}$ ) colmax = abs( w( imax, kw ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero or underflow: set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! copy column imax to column kw-1 of w and update it call stdlib${ii}$_dcopy( imax, a( 1_${ik}$, imax ), 1_${ik}$, w( 1_${ik}$, kw-1 ), 1_${ik}$ ) call stdlib${ii}$_dcopy( k-imax, a( imax, imax+1 ), lda,w( imax+1, kw-1 ), 1_${ik}$ ) if( k<n )call stdlib${ii}$_dgemv( 'NO TRANSPOSE', k, n-k, -one, a( 1_${ik}$, k+1 ),lda, w( & imax, kw+1 ), ldw, one,w( 1_${ik}$, kw-1 ), 1_${ik}$ ) ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value jmax = imax + stdlib${ii}$_idamax( k-imax, w( imax+1, kw-1 ), 1_${ik}$ ) rowmax = abs( w( jmax, kw-1 ) ) if( imax>1_${ik}$ ) then jmax = stdlib${ii}$_idamax( imax-1, w( 1_${ik}$, kw-1 ), 1_${ik}$ ) rowmax = max( rowmax, abs( w( jmax, kw-1 ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( abs( w( imax, kw-1 ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax ! copy column kw-1 of w to column kw of w call stdlib${ii}$_dcopy( k, w( 1_${ik}$, kw-1 ), 1_${ik}$, w( 1_${ik}$, kw ), 1_${ik}$ ) else ! interchange rows and columns k-1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if ! ============================================================ ! kk is the column of a where pivoting step stopped kk = k - kstep + 1_${ik}$ ! kkw is the column of w which corresponds to column kk of a kkw = nb + kk - n ! interchange rows and columns kp and kk. ! updated column kp is already stored in column kkw of w. if( kp/=kk ) then ! copy non-updated column kk to column kp of submatrix a ! at step k. no need to copy element into column k ! (or k and k-1 for 2-by-2 pivot) of a, since these columns ! will be later overwritten. a( kp, kp ) = a( kk, kk ) call stdlib${ii}$_dcopy( kk-1-kp, a( kp+1, kk ), 1_${ik}$, a( kp, kp+1 ),lda ) if( kp>1_${ik}$ )call stdlib${ii}$_dcopy( kp-1, a( 1_${ik}$, kk ), 1_${ik}$, a( 1_${ik}$, kp ), 1_${ik}$ ) ! interchange rows kk and kp in last k+1 to n columns of a ! (columns k (or k and k-1 for 2-by-2 pivot) of a will be ! later overwritten). interchange rows kk and kp ! in last kkw to nb columns of w. if( k<n )call stdlib${ii}$_dswap( n-k, a( kk, k+1 ), lda, a( kp, k+1 ),lda ) call stdlib${ii}$_dswap( n-kk+1, w( kk, kkw ), ldw, w( kp, kkw ),ldw ) end if if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column kw of w now holds ! w(kw) = u(k)*d(k), ! where u(k) is the k-th column of u ! store subdiag. elements of column u(k) ! and 1-by-1 block d(k) in column k of a. ! note: diagonal element u(k,k) is a unit element ! and not stored. ! a(k,k) := d(k,k) = w(k,kw) ! a(1:k-1,k) := u(1:k-1,k) = w(1:k-1,kw)/d(k,k) call stdlib${ii}$_dcopy( k, w( 1_${ik}$, kw ), 1_${ik}$, a( 1_${ik}$, k ), 1_${ik}$ ) r1 = one / a( k, k ) call stdlib${ii}$_dscal( k-1, r1, a( 1_${ik}$, k ), 1_${ik}$ ) else ! 2-by-2 pivot block d(k): columns kw and kw-1 of w now hold ! ( w(kw-1) w(kw) ) = ( u(k-1) u(k) )*d(k) ! where u(k) and u(k-1) are the k-th and (k-1)-th columns ! of u ! store u(1:k-2,k-1) and u(1:k-2,k) and 2-by-2 ! block d(k-1:k,k-1:k) in columns k-1 and k of a. ! note: 2-by-2 diagonal block u(k-1:k,k-1:k) is a unit ! block and not stored. ! a(k-1:k,k-1:k) := d(k-1:k,k-1:k) = w(k-1:k,kw-1:kw) ! a(1:k-2,k-1:k) := u(1:k-2,k:k-1:k) = ! = w(1:k-2,kw-1:kw) * ( d(k-1:k,k-1:k)**(-1) ) if( k>2_${ik}$ ) then ! compose the columns of the inverse of 2-by-2 pivot ! block d in the following way to reduce the number ! of flops when we myltiply panel ( w(kw-1) w(kw) ) by ! this inverse ! d**(-1) = ( d11 d21 )**(-1) = ! ( d21 d22 ) ! = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) = ! ( (-d21 ) ( d11 ) ) ! = 1/d21 * 1/((d11/d21)*(d22/d21)-1) * ! * ( ( d22/d21 ) ( -1 ) ) = ! ( ( -1 ) ( d11/d21 ) ) ! = 1/d21 * 1/(d22*d11-1) * ( ( d11 ) ( -1 ) ) = ! ( ( -1 ) ( d22 ) ) ! = 1/d21 * t * ( ( d11 ) ( -1 ) ) ! ( ( -1 ) ( d22 ) ) ! = d21 * ( ( d11 ) ( -1 ) ) ! ( ( -1 ) ( d22 ) ) d21 = w( k-1, kw ) d11 = w( k, kw ) / d21 d22 = w( k-1, kw-1 ) / d21 t = one / ( d11*d22-one ) d21 = t / d21 ! update elements in columns a(k-1) and a(k) as ! dot products of rows of ( w(kw-1) w(kw) ) and columns ! of d**(-1) do j = 1, k - 2 a( j, k-1 ) = d21*( d11*w( j, kw-1 )-w( j, kw ) ) a( j, k ) = d21*( d22*w( j, kw )-w( j, kw-1 ) ) end do end if ! copy d(k) to a a( k-1, k-1 ) = w( k-1, kw-1 ) a( k-1, k ) = w( k-1, kw ) a( k, k ) = w( k, kw ) end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k-1 ) = -kp end if ! decrease k and return to the start of the main loop k = k - kstep go to 10 30 continue ! update the upper triangle of a11 (= a(1:k,1:k)) as ! a11 := a11 - u12*d*u12**t = a11 - u12*w**t ! computing blocks of nb columns at a time do j = ( ( k-1 ) / nb )*nb + 1, 1, -nb jb = min( nb, k-j+1 ) ! update the upper triangle of the diagonal block do jj = j, j + jb - 1 call stdlib${ii}$_dgemv( 'NO TRANSPOSE', jj-j+1, n-k, -one,a( j, k+1 ), lda, w( jj, & kw+1 ), ldw, one,a( j, jj ), 1_${ik}$ ) end do ! update the rectangular superdiagonal block call stdlib${ii}$_dgemm( 'NO TRANSPOSE', 'TRANSPOSE', j-1, jb, n-k, -one,a( 1_${ik}$, k+1 ), & lda, w( j, kw+1 ), ldw, one,a( 1_${ik}$, j ), lda ) end do ! put u12 in standard form by partially undoing the interchanges ! in columns k+1:n looping backwards from k+1 to n j = k + 1_${ik}$ 60 continue ! undo the interchanges (if any) of rows jj and jp at each ! step j ! (here, j is a diagonal index) jj = j jp = ipiv( j ) if( jp<0_${ik}$ ) then jp = -jp ! (here, j is a diagonal index) j = j + 1_${ik}$ end if ! (note: here, j is used to determine row length. length n-j+1 ! of the rows to swap back doesn't include diagonal element) j = j + 1_${ik}$ if( jp/=jj .and. j<=n )call stdlib${ii}$_dswap( n-j+1, a( jp, j ), lda, a( jj, j ), & lda ) if( j<n )go to 60 ! set kb to the number of columns factorized kb = n - k else ! factorize the leading columns of a using the lower triangle ! of a and working forwards, and compute the matrix w = l21*d ! for use in updating a22 ! k is the main loop index, increasing from 1 in steps of 1 or 2 k = 1_${ik}$ 70 continue ! exit from loop if( ( k>=nb .and. nb<n ) .or. k>n )go to 90 ! copy column k of a to column k of w and update it call stdlib${ii}$_dcopy( n-k+1, a( k, k ), 1_${ik}$, w( k, k ), 1_${ik}$ ) call stdlib${ii}$_dgemv( 'NO TRANSPOSE', n-k+1, k-1, -one, a( k, 1_${ik}$ ), lda,w( k, 1_${ik}$ ), ldw, & one, w( k, k ), 1_${ik}$ ) kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = abs( w( k, k ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value. ! determine both colmax and imax. if( k<n ) then imax = k + stdlib${ii}$_idamax( n-k, w( k+1, k ), 1_${ik}$ ) colmax = abs( w( imax, k ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero or underflow: set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! copy column imax to column k+1 of w and update it call stdlib${ii}$_dcopy( imax-k, a( imax, k ), lda, w( k, k+1 ), 1_${ik}$ ) call stdlib${ii}$_dcopy( n-imax+1, a( imax, imax ), 1_${ik}$, w( imax, k+1 ),1_${ik}$ ) call stdlib${ii}$_dgemv( 'NO TRANSPOSE', n-k+1, k-1, -one, a( k, 1_${ik}$ ),lda, w( imax, & 1_${ik}$ ), ldw, one, w( k, k+1 ), 1_${ik}$ ) ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value jmax = k - 1_${ik}$ + stdlib${ii}$_idamax( imax-k, w( k, k+1 ), 1_${ik}$ ) rowmax = abs( w( jmax, k+1 ) ) if( imax<n ) then jmax = imax + stdlib${ii}$_idamax( n-imax, w( imax+1, k+1 ), 1_${ik}$ ) rowmax = max( rowmax, abs( w( jmax, k+1 ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( abs( w( imax, k+1 ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax ! copy column k+1 of w to column k of w call stdlib${ii}$_dcopy( n-k+1, w( k, k+1 ), 1_${ik}$, w( k, k ), 1_${ik}$ ) else ! interchange rows and columns k+1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if ! ============================================================ ! kk is the column of a where pivoting step stopped kk = k + kstep - 1_${ik}$ ! interchange rows and columns kp and kk. ! updated column kp is already stored in column kk of w. if( kp/=kk ) then ! copy non-updated column kk to column kp of submatrix a ! at step k. no need to copy element into column k ! (or k and k+1 for 2-by-2 pivot) of a, since these columns ! will be later overwritten. a( kp, kp ) = a( kk, kk ) call stdlib${ii}$_dcopy( kp-kk-1, a( kk+1, kk ), 1_${ik}$, a( kp, kk+1 ),lda ) if( kp<n )call stdlib${ii}$_dcopy( n-kp, a( kp+1, kk ), 1_${ik}$, a( kp+1, kp ), 1_${ik}$ ) ! interchange rows kk and kp in first k-1 columns of a ! (columns k (or k and k+1 for 2-by-2 pivot) of a will be ! later overwritten). interchange rows kk and kp ! in first kk columns of w. if( k>1_${ik}$ )call stdlib${ii}$_dswap( k-1, a( kk, 1_${ik}$ ), lda, a( kp, 1_${ik}$ ), lda ) call stdlib${ii}$_dswap( kk, w( kk, 1_${ik}$ ), ldw, w( kp, 1_${ik}$ ), ldw ) end if if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k of w now holds ! w(k) = l(k)*d(k), ! where l(k) is the k-th column of l ! store subdiag. elements of column l(k) ! and 1-by-1 block d(k) in column k of a. ! (note: diagonal element l(k,k) is a unit element ! and not stored) ! a(k,k) := d(k,k) = w(k,k) ! a(k+1:n,k) := l(k+1:n,k) = w(k+1:n,k)/d(k,k) call stdlib${ii}$_dcopy( n-k+1, w( k, k ), 1_${ik}$, a( k, k ), 1_${ik}$ ) if( k<n ) then r1 = one / a( k, k ) call stdlib${ii}$_dscal( n-k, r1, a( k+1, k ), 1_${ik}$ ) end if else ! 2-by-2 pivot block d(k): columns k and k+1 of w now hold ! ( w(k) w(k+1) ) = ( l(k) l(k+1) )*d(k) ! where l(k) and l(k+1) are the k-th and (k+1)-th columns ! of l ! store l(k+2:n,k) and l(k+2:n,k+1) and 2-by-2 ! block d(k:k+1,k:k+1) in columns k and k+1 of a. ! (note: 2-by-2 diagonal block l(k:k+1,k:k+1) is a unit ! block and not stored) ! a(k:k+1,k:k+1) := d(k:k+1,k:k+1) = w(k:k+1,k:k+1) ! a(k+2:n,k:k+1) := l(k+2:n,k:k+1) = ! = w(k+2:n,k:k+1) * ( d(k:k+1,k:k+1)**(-1) ) if( k<n-1 ) then ! compose the columns of the inverse of 2-by-2 pivot ! block d in the following way to reduce the number ! of flops when we myltiply panel ( w(k) w(k+1) ) by ! this inverse ! d**(-1) = ( d11 d21 )**(-1) = ! ( d21 d22 ) ! = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) = ! ( (-d21 ) ( d11 ) ) ! = 1/d21 * 1/((d11/d21)*(d22/d21)-1) * ! * ( ( d22/d21 ) ( -1 ) ) = ! ( ( -1 ) ( d11/d21 ) ) ! = 1/d21 * 1/(d22*d11-1) * ( ( d11 ) ( -1 ) ) = ! ( ( -1 ) ( d22 ) ) ! = 1/d21 * t * ( ( d11 ) ( -1 ) ) ! ( ( -1 ) ( d22 ) ) ! = d21 * ( ( d11 ) ( -1 ) ) ! ( ( -1 ) ( d22 ) ) d21 = w( k+1, k ) d11 = w( k+1, k+1 ) / d21 d22 = w( k, k ) / d21 t = one / ( d11*d22-one ) d21 = t / d21 ! update elements in columns a(k) and a(k+1) as ! dot products of rows of ( w(k) w(k+1) ) and columns ! of d**(-1) do j = k + 2, n a( j, k ) = d21*( d11*w( j, k )-w( j, k+1 ) ) a( j, k+1 ) = d21*( d22*w( j, k+1 )-w( j, k ) ) end do end if ! copy d(k) to a a( k, k ) = w( k, k ) a( k+1, k ) = w( k+1, k ) a( k+1, k+1 ) = w( k+1, k+1 ) end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k+1 ) = -kp end if ! increase k and return to the start of the main loop k = k + kstep go to 70 90 continue ! update the lower triangle of a22 (= a(k:n,k:n)) as ! a22 := a22 - l21*d*l21**t = a22 - l21*w**t ! computing blocks of nb columns at a time do j = k, n, nb jb = min( nb, n-j+1 ) ! update the lower triangle of the diagonal block do jj = j, j + jb - 1 call stdlib${ii}$_dgemv( 'NO TRANSPOSE', j+jb-jj, k-1, -one,a( jj, 1_${ik}$ ), lda, w( jj, & 1_${ik}$ ), ldw, one,a( jj, jj ), 1_${ik}$ ) end do ! update the rectangular subdiagonal block if( j+jb<=n )call stdlib${ii}$_dgemm( 'NO TRANSPOSE', 'TRANSPOSE', n-j-jb+1, jb,k-1, -& one, a( j+jb, 1_${ik}$ ), lda, w( j, 1_${ik}$ ), ldw,one, a( j+jb, j ), lda ) end do ! put l21 in standard form by partially undoing the interchanges ! of rows in columns 1:k-1 looping backwards from k-1 to 1 j = k - 1_${ik}$ 120 continue ! undo the interchanges (if any) of rows jj and jp at each ! step j ! (here, j is a diagonal index) jj = j jp = ipiv( j ) if( jp<0_${ik}$ ) then jp = -jp ! (here, j is a diagonal index) j = j - 1_${ik}$ end if ! (note: here, j is used to determine row length. length j ! of the rows to swap back doesn't include diagonal element) j = j - 1_${ik}$ if( jp/=jj .and. j>=1_${ik}$ )call stdlib${ii}$_dswap( j, a( jp, 1_${ik}$ ), lda, a( jj, 1_${ik}$ ), lda ) if( j>1 )go to 120 ! set kb to the number of columns factorized kb = k - 1_${ik}$ end if return end subroutine stdlib${ii}$_dlasyf #:for rk,rt,ri in REAL_KINDS_TYPES #:if not rk in ["sp","dp"] pure module subroutine stdlib${ii}$_${ri}$lasyf( uplo, n, nb, kb, a, lda, ipiv, w, ldw, info ) !! DLASYF: computes a partial factorization of a real symmetric matrix A !! using the Bunch-Kaufman diagonal pivoting method. The partial !! factorization has the form: !! A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: !! ( 0 U22 ) ( 0 D ) ( U12**T U22**T ) !! A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L' !! ( L21 I ) ( 0 A22 ) ( 0 I ) !! where the order of D is at most NB. The actual order is returned in !! the argument KB, and is either NB or NB-1, or N if N <= NB. !! DLASYF is an auxiliary routine called by DSYTRF. It uses blocked code !! (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or !! A22 (if UPLO = 'L'). ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${rk}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info, kb integer(${ik}$), intent(in) :: lda, ldw, n, nb ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) real(${rk}$), intent(inout) :: a(lda,*) real(${rk}$), intent(out) :: w(ldw,*) ! ===================================================================== ! Parameters real(${rk}$), parameter :: sevten = 17.0e+0_${rk}$ ! Local Scalars integer(${ik}$) :: imax, j, jb, jj, jmax, jp, k, kk, kkw, kp, kstep, kw real(${rk}$) :: absakk, alpha, colmax, d11, d21, d22, r1, rowmax, t ! Intrinsic Functions ! Executable Statements info = 0_${ik}$ ! initialize alpha for use in choosing pivot block size. alpha = ( one+sqrt( sevten ) ) / eight if( stdlib_lsame( uplo, 'U' ) ) then ! factorize the trailing columns of a using the upper triangle ! of a and working backwards, and compute the matrix w = u12*d ! for use in updating a11 ! k is the main loop index, decreasing from n in steps of 1 or 2 ! kw is the column of w which corresponds to column k of a k = n 10 continue kw = nb + k - n ! exit from loop if( ( k<=n-nb+1 .and. nb<n ) .or. k<1 )go to 30 ! copy column k of a to column kw of w and update it call stdlib${ii}$_${ri}$copy( k, a( 1_${ik}$, k ), 1_${ik}$, w( 1_${ik}$, kw ), 1_${ik}$ ) if( k<n )call stdlib${ii}$_${ri}$gemv( 'NO TRANSPOSE', k, n-k, -one, a( 1_${ik}$, k+1 ), lda,w( k, kw+& 1_${ik}$ ), ldw, one, w( 1_${ik}$, kw ), 1_${ik}$ ) kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = abs( w( k, kw ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value. ! determine both colmax and imax. if( k>1_${ik}$ ) then imax = stdlib${ii}$_i${ri}$amax( k-1, w( 1_${ik}$, kw ), 1_${ik}$ ) colmax = abs( w( imax, kw ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero or underflow: set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! copy column imax to column kw-1 of w and update it call stdlib${ii}$_${ri}$copy( imax, a( 1_${ik}$, imax ), 1_${ik}$, w( 1_${ik}$, kw-1 ), 1_${ik}$ ) call stdlib${ii}$_${ri}$copy( k-imax, a( imax, imax+1 ), lda,w( imax+1, kw-1 ), 1_${ik}$ ) if( k<n )call stdlib${ii}$_${ri}$gemv( 'NO TRANSPOSE', k, n-k, -one, a( 1_${ik}$, k+1 ),lda, w( & imax, kw+1 ), ldw, one,w( 1_${ik}$, kw-1 ), 1_${ik}$ ) ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value jmax = imax + stdlib${ii}$_i${ri}$amax( k-imax, w( imax+1, kw-1 ), 1_${ik}$ ) rowmax = abs( w( jmax, kw-1 ) ) if( imax>1_${ik}$ ) then jmax = stdlib${ii}$_i${ri}$amax( imax-1, w( 1_${ik}$, kw-1 ), 1_${ik}$ ) rowmax = max( rowmax, abs( w( jmax, kw-1 ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( abs( w( imax, kw-1 ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax ! copy column kw-1 of w to column kw of w call stdlib${ii}$_${ri}$copy( k, w( 1_${ik}$, kw-1 ), 1_${ik}$, w( 1_${ik}$, kw ), 1_${ik}$ ) else ! interchange rows and columns k-1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if ! ============================================================ ! kk is the column of a where pivoting step stopped kk = k - kstep + 1_${ik}$ ! kkw is the column of w which corresponds to column kk of a kkw = nb + kk - n ! interchange rows and columns kp and kk. ! updated column kp is already stored in column kkw of w. if( kp/=kk ) then ! copy non-updated column kk to column kp of submatrix a ! at step k. no need to copy element into column k ! (or k and k-1 for 2-by-2 pivot) of a, since these columns ! will be later overwritten. a( kp, kp ) = a( kk, kk ) call stdlib${ii}$_${ri}$copy( kk-1-kp, a( kp+1, kk ), 1_${ik}$, a( kp, kp+1 ),lda ) if( kp>1_${ik}$ )call stdlib${ii}$_${ri}$copy( kp-1, a( 1_${ik}$, kk ), 1_${ik}$, a( 1_${ik}$, kp ), 1_${ik}$ ) ! interchange rows kk and kp in last k+1 to n columns of a ! (columns k (or k and k-1 for 2-by-2 pivot) of a will be ! later overwritten). interchange rows kk and kp ! in last kkw to nb columns of w. if( k<n )call stdlib${ii}$_${ri}$swap( n-k, a( kk, k+1 ), lda, a( kp, k+1 ),lda ) call stdlib${ii}$_${ri}$swap( n-kk+1, w( kk, kkw ), ldw, w( kp, kkw ),ldw ) end if if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column kw of w now holds ! w(kw) = u(k)*d(k), ! where u(k) is the k-th column of u ! store subdiag. elements of column u(k) ! and 1-by-1 block d(k) in column k of a. ! note: diagonal element u(k,k) is a unit element ! and not stored. ! a(k,k) := d(k,k) = w(k,kw) ! a(1:k-1,k) := u(1:k-1,k) = w(1:k-1,kw)/d(k,k) call stdlib${ii}$_${ri}$copy( k, w( 1_${ik}$, kw ), 1_${ik}$, a( 1_${ik}$, k ), 1_${ik}$ ) r1 = one / a( k, k ) call stdlib${ii}$_${ri}$scal( k-1, r1, a( 1_${ik}$, k ), 1_${ik}$ ) else ! 2-by-2 pivot block d(k): columns kw and kw-1 of w now hold ! ( w(kw-1) w(kw) ) = ( u(k-1) u(k) )*d(k) ! where u(k) and u(k-1) are the k-th and (k-1)-th columns ! of u ! store u(1:k-2,k-1) and u(1:k-2,k) and 2-by-2 ! block d(k-1:k,k-1:k) in columns k-1 and k of a. ! note: 2-by-2 diagonal block u(k-1:k,k-1:k) is a unit ! block and not stored. ! a(k-1:k,k-1:k) := d(k-1:k,k-1:k) = w(k-1:k,kw-1:kw) ! a(1:k-2,k-1:k) := u(1:k-2,k:k-1:k) = ! = w(1:k-2,kw-1:kw) * ( d(k-1:k,k-1:k)**(-1) ) if( k>2_${ik}$ ) then ! compose the columns of the inverse of 2-by-2 pivot ! block d in the following way to reduce the number ! of flops when we myltiply panel ( w(kw-1) w(kw) ) by ! this inverse ! d**(-1) = ( d11 d21 )**(-1) = ! ( d21 d22 ) ! = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) = ! ( (-d21 ) ( d11 ) ) ! = 1/d21 * 1/((d11/d21)*(d22/d21)-1) * ! * ( ( d22/d21 ) ( -1 ) ) = ! ( ( -1 ) ( d11/d21 ) ) ! = 1/d21 * 1/(d22*d11-1) * ( ( d11 ) ( -1 ) ) = ! ( ( -1 ) ( d22 ) ) ! = 1/d21 * t * ( ( d11 ) ( -1 ) ) ! ( ( -1 ) ( d22 ) ) ! = d21 * ( ( d11 ) ( -1 ) ) ! ( ( -1 ) ( d22 ) ) d21 = w( k-1, kw ) d11 = w( k, kw ) / d21 d22 = w( k-1, kw-1 ) / d21 t = one / ( d11*d22-one ) d21 = t / d21 ! update elements in columns a(k-1) and a(k) as ! dot products of rows of ( w(kw-1) w(kw) ) and columns ! of d**(-1) do j = 1, k - 2 a( j, k-1 ) = d21*( d11*w( j, kw-1 )-w( j, kw ) ) a( j, k ) = d21*( d22*w( j, kw )-w( j, kw-1 ) ) end do end if ! copy d(k) to a a( k-1, k-1 ) = w( k-1, kw-1 ) a( k-1, k ) = w( k-1, kw ) a( k, k ) = w( k, kw ) end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k-1 ) = -kp end if ! decrease k and return to the start of the main loop k = k - kstep go to 10 30 continue ! update the upper triangle of a11 (= a(1:k,1:k)) as ! a11 := a11 - u12*d*u12**t = a11 - u12*w**t ! computing blocks of nb columns at a time do j = ( ( k-1 ) / nb )*nb + 1, 1, -nb jb = min( nb, k-j+1 ) ! update the upper triangle of the diagonal block do jj = j, j + jb - 1 call stdlib${ii}$_${ri}$gemv( 'NO TRANSPOSE', jj-j+1, n-k, -one,a( j, k+1 ), lda, w( jj, & kw+1 ), ldw, one,a( j, jj ), 1_${ik}$ ) end do ! update the rectangular superdiagonal block call stdlib${ii}$_${ri}$gemm( 'NO TRANSPOSE', 'TRANSPOSE', j-1, jb, n-k, -one,a( 1_${ik}$, k+1 ), & lda, w( j, kw+1 ), ldw, one,a( 1_${ik}$, j ), lda ) end do ! put u12 in standard form by partially undoing the interchanges ! in columns k+1:n looping backwards from k+1 to n j = k + 1_${ik}$ 60 continue ! undo the interchanges (if any) of rows jj and jp at each ! step j ! (here, j is a diagonal index) jj = j jp = ipiv( j ) if( jp<0_${ik}$ ) then jp = -jp ! (here, j is a diagonal index) j = j + 1_${ik}$ end if ! (note: here, j is used to determine row length. length n-j+1 ! of the rows to swap back doesn't include diagonal element) j = j + 1_${ik}$ if( jp/=jj .and. j<=n )call stdlib${ii}$_${ri}$swap( n-j+1, a( jp, j ), lda, a( jj, j ), & lda ) if( j<n )go to 60 ! set kb to the number of columns factorized kb = n - k else ! factorize the leading columns of a using the lower triangle ! of a and working forwards, and compute the matrix w = l21*d ! for use in updating a22 ! k is the main loop index, increasing from 1 in steps of 1 or 2 k = 1_${ik}$ 70 continue ! exit from loop if( ( k>=nb .and. nb<n ) .or. k>n )go to 90 ! copy column k of a to column k of w and update it call stdlib${ii}$_${ri}$copy( n-k+1, a( k, k ), 1_${ik}$, w( k, k ), 1_${ik}$ ) call stdlib${ii}$_${ri}$gemv( 'NO TRANSPOSE', n-k+1, k-1, -one, a( k, 1_${ik}$ ), lda,w( k, 1_${ik}$ ), ldw, & one, w( k, k ), 1_${ik}$ ) kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = abs( w( k, k ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value. ! determine both colmax and imax. if( k<n ) then imax = k + stdlib${ii}$_i${ri}$amax( n-k, w( k+1, k ), 1_${ik}$ ) colmax = abs( w( imax, k ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero or underflow: set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! copy column imax to column k+1 of w and update it call stdlib${ii}$_${ri}$copy( imax-k, a( imax, k ), lda, w( k, k+1 ), 1_${ik}$ ) call stdlib${ii}$_${ri}$copy( n-imax+1, a( imax, imax ), 1_${ik}$, w( imax, k+1 ),1_${ik}$ ) call stdlib${ii}$_${ri}$gemv( 'NO TRANSPOSE', n-k+1, k-1, -one, a( k, 1_${ik}$ ),lda, w( imax, & 1_${ik}$ ), ldw, one, w( k, k+1 ), 1_${ik}$ ) ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value jmax = k - 1_${ik}$ + stdlib${ii}$_i${ri}$amax( imax-k, w( k, k+1 ), 1_${ik}$ ) rowmax = abs( w( jmax, k+1 ) ) if( imax<n ) then jmax = imax + stdlib${ii}$_i${ri}$amax( n-imax, w( imax+1, k+1 ), 1_${ik}$ ) rowmax = max( rowmax, abs( w( jmax, k+1 ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( abs( w( imax, k+1 ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax ! copy column k+1 of w to column k of w call stdlib${ii}$_${ri}$copy( n-k+1, w( k, k+1 ), 1_${ik}$, w( k, k ), 1_${ik}$ ) else ! interchange rows and columns k+1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if ! ============================================================ ! kk is the column of a where pivoting step stopped kk = k + kstep - 1_${ik}$ ! interchange rows and columns kp and kk. ! updated column kp is already stored in column kk of w. if( kp/=kk ) then ! copy non-updated column kk to column kp of submatrix a ! at step k. no need to copy element into column k ! (or k and k+1 for 2-by-2 pivot) of a, since these columns ! will be later overwritten. a( kp, kp ) = a( kk, kk ) call stdlib${ii}$_${ri}$copy( kp-kk-1, a( kk+1, kk ), 1_${ik}$, a( kp, kk+1 ),lda ) if( kp<n )call stdlib${ii}$_${ri}$copy( n-kp, a( kp+1, kk ), 1_${ik}$, a( kp+1, kp ), 1_${ik}$ ) ! interchange rows kk and kp in first k-1 columns of a ! (columns k (or k and k+1 for 2-by-2 pivot) of a will be ! later overwritten). interchange rows kk and kp ! in first kk columns of w. if( k>1_${ik}$ )call stdlib${ii}$_${ri}$swap( k-1, a( kk, 1_${ik}$ ), lda, a( kp, 1_${ik}$ ), lda ) call stdlib${ii}$_${ri}$swap( kk, w( kk, 1_${ik}$ ), ldw, w( kp, 1_${ik}$ ), ldw ) end if if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k of w now holds ! w(k) = l(k)*d(k), ! where l(k) is the k-th column of l ! store subdiag. elements of column l(k) ! and 1-by-1 block d(k) in column k of a. ! (note: diagonal element l(k,k) is a unit element ! and not stored) ! a(k,k) := d(k,k) = w(k,k) ! a(k+1:n,k) := l(k+1:n,k) = w(k+1:n,k)/d(k,k) call stdlib${ii}$_${ri}$copy( n-k+1, w( k, k ), 1_${ik}$, a( k, k ), 1_${ik}$ ) if( k<n ) then r1 = one / a( k, k ) call stdlib${ii}$_${ri}$scal( n-k, r1, a( k+1, k ), 1_${ik}$ ) end if else ! 2-by-2 pivot block d(k): columns k and k+1 of w now hold ! ( w(k) w(k+1) ) = ( l(k) l(k+1) )*d(k) ! where l(k) and l(k+1) are the k-th and (k+1)-th columns ! of l ! store l(k+2:n,k) and l(k+2:n,k+1) and 2-by-2 ! block d(k:k+1,k:k+1) in columns k and k+1 of a. ! (note: 2-by-2 diagonal block l(k:k+1,k:k+1) is a unit ! block and not stored) ! a(k:k+1,k:k+1) := d(k:k+1,k:k+1) = w(k:k+1,k:k+1) ! a(k+2:n,k:k+1) := l(k+2:n,k:k+1) = ! = w(k+2:n,k:k+1) * ( d(k:k+1,k:k+1)**(-1) ) if( k<n-1 ) then ! compose the columns of the inverse of 2-by-2 pivot ! block d in the following way to reduce the number ! of flops when we myltiply panel ( w(k) w(k+1) ) by ! this inverse ! d**(-1) = ( d11 d21 )**(-1) = ! ( d21 d22 ) ! = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) = ! ( (-d21 ) ( d11 ) ) ! = 1/d21 * 1/((d11/d21)*(d22/d21)-1) * ! * ( ( d22/d21 ) ( -1 ) ) = ! ( ( -1 ) ( d11/d21 ) ) ! = 1/d21 * 1/(d22*d11-1) * ( ( d11 ) ( -1 ) ) = ! ( ( -1 ) ( d22 ) ) ! = 1/d21 * t * ( ( d11 ) ( -1 ) ) ! ( ( -1 ) ( d22 ) ) ! = d21 * ( ( d11 ) ( -1 ) ) ! ( ( -1 ) ( d22 ) ) d21 = w( k+1, k ) d11 = w( k+1, k+1 ) / d21 d22 = w( k, k ) / d21 t = one / ( d11*d22-one ) d21 = t / d21 ! update elements in columns a(k) and a(k+1) as ! dot products of rows of ( w(k) w(k+1) ) and columns ! of d**(-1) do j = k + 2, n a( j, k ) = d21*( d11*w( j, k )-w( j, k+1 ) ) a( j, k+1 ) = d21*( d22*w( j, k+1 )-w( j, k ) ) end do end if ! copy d(k) to a a( k, k ) = w( k, k ) a( k+1, k ) = w( k+1, k ) a( k+1, k+1 ) = w( k+1, k+1 ) end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k+1 ) = -kp end if ! increase k and return to the start of the main loop k = k + kstep go to 70 90 continue ! update the lower triangle of a22 (= a(k:n,k:n)) as ! a22 := a22 - l21*d*l21**t = a22 - l21*w**t ! computing blocks of nb columns at a time do j = k, n, nb jb = min( nb, n-j+1 ) ! update the lower triangle of the diagonal block do jj = j, j + jb - 1 call stdlib${ii}$_${ri}$gemv( 'NO TRANSPOSE', j+jb-jj, k-1, -one,a( jj, 1_${ik}$ ), lda, w( jj, & 1_${ik}$ ), ldw, one,a( jj, jj ), 1_${ik}$ ) end do ! update the rectangular subdiagonal block if( j+jb<=n )call stdlib${ii}$_${ri}$gemm( 'NO TRANSPOSE', 'TRANSPOSE', n-j-jb+1, jb,k-1, -& one, a( j+jb, 1_${ik}$ ), lda, w( j, 1_${ik}$ ), ldw,one, a( j+jb, j ), lda ) end do ! put l21 in standard form by partially undoing the interchanges ! of rows in columns 1:k-1 looping backwards from k-1 to 1 j = k - 1_${ik}$ 120 continue ! undo the interchanges (if any) of rows jj and jp at each ! step j ! (here, j is a diagonal index) jj = j jp = ipiv( j ) if( jp<0_${ik}$ ) then jp = -jp ! (here, j is a diagonal index) j = j - 1_${ik}$ end if ! (note: here, j is used to determine row length. length j ! of the rows to swap back doesn't include diagonal element) j = j - 1_${ik}$ if( jp/=jj .and. j>=1_${ik}$ )call stdlib${ii}$_${ri}$swap( j, a( jp, 1_${ik}$ ), lda, a( jj, 1_${ik}$ ), lda ) if( j>1 )go to 120 ! set kb to the number of columns factorized kb = k - 1_${ik}$ end if return end subroutine stdlib${ii}$_${ri}$lasyf #:endif #:endfor pure module subroutine stdlib${ii}$_clasyf( uplo, n, nb, kb, a, lda, ipiv, w, ldw, info ) !! CLASYF computes a partial factorization of a complex symmetric matrix !! A using the Bunch-Kaufman diagonal pivoting method. The partial !! factorization has the form: !! A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: !! ( 0 U22 ) ( 0 D ) ( U12**T U22**T ) !! A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L' !! ( L21 I ) ( 0 A22 ) ( 0 I ) !! where the order of D is at most NB. The actual order is returned in !! the argument KB, and is either NB or NB-1, or N if N <= NB. !! Note that U**T denotes the transpose of U. !! CLASYF is an auxiliary routine called by CSYTRF. It uses blocked code !! (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or !! A22 (if UPLO = 'L'). ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info, kb integer(${ik}$), intent(in) :: lda, ldw, n, nb ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) complex(sp), intent(inout) :: a(lda,*) complex(sp), intent(out) :: w(ldw,*) ! ===================================================================== ! Parameters real(sp), parameter :: sevten = 17.0e+0_sp ! Local Scalars integer(${ik}$) :: imax, j, jb, jj, jmax, jp, k, kk, kkw, kp, kstep, kw real(sp) :: absakk, alpha, colmax, rowmax complex(sp) :: d11, d21, d22, r1, t, z ! Intrinsic Functions ! Statement Functions real(sp) :: cabs1 ! Statement Function Definitions cabs1( z ) = abs( real( z,KIND=sp) ) + abs( aimag( z ) ) ! Executable Statements info = 0_${ik}$ ! initialize alpha for use in choosing pivot block size. alpha = ( one+sqrt( sevten ) ) / eight if( stdlib_lsame( uplo, 'U' ) ) then ! factorize the trailing columns of a using the upper triangle ! of a and working backwards, and compute the matrix w = u12*d ! for use in updating a11 ! k is the main loop index, decreasing from n in steps of 1 or 2 ! kw is the column of w which corresponds to column k of a k = n 10 continue kw = nb + k - n ! exit from loop if( ( k<=n-nb+1 .and. nb<n ) .or. k<1 )go to 30 ! copy column k of a to column kw of w and update it call stdlib${ii}$_ccopy( k, a( 1_${ik}$, k ), 1_${ik}$, w( 1_${ik}$, kw ), 1_${ik}$ ) if( k<n )call stdlib${ii}$_cgemv( 'NO TRANSPOSE', k, n-k, -cone, a( 1_${ik}$, k+1 ), lda,w( k, & kw+1 ), ldw, cone, w( 1_${ik}$, kw ), 1_${ik}$ ) kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = cabs1( w( k, kw ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value. ! determine both colmax and imax. if( k>1_${ik}$ ) then imax = stdlib${ii}$_icamax( k-1, w( 1_${ik}$, kw ), 1_${ik}$ ) colmax = cabs1( w( imax, kw ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero or underflow: set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! copy column imax to column kw-1 of w and update it call stdlib${ii}$_ccopy( imax, a( 1_${ik}$, imax ), 1_${ik}$, w( 1_${ik}$, kw-1 ), 1_${ik}$ ) call stdlib${ii}$_ccopy( k-imax, a( imax, imax+1 ), lda,w( imax+1, kw-1 ), 1_${ik}$ ) if( k<n )call stdlib${ii}$_cgemv( 'NO TRANSPOSE', k, n-k, -cone,a( 1_${ik}$, k+1 ), lda, w(& imax, kw+1 ), ldw,cone, w( 1_${ik}$, kw-1 ), 1_${ik}$ ) ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value jmax = imax + stdlib${ii}$_icamax( k-imax, w( imax+1, kw-1 ), 1_${ik}$ ) rowmax = cabs1( w( jmax, kw-1 ) ) if( imax>1_${ik}$ ) then jmax = stdlib${ii}$_icamax( imax-1, w( 1_${ik}$, kw-1 ), 1_${ik}$ ) rowmax = max( rowmax, cabs1( w( jmax, kw-1 ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( cabs1( w( imax, kw-1 ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax ! copy column kw-1 of w to column kw of w call stdlib${ii}$_ccopy( k, w( 1_${ik}$, kw-1 ), 1_${ik}$, w( 1_${ik}$, kw ), 1_${ik}$ ) else ! interchange rows and columns k-1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if ! ============================================================ ! kk is the column of a where pivoting step stopped kk = k - kstep + 1_${ik}$ ! kkw is the column of w which corresponds to column kk of a kkw = nb + kk - n ! interchange rows and columns kp and kk. ! updated column kp is already stored in column kkw of w. if( kp/=kk ) then ! copy non-updated column kk to column kp of submatrix a ! at step k. no need to copy element into column k ! (or k and k-1 for 2-by-2 pivot) of a, since these columns ! will be later overwritten. a( kp, kp ) = a( kk, kk ) call stdlib${ii}$_ccopy( kk-1-kp, a( kp+1, kk ), 1_${ik}$, a( kp, kp+1 ),lda ) if( kp>1_${ik}$ )call stdlib${ii}$_ccopy( kp-1, a( 1_${ik}$, kk ), 1_${ik}$, a( 1_${ik}$, kp ), 1_${ik}$ ) ! interchange rows kk and kp in last k+1 to n columns of a ! (columns k (or k and k-1 for 2-by-2 pivot) of a will be ! later overwritten). interchange rows kk and kp ! in last kkw to nb columns of w. if( k<n )call stdlib${ii}$_cswap( n-k, a( kk, k+1 ), lda, a( kp, k+1 ),lda ) call stdlib${ii}$_cswap( n-kk+1, w( kk, kkw ), ldw, w( kp, kkw ),ldw ) end if if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column kw of w now holds ! w(kw) = u(k)*d(k), ! where u(k) is the k-th column of u ! store subdiag. elements of column u(k) ! and 1-by-1 block d(k) in column k of a. ! note: diagonal element u(k,k) is a unit element ! and not stored. ! a(k,k) := d(k,k) = w(k,kw) ! a(1:k-1,k) := u(1:k-1,k) = w(1:k-1,kw)/d(k,k) call stdlib${ii}$_ccopy( k, w( 1_${ik}$, kw ), 1_${ik}$, a( 1_${ik}$, k ), 1_${ik}$ ) r1 = cone / a( k, k ) call stdlib${ii}$_cscal( k-1, r1, a( 1_${ik}$, k ), 1_${ik}$ ) else ! 2-by-2 pivot block d(k): columns kw and kw-1 of w now hold ! ( w(kw-1) w(kw) ) = ( u(k-1) u(k) )*d(k) ! where u(k) and u(k-1) are the k-th and (k-1)-th columns ! of u ! store u(1:k-2,k-1) and u(1:k-2,k) and 2-by-2 ! block d(k-1:k,k-1:k) in columns k-1 and k of a. ! note: 2-by-2 diagonal block u(k-1:k,k-1:k) is a unit ! block and not stored. ! a(k-1:k,k-1:k) := d(k-1:k,k-1:k) = w(k-1:k,kw-1:kw) ! a(1:k-2,k-1:k) := u(1:k-2,k:k-1:k) = ! = w(1:k-2,kw-1:kw) * ( d(k-1:k,k-1:k)**(-1) ) if( k>2_${ik}$ ) then ! compose the columns of the inverse of 2-by-2 pivot ! block d in the following way to reduce the number ! of flops when we myltiply panel ( w(kw-1) w(kw) ) by ! this inverse ! d**(-1) = ( d11 d21 )**(-1) = ! ( d21 d22 ) ! = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) = ! ( (-d21 ) ( d11 ) ) ! = 1/d21 * 1/((d11/d21)*(d22/d21)-1) * ! * ( ( d22/d21 ) ( -1 ) ) = ! ( ( -1 ) ( d11/d21 ) ) ! = 1/d21 * 1/(d22*d11-1) * ( ( d11 ) ( -1 ) ) = ! ( ( -1 ) ( d22 ) ) ! = 1/d21 * t * ( ( d11 ) ( -1 ) ) ! ( ( -1 ) ( d22 ) ) ! = d21 * ( ( d11 ) ( -1 ) ) ! ( ( -1 ) ( d22 ) ) d21 = w( k-1, kw ) d11 = w( k, kw ) / d21 d22 = w( k-1, kw-1 ) / d21 t = cone / ( d11*d22-cone ) ! update elements in columns a(k-1) and a(k) as ! dot products of rows of ( w(kw-1) w(kw) ) and columns ! of d**(-1) d21 = t / d21 do j = 1, k - 2 a( j, k-1 ) = d21*( d11*w( j, kw-1 )-w( j, kw ) ) a( j, k ) = d21*( d22*w( j, kw )-w( j, kw-1 ) ) end do end if ! copy d(k) to a a( k-1, k-1 ) = w( k-1, kw-1 ) a( k-1, k ) = w( k-1, kw ) a( k, k ) = w( k, kw ) end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k-1 ) = -kp end if ! decrease k and return to the start of the main loop k = k - kstep go to 10 30 continue ! update the upper triangle of a11 (= a(1:k,1:k)) as ! a11 := a11 - u12*d*u12**t = a11 - u12*w**t ! computing blocks of nb columns at a time do j = ( ( k-1 ) / nb )*nb + 1, 1, -nb jb = min( nb, k-j+1 ) ! update the upper triangle of the diagonal block do jj = j, j + jb - 1 call stdlib${ii}$_cgemv( 'NO TRANSPOSE', jj-j+1, n-k, -cone,a( j, k+1 ), lda, w( jj,& kw+1 ), ldw, cone,a( j, jj ), 1_${ik}$ ) end do ! update the rectangular superdiagonal block call stdlib${ii}$_cgemm( 'NO TRANSPOSE', 'TRANSPOSE', j-1, jb, n-k,-cone, a( 1_${ik}$, k+1 ), & lda, w( j, kw+1 ), ldw,cone, a( 1_${ik}$, j ), lda ) end do ! put u12 in standard form by partially undoing the interchanges ! in columns k+1:n looping backwards from k+1 to n j = k + 1_${ik}$ 60 continue ! undo the interchanges (if any) of rows jj and jp at each ! step j ! (here, j is a diagonal index) jj = j jp = ipiv( j ) if( jp<0_${ik}$ ) then jp = -jp ! (here, j is a diagonal index) j = j + 1_${ik}$ end if ! (note: here, j is used to determine row length. length n-j+1 ! of the rows to swap back doesn't include diagonal element) j = j + 1_${ik}$ if( jp/=jj .and. j<=n )call stdlib${ii}$_cswap( n-j+1, a( jp, j ), lda, a( jj, j ), & lda ) if( j<n )go to 60 ! set kb to the number of columns factorized kb = n - k else ! factorize the leading columns of a using the lower triangle ! of a and working forwards, and compute the matrix w = l21*d ! for use in updating a22 ! k is the main loop index, increasing from 1 in steps of 1 or 2 k = 1_${ik}$ 70 continue ! exit from loop if( ( k>=nb .and. nb<n ) .or. k>n )go to 90 ! copy column k of a to column k of w and update it call stdlib${ii}$_ccopy( n-k+1, a( k, k ), 1_${ik}$, w( k, k ), 1_${ik}$ ) call stdlib${ii}$_cgemv( 'NO TRANSPOSE', n-k+1, k-1, -cone, a( k, 1_${ik}$ ), lda,w( k, 1_${ik}$ ), ldw,& cone, w( k, k ), 1_${ik}$ ) kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = cabs1( w( k, k ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value. ! determine both colmax and imax. if( k<n ) then imax = k + stdlib${ii}$_icamax( n-k, w( k+1, k ), 1_${ik}$ ) colmax = cabs1( w( imax, k ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero or underflow: set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! copy column imax to column k+1 of w and update it call stdlib${ii}$_ccopy( imax-k, a( imax, k ), lda, w( k, k+1 ), 1_${ik}$ ) call stdlib${ii}$_ccopy( n-imax+1, a( imax, imax ), 1_${ik}$, w( imax, k+1 ),1_${ik}$ ) call stdlib${ii}$_cgemv( 'NO TRANSPOSE', n-k+1, k-1, -cone, a( k, 1_${ik}$ ),lda, w( imax, & 1_${ik}$ ), ldw, cone, w( k, k+1 ),1_${ik}$ ) ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value jmax = k - 1_${ik}$ + stdlib${ii}$_icamax( imax-k, w( k, k+1 ), 1_${ik}$ ) rowmax = cabs1( w( jmax, k+1 ) ) if( imax<n ) then jmax = imax + stdlib${ii}$_icamax( n-imax, w( imax+1, k+1 ), 1_${ik}$ ) rowmax = max( rowmax, cabs1( w( jmax, k+1 ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( cabs1( w( imax, k+1 ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax ! copy column k+1 of w to column k of w call stdlib${ii}$_ccopy( n-k+1, w( k, k+1 ), 1_${ik}$, w( k, k ), 1_${ik}$ ) else ! interchange rows and columns k+1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if ! ============================================================ ! kk is the column of a where pivoting step stopped kk = k + kstep - 1_${ik}$ ! interchange rows and columns kp and kk. ! updated column kp is already stored in column kk of w. if( kp/=kk ) then ! copy non-updated column kk to column kp of submatrix a ! at step k. no need to copy element into column k ! (or k and k+1 for 2-by-2 pivot) of a, since these columns ! will be later overwritten. a( kp, kp ) = a( kk, kk ) call stdlib${ii}$_ccopy( kp-kk-1, a( kk+1, kk ), 1_${ik}$, a( kp, kk+1 ),lda ) if( kp<n )call stdlib${ii}$_ccopy( n-kp, a( kp+1, kk ), 1_${ik}$, a( kp+1, kp ), 1_${ik}$ ) ! interchange rows kk and kp in first k-1 columns of a ! (columns k (or k and k+1 for 2-by-2 pivot) of a will be ! later overwritten). interchange rows kk and kp ! in first kk columns of w. if( k>1_${ik}$ )call stdlib${ii}$_cswap( k-1, a( kk, 1_${ik}$ ), lda, a( kp, 1_${ik}$ ), lda ) call stdlib${ii}$_cswap( kk, w( kk, 1_${ik}$ ), ldw, w( kp, 1_${ik}$ ), ldw ) end if if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k of w now holds ! w(k) = l(k)*d(k), ! where l(k) is the k-th column of l ! store subdiag. elements of column l(k) ! and 1-by-1 block d(k) in column k of a. ! (note: diagonal element l(k,k) is a unit element ! and not stored) ! a(k,k) := d(k,k) = w(k,k) ! a(k+1:n,k) := l(k+1:n,k) = w(k+1:n,k)/d(k,k) call stdlib${ii}$_ccopy( n-k+1, w( k, k ), 1_${ik}$, a( k, k ), 1_${ik}$ ) if( k<n ) then r1 = cone / a( k, k ) call stdlib${ii}$_cscal( n-k, r1, a( k+1, k ), 1_${ik}$ ) end if else ! 2-by-2 pivot block d(k): columns k and k+1 of w now hold ! ( w(k) w(k+1) ) = ( l(k) l(k+1) )*d(k) ! where l(k) and l(k+1) are the k-th and (k+1)-th columns ! of l ! store l(k+2:n,k) and l(k+2:n,k+1) and 2-by-2 ! block d(k:k+1,k:k+1) in columns k and k+1 of a. ! (note: 2-by-2 diagonal block l(k:k+1,k:k+1) is a unit ! block and not stored) ! a(k:k+1,k:k+1) := d(k:k+1,k:k+1) = w(k:k+1,k:k+1) ! a(k+2:n,k:k+1) := l(k+2:n,k:k+1) = ! = w(k+2:n,k:k+1) * ( d(k:k+1,k:k+1)**(-1) ) if( k<n-1 ) then ! compose the columns of the inverse of 2-by-2 pivot ! block d in the following way to reduce the number ! of flops when we myltiply panel ( w(k) w(k+1) ) by ! this inverse ! d**(-1) = ( d11 d21 )**(-1) = ! ( d21 d22 ) ! = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) = ! ( (-d21 ) ( d11 ) ) ! = 1/d21 * 1/((d11/d21)*(d22/d21)-1) * ! * ( ( d22/d21 ) ( -1 ) ) = ! ( ( -1 ) ( d11/d21 ) ) ! = 1/d21 * 1/(d22*d11-1) * ( ( d11 ) ( -1 ) ) = ! ( ( -1 ) ( d22 ) ) ! = 1/d21 * t * ( ( d11 ) ( -1 ) ) ! ( ( -1 ) ( d22 ) ) ! = d21 * ( ( d11 ) ( -1 ) ) ! ( ( -1 ) ( d22 ) ) d21 = w( k+1, k ) d11 = w( k+1, k+1 ) / d21 d22 = w( k, k ) / d21 t = cone / ( d11*d22-cone ) d21 = t / d21 ! update elements in columns a(k) and a(k+1) as ! dot products of rows of ( w(k) w(k+1) ) and columns ! of d**(-1) do j = k + 2, n a( j, k ) = d21*( d11*w( j, k )-w( j, k+1 ) ) a( j, k+1 ) = d21*( d22*w( j, k+1 )-w( j, k ) ) end do end if ! copy d(k) to a a( k, k ) = w( k, k ) a( k+1, k ) = w( k+1, k ) a( k+1, k+1 ) = w( k+1, k+1 ) end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k+1 ) = -kp end if ! increase k and return to the start of the main loop k = k + kstep go to 70 90 continue ! update the lower triangle of a22 (= a(k:n,k:n)) as ! a22 := a22 - l21*d*l21**t = a22 - l21*w**t ! computing blocks of nb columns at a time do j = k, n, nb jb = min( nb, n-j+1 ) ! update the lower triangle of the diagonal block do jj = j, j + jb - 1 call stdlib${ii}$_cgemv( 'NO TRANSPOSE', j+jb-jj, k-1, -cone,a( jj, 1_${ik}$ ), lda, w( jj,& 1_${ik}$ ), ldw, cone,a( jj, jj ), 1_${ik}$ ) end do ! update the rectangular subdiagonal block if( j+jb<=n )call stdlib${ii}$_cgemm( 'NO TRANSPOSE', 'TRANSPOSE', n-j-jb+1, jb,k-1, -& cone, a( j+jb, 1_${ik}$ ), lda, w( j, 1_${ik}$ ),ldw, cone, a( j+jb, j ), lda ) end do ! put l21 in standard form by partially undoing the interchanges ! of rows in columns 1:k-1 looping backwards from k-1 to 1 j = k - 1_${ik}$ 120 continue ! undo the interchanges (if any) of rows jj and jp at each ! step j ! (here, j is a diagonal index) jj = j jp = ipiv( j ) if( jp<0_${ik}$ ) then jp = -jp ! (here, j is a diagonal index) j = j - 1_${ik}$ end if ! (note: here, j is used to determine row length. length j ! of the rows to swap back doesn't include diagonal element) j = j - 1_${ik}$ if( jp/=jj .and. j>=1_${ik}$ )call stdlib${ii}$_cswap( j, a( jp, 1_${ik}$ ), lda, a( jj, 1_${ik}$ ), lda ) if( j>1 )go to 120 ! set kb to the number of columns factorized kb = k - 1_${ik}$ end if return end subroutine stdlib${ii}$_clasyf pure module subroutine stdlib${ii}$_zlasyf( uplo, n, nb, kb, a, lda, ipiv, w, ldw, info ) !! ZLASYF computes a partial factorization of a complex symmetric matrix !! A using the Bunch-Kaufman diagonal pivoting method. The partial !! factorization has the form: !! A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: !! ( 0 U22 ) ( 0 D ) ( U12**T U22**T ) !! A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L' !! ( L21 I ) ( 0 A22 ) ( 0 I ) !! where the order of D is at most NB. The actual order is returned in !! the argument KB, and is either NB or NB-1, or N if N <= NB. !! Note that U**T denotes the transpose of U. !! ZLASYF is an auxiliary routine called by ZSYTRF. It uses blocked code !! (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or !! A22 (if UPLO = 'L'). ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info, kb integer(${ik}$), intent(in) :: lda, ldw, n, nb ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) complex(dp), intent(inout) :: a(lda,*) complex(dp), intent(out) :: w(ldw,*) ! ===================================================================== ! Parameters real(dp), parameter :: sevten = 17.0e+0_dp ! Local Scalars integer(${ik}$) :: imax, j, jb, jj, jmax, jp, k, kk, kkw, kp, kstep, kw real(dp) :: absakk, alpha, colmax, rowmax complex(dp) :: d11, d21, d22, r1, t, z ! Intrinsic Functions ! Statement Functions real(dp) :: cabs1 ! Statement Function Definitions cabs1( z ) = abs( real( z,KIND=dp) ) + abs( aimag( z ) ) ! Executable Statements info = 0_${ik}$ ! initialize alpha for use in choosing pivot block size. alpha = ( one+sqrt( sevten ) ) / eight if( stdlib_lsame( uplo, 'U' ) ) then ! factorize the trailing columns of a using the upper triangle ! of a and working backwards, and compute the matrix w = u12*d ! for use in updating a11 ! k is the main loop index, decreasing from n in steps of 1 or 2 ! kw is the column of w which corresponds to column k of a k = n 10 continue kw = nb + k - n ! exit from loop if( ( k<=n-nb+1 .and. nb<n ) .or. k<1 )go to 30 ! copy column k of a to column kw of w and update it call stdlib${ii}$_zcopy( k, a( 1_${ik}$, k ), 1_${ik}$, w( 1_${ik}$, kw ), 1_${ik}$ ) if( k<n )call stdlib${ii}$_zgemv( 'NO TRANSPOSE', k, n-k, -cone, a( 1_${ik}$, k+1 ), lda,w( k, & kw+1 ), ldw, cone, w( 1_${ik}$, kw ), 1_${ik}$ ) kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = cabs1( w( k, kw ) ) ! imax is the row-index of the largest off-diagonal element in if( k>1_${ik}$ ) then imax = stdlib${ii}$_izamax( k-1, w( 1_${ik}$, kw ), 1_${ik}$ ) colmax = cabs1( w( imax, kw ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero or underflow: set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! copy column imax to column kw-1 of w and update it call stdlib${ii}$_zcopy( imax, a( 1_${ik}$, imax ), 1_${ik}$, w( 1_${ik}$, kw-1 ), 1_${ik}$ ) call stdlib${ii}$_zcopy( k-imax, a( imax, imax+1 ), lda,w( imax+1, kw-1 ), 1_${ik}$ ) if( k<n )call stdlib${ii}$_zgemv( 'NO TRANSPOSE', k, n-k, -cone,a( 1_${ik}$, k+1 ), lda, w(& imax, kw+1 ), ldw,cone, w( 1_${ik}$, kw-1 ), 1_${ik}$ ) ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value jmax = imax + stdlib${ii}$_izamax( k-imax, w( imax+1, kw-1 ), 1_${ik}$ ) rowmax = cabs1( w( jmax, kw-1 ) ) if( imax>1_${ik}$ ) then jmax = stdlib${ii}$_izamax( imax-1, w( 1_${ik}$, kw-1 ), 1_${ik}$ ) rowmax = max( rowmax, cabs1( w( jmax, kw-1 ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( cabs1( w( imax, kw-1 ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax ! copy column kw-1 of w to column kw of w call stdlib${ii}$_zcopy( k, w( 1_${ik}$, kw-1 ), 1_${ik}$, w( 1_${ik}$, kw ), 1_${ik}$ ) else ! interchange rows and columns k-1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if ! ============================================================ ! kk is the column of a where pivoting step stopped kk = k - kstep + 1_${ik}$ ! kkw is the column of w which corresponds to column kk of a kkw = nb + kk - n ! interchange rows and columns kp and kk. ! updated column kp is already stored in column kkw of w. if( kp/=kk ) then ! copy non-updated column kk to column kp of submatrix a ! at step k. no need to copy element into column k ! (or k and k-1 for 2-by-2 pivot) of a, since these columns ! will be later overwritten. a( kp, kp ) = a( kk, kk ) call stdlib${ii}$_zcopy( kk-1-kp, a( kp+1, kk ), 1_${ik}$, a( kp, kp+1 ),lda ) if( kp>1_${ik}$ )call stdlib${ii}$_zcopy( kp-1, a( 1_${ik}$, kk ), 1_${ik}$, a( 1_${ik}$, kp ), 1_${ik}$ ) ! interchange rows kk and kp in last k+1 to n columns of a ! (columns k (or k and k-1 for 2-by-2 pivot) of a will be ! later overwritten). interchange rows kk and kp ! in last kkw to nb columns of w. if( k<n )call stdlib${ii}$_zswap( n-k, a( kk, k+1 ), lda, a( kp, k+1 ),lda ) call stdlib${ii}$_zswap( n-kk+1, w( kk, kkw ), ldw, w( kp, kkw ),ldw ) end if if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column kw of w now holds ! w(kw) = u(k)*d(k), ! where u(k) is the k-th column of u ! store subdiag. elements of column u(k) ! and 1-by-1 block d(k) in column k of a. ! note: diagonal element u(k,k) is a unit element ! and not stored. ! a(k,k) := d(k,k) = w(k,kw) ! a(1:k-1,k) := u(1:k-1,k) = w(1:k-1,kw)/d(k,k) call stdlib${ii}$_zcopy( k, w( 1_${ik}$, kw ), 1_${ik}$, a( 1_${ik}$, k ), 1_${ik}$ ) r1 = cone / a( k, k ) call stdlib${ii}$_zscal( k-1, r1, a( 1_${ik}$, k ), 1_${ik}$ ) else ! 2-by-2 pivot block d(k): columns kw and kw-1 of w now hold ! ( w(kw-1) w(kw) ) = ( u(k-1) u(k) )*d(k) ! where u(k) and u(k-1) are the k-th and (k-1)-th columns ! of u ! store u(1:k-2,k-1) and u(1:k-2,k) and 2-by-2 ! block d(k-1:k,k-1:k) in columns k-1 and k of a. ! note: 2-by-2 diagonal block u(k-1:k,k-1:k) is a unit ! block and not stored. ! a(k-1:k,k-1:k) := d(k-1:k,k-1:k) = w(k-1:k,kw-1:kw) ! a(1:k-2,k-1:k) := u(1:k-2,k:k-1:k) = ! = w(1:k-2,kw-1:kw) * ( d(k-1:k,k-1:k)**(-1) ) if( k>2_${ik}$ ) then ! compose the columns of the inverse of 2-by-2 pivot ! block d in the following way to reduce the number ! of flops when we myltiply panel ( w(kw-1) w(kw) ) by ! this inverse ! d**(-1) = ( d11 d21 )**(-1) = ! ( d21 d22 ) ! = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) = ! ( (-d21 ) ( d11 ) ) ! = 1/d21 * 1/((d11/d21)*(d22/d21)-1) * ! * ( ( d22/d21 ) ( -1 ) ) = ! ( ( -1 ) ( d11/d21 ) ) ! = 1/d21 * 1/(d22*d11-1) * ( ( d11 ) ( -1 ) ) = ! ( ( -1 ) ( d22 ) ) ! = 1/d21 * t * ( ( d11 ) ( -1 ) ) ! ( ( -1 ) ( d22 ) ) ! = d21 * ( ( d11 ) ( -1 ) ) ! ( ( -1 ) ( d22 ) ) d21 = w( k-1, kw ) d11 = w( k, kw ) / d21 d22 = w( k-1, kw-1 ) / d21 t = cone / ( d11*d22-cone ) d21 = t / d21 ! update elements in columns a(k-1) and a(k) as ! dot products of rows of ( w(kw-1) w(kw) ) and columns ! of d**(-1) do j = 1, k - 2 a( j, k-1 ) = d21*( d11*w( j, kw-1 )-w( j, kw ) ) a( j, k ) = d21*( d22*w( j, kw )-w( j, kw-1 ) ) end do end if ! copy d(k) to a a( k-1, k-1 ) = w( k-1, kw-1 ) a( k-1, k ) = w( k-1, kw ) a( k, k ) = w( k, kw ) end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k-1 ) = -kp end if ! decrease k and return to the start of the main loop k = k - kstep go to 10 30 continue ! update the upper triangle of a11 (= a(1:k,1:k)) as ! a11 := a11 - u12*d*u12**t = a11 - u12*w**t ! computing blocks of nb columns at a time do j = ( ( k-1 ) / nb )*nb + 1, 1, -nb jb = min( nb, k-j+1 ) ! update the upper triangle of the diagonal block do jj = j, j + jb - 1 call stdlib${ii}$_zgemv( 'NO TRANSPOSE', jj-j+1, n-k, -cone,a( j, k+1 ), lda, w( jj,& kw+1 ), ldw, cone,a( j, jj ), 1_${ik}$ ) end do ! update the rectangular superdiagonal block call stdlib${ii}$_zgemm( 'NO TRANSPOSE', 'TRANSPOSE', j-1, jb, n-k,-cone, a( 1_${ik}$, k+1 ), & lda, w( j, kw+1 ), ldw,cone, a( 1_${ik}$, j ), lda ) end do ! put u12 in standard form by partially undoing the interchanges ! in columns k+1:n looping backwards from k+1 to n j = k + 1_${ik}$ 60 continue ! undo the interchanges (if any) of rows jj and jp at each ! step j ! (here, j is a diagonal index) jj = j jp = ipiv( j ) if( jp<0_${ik}$ ) then jp = -jp ! (here, j is a diagonal index) j = j + 1_${ik}$ end if ! (note: here, j is used to determine row length. length n-j+1 ! of the rows to swap back doesn't include diagonal element) j = j + 1_${ik}$ if( jp/=jj .and. j<=n )call stdlib${ii}$_zswap( n-j+1, a( jp, j ), lda, a( jj, j ), & lda ) if( j<n )go to 60 ! set kb to the number of columns factorized kb = n - k else ! factorize the leading columns of a using the lower triangle ! of a and working forwards, and compute the matrix w = l21*d ! for use in updating a22 ! k is the main loop index, increasing from 1 in steps of 1 or 2 k = 1_${ik}$ 70 continue ! exit from loop if( ( k>=nb .and. nb<n ) .or. k>n )go to 90 ! copy column k of a to column k of w and update it call stdlib${ii}$_zcopy( n-k+1, a( k, k ), 1_${ik}$, w( k, k ), 1_${ik}$ ) call stdlib${ii}$_zgemv( 'NO TRANSPOSE', n-k+1, k-1, -cone, a( k, 1_${ik}$ ), lda,w( k, 1_${ik}$ ), ldw,& cone, w( k, k ), 1_${ik}$ ) kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = cabs1( w( k, k ) ) ! imax is the row-index of the largest off-diagonal element in if( k<n ) then imax = k + stdlib${ii}$_izamax( n-k, w( k+1, k ), 1_${ik}$ ) colmax = cabs1( w( imax, k ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero or underflow: set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! copy column imax to column k+1 of w and update it call stdlib${ii}$_zcopy( imax-k, a( imax, k ), lda, w( k, k+1 ), 1_${ik}$ ) call stdlib${ii}$_zcopy( n-imax+1, a( imax, imax ), 1_${ik}$, w( imax, k+1 ),1_${ik}$ ) call stdlib${ii}$_zgemv( 'NO TRANSPOSE', n-k+1, k-1, -cone, a( k, 1_${ik}$ ),lda, w( imax, & 1_${ik}$ ), ldw, cone, w( k, k+1 ),1_${ik}$ ) ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value jmax = k - 1_${ik}$ + stdlib${ii}$_izamax( imax-k, w( k, k+1 ), 1_${ik}$ ) rowmax = cabs1( w( jmax, k+1 ) ) if( imax<n ) then jmax = imax + stdlib${ii}$_izamax( n-imax, w( imax+1, k+1 ), 1_${ik}$ ) rowmax = max( rowmax, cabs1( w( jmax, k+1 ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( cabs1( w( imax, k+1 ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax ! copy column k+1 of w to column k of w call stdlib${ii}$_zcopy( n-k+1, w( k, k+1 ), 1_${ik}$, w( k, k ), 1_${ik}$ ) else ! interchange rows and columns k+1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if ! ============================================================ ! kk is the column of a where pivoting step stopped kk = k + kstep - 1_${ik}$ ! interchange rows and columns kp and kk. ! updated column kp is already stored in column kk of w. if( kp/=kk ) then ! copy non-updated column kk to column kp of submatrix a ! at step k. no need to copy element into column k ! (or k and k+1 for 2-by-2 pivot) of a, since these columns ! will be later overwritten. a( kp, kp ) = a( kk, kk ) call stdlib${ii}$_zcopy( kp-kk-1, a( kk+1, kk ), 1_${ik}$, a( kp, kk+1 ),lda ) if( kp<n )call stdlib${ii}$_zcopy( n-kp, a( kp+1, kk ), 1_${ik}$, a( kp+1, kp ), 1_${ik}$ ) ! interchange rows kk and kp in first k-1 columns of a ! (columns k (or k and k+1 for 2-by-2 pivot) of a will be ! later overwritten). interchange rows kk and kp ! in first kk columns of w. if( k>1_${ik}$ )call stdlib${ii}$_zswap( k-1, a( kk, 1_${ik}$ ), lda, a( kp, 1_${ik}$ ), lda ) call stdlib${ii}$_zswap( kk, w( kk, 1_${ik}$ ), ldw, w( kp, 1_${ik}$ ), ldw ) end if if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k of w now holds ! w(k) = l(k)*d(k), ! where l(k) is the k-th column of l ! store subdiag. elements of column l(k) ! and 1-by-1 block d(k) in column k of a. ! (note: diagonal element l(k,k) is a unit element ! and not stored) ! a(k,k) := d(k,k) = w(k,k) ! a(k+1:n,k) := l(k+1:n,k) = w(k+1:n,k)/d(k,k) call stdlib${ii}$_zcopy( n-k+1, w( k, k ), 1_${ik}$, a( k, k ), 1_${ik}$ ) if( k<n ) then r1 = cone / a( k, k ) call stdlib${ii}$_zscal( n-k, r1, a( k+1, k ), 1_${ik}$ ) end if else ! 2-by-2 pivot block d(k): columns k and k+1 of w now hold ! ( w(k) w(k+1) ) = ( l(k) l(k+1) )*d(k) ! where l(k) and l(k+1) are the k-th and (k+1)-th columns ! of l ! store l(k+2:n,k) and l(k+2:n,k+1) and 2-by-2 ! block d(k:k+1,k:k+1) in columns k and k+1 of a. ! (note: 2-by-2 diagonal block l(k:k+1,k:k+1) is a unit ! block and not stored) ! a(k:k+1,k:k+1) := d(k:k+1,k:k+1) = w(k:k+1,k:k+1) ! a(k+2:n,k:k+1) := l(k+2:n,k:k+1) = ! = w(k+2:n,k:k+1) * ( d(k:k+1,k:k+1)**(-1) ) if( k<n-1 ) then ! compose the columns of the inverse of 2-by-2 pivot ! block d in the following way to reduce the number ! of flops when we myltiply panel ( w(k) w(k+1) ) by ! this inverse ! d**(-1) = ( d11 d21 )**(-1) = ! ( d21 d22 ) ! = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) = ! ( (-d21 ) ( d11 ) ) ! = 1/d21 * 1/((d11/d21)*(d22/d21)-1) * ! * ( ( d22/d21 ) ( -1 ) ) = ! ( ( -1 ) ( d11/d21 ) ) ! = 1/d21 * 1/(d22*d11-1) * ( ( d11 ) ( -1 ) ) = ! ( ( -1 ) ( d22 ) ) ! = 1/d21 * t * ( ( d11 ) ( -1 ) ) ! ( ( -1 ) ( d22 ) ) ! = d21 * ( ( d11 ) ( -1 ) ) ! ( ( -1 ) ( d22 ) ) d21 = w( k+1, k ) d11 = w( k+1, k+1 ) / d21 d22 = w( k, k ) / d21 t = cone / ( d11*d22-cone ) d21 = t / d21 ! update elements in columns a(k) and a(k+1) as ! dot products of rows of ( w(k) w(k+1) ) and columns ! of d**(-1) do j = k + 2, n a( j, k ) = d21*( d11*w( j, k )-w( j, k+1 ) ) a( j, k+1 ) = d21*( d22*w( j, k+1 )-w( j, k ) ) end do end if ! copy d(k) to a a( k, k ) = w( k, k ) a( k+1, k ) = w( k+1, k ) a( k+1, k+1 ) = w( k+1, k+1 ) end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k+1 ) = -kp end if ! increase k and return to the start of the main loop k = k + kstep go to 70 90 continue ! update the lower triangle of a22 (= a(k:n,k:n)) as ! a22 := a22 - l21*d*l21**t = a22 - l21*w**t ! computing blocks of nb columns at a time do j = k, n, nb jb = min( nb, n-j+1 ) ! update the lower triangle of the diagonal block do jj = j, j + jb - 1 call stdlib${ii}$_zgemv( 'NO TRANSPOSE', j+jb-jj, k-1, -cone,a( jj, 1_${ik}$ ), lda, w( jj,& 1_${ik}$ ), ldw, cone,a( jj, jj ), 1_${ik}$ ) end do ! update the rectangular subdiagonal block if( j+jb<=n )call stdlib${ii}$_zgemm( 'NO TRANSPOSE', 'TRANSPOSE', n-j-jb+1, jb,k-1, -& cone, a( j+jb, 1_${ik}$ ), lda, w( j, 1_${ik}$ ),ldw, cone, a( j+jb, j ), lda ) end do ! put l21 in standard form by partially undoing the interchanges ! of rows in columns 1:k-1 looping backwards from k-1 to 1 j = k - 1_${ik}$ 120 continue ! undo the interchanges (if any) of rows jj and jp at each ! step j ! (here, j is a diagonal index) jj = j jp = ipiv( j ) if( jp<0_${ik}$ ) then jp = -jp ! (here, j is a diagonal index) j = j - 1_${ik}$ end if ! (note: here, j is used to determine row length. length j ! of the rows to swap back doesn't include diagonal element) j = j - 1_${ik}$ if( jp/=jj .and. j>=1_${ik}$ )call stdlib${ii}$_zswap( j, a( jp, 1_${ik}$ ), lda, a( jj, 1_${ik}$ ), lda ) if( j>1 )go to 120 ! set kb to the number of columns factorized kb = k - 1_${ik}$ end if return end subroutine stdlib${ii}$_zlasyf #:for ck,ct,ci in CMPLX_KINDS_TYPES #:if not ck in ["sp","dp"] pure module subroutine stdlib${ii}$_${ci}$lasyf( uplo, n, nb, kb, a, lda, ipiv, w, ldw, info ) !! ZLASYF: computes a partial factorization of a complex symmetric matrix !! A using the Bunch-Kaufman diagonal pivoting method. The partial !! factorization has the form: !! A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: !! ( 0 U22 ) ( 0 D ) ( U12**T U22**T ) !! A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L' !! ( L21 I ) ( 0 A22 ) ( 0 I ) !! where the order of D is at most NB. The actual order is returned in !! the argument KB, and is either NB or NB-1, or N if N <= NB. !! Note that U**T denotes the transpose of U. !! ZLASYF is an auxiliary routine called by ZSYTRF. It uses blocked code !! (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or !! A22 (if UPLO = 'L'). ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${ck}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info, kb integer(${ik}$), intent(in) :: lda, ldw, n, nb ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) complex(${ck}$), intent(inout) :: a(lda,*) complex(${ck}$), intent(out) :: w(ldw,*) ! ===================================================================== ! Parameters real(${ck}$), parameter :: sevten = 17.0e+0_${ck}$ ! Local Scalars integer(${ik}$) :: imax, j, jb, jj, jmax, jp, k, kk, kkw, kp, kstep, kw real(${ck}$) :: absakk, alpha, colmax, rowmax complex(${ck}$) :: d11, d21, d22, r1, t, z ! Intrinsic Functions ! Statement Functions real(${ck}$) :: cabs1 ! Statement Function Definitions cabs1( z ) = abs( real( z,KIND=${ck}$) ) + abs( aimag( z ) ) ! Executable Statements info = 0_${ik}$ ! initialize alpha for use in choosing pivot block size. alpha = ( one+sqrt( sevten ) ) / eight if( stdlib_lsame( uplo, 'U' ) ) then ! factorize the trailing columns of a using the upper triangle ! of a and working backwards, and compute the matrix w = u12*d ! for use in updating a11 ! k is the main loop index, decreasing from n in steps of 1 or 2 ! kw is the column of w which corresponds to column k of a k = n 10 continue kw = nb + k - n ! exit from loop if( ( k<=n-nb+1 .and. nb<n ) .or. k<1 )go to 30 ! copy column k of a to column kw of w and update it call stdlib${ii}$_${ci}$copy( k, a( 1_${ik}$, k ), 1_${ik}$, w( 1_${ik}$, kw ), 1_${ik}$ ) if( k<n )call stdlib${ii}$_${ci}$gemv( 'NO TRANSPOSE', k, n-k, -cone, a( 1_${ik}$, k+1 ), lda,w( k, & kw+1 ), ldw, cone, w( 1_${ik}$, kw ), 1_${ik}$ ) kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = cabs1( w( k, kw ) ) ! imax is the row-index of the largest off-diagonal element in if( k>1_${ik}$ ) then imax = stdlib${ii}$_i${ci}$amax( k-1, w( 1_${ik}$, kw ), 1_${ik}$ ) colmax = cabs1( w( imax, kw ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero or underflow: set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! copy column imax to column kw-1 of w and update it call stdlib${ii}$_${ci}$copy( imax, a( 1_${ik}$, imax ), 1_${ik}$, w( 1_${ik}$, kw-1 ), 1_${ik}$ ) call stdlib${ii}$_${ci}$copy( k-imax, a( imax, imax+1 ), lda,w( imax+1, kw-1 ), 1_${ik}$ ) if( k<n )call stdlib${ii}$_${ci}$gemv( 'NO TRANSPOSE', k, n-k, -cone,a( 1_${ik}$, k+1 ), lda, w(& imax, kw+1 ), ldw,cone, w( 1_${ik}$, kw-1 ), 1_${ik}$ ) ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value jmax = imax + stdlib${ii}$_i${ci}$amax( k-imax, w( imax+1, kw-1 ), 1_${ik}$ ) rowmax = cabs1( w( jmax, kw-1 ) ) if( imax>1_${ik}$ ) then jmax = stdlib${ii}$_i${ci}$amax( imax-1, w( 1_${ik}$, kw-1 ), 1_${ik}$ ) rowmax = max( rowmax, cabs1( w( jmax, kw-1 ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( cabs1( w( imax, kw-1 ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax ! copy column kw-1 of w to column kw of w call stdlib${ii}$_${ci}$copy( k, w( 1_${ik}$, kw-1 ), 1_${ik}$, w( 1_${ik}$, kw ), 1_${ik}$ ) else ! interchange rows and columns k-1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if ! ============================================================ ! kk is the column of a where pivoting step stopped kk = k - kstep + 1_${ik}$ ! kkw is the column of w which corresponds to column kk of a kkw = nb + kk - n ! interchange rows and columns kp and kk. ! updated column kp is already stored in column kkw of w. if( kp/=kk ) then ! copy non-updated column kk to column kp of submatrix a ! at step k. no need to copy element into column k ! (or k and k-1 for 2-by-2 pivot) of a, since these columns ! will be later overwritten. a( kp, kp ) = a( kk, kk ) call stdlib${ii}$_${ci}$copy( kk-1-kp, a( kp+1, kk ), 1_${ik}$, a( kp, kp+1 ),lda ) if( kp>1_${ik}$ )call stdlib${ii}$_${ci}$copy( kp-1, a( 1_${ik}$, kk ), 1_${ik}$, a( 1_${ik}$, kp ), 1_${ik}$ ) ! interchange rows kk and kp in last k+1 to n columns of a ! (columns k (or k and k-1 for 2-by-2 pivot) of a will be ! later overwritten). interchange rows kk and kp ! in last kkw to nb columns of w. if( k<n )call stdlib${ii}$_${ci}$swap( n-k, a( kk, k+1 ), lda, a( kp, k+1 ),lda ) call stdlib${ii}$_${ci}$swap( n-kk+1, w( kk, kkw ), ldw, w( kp, kkw ),ldw ) end if if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column kw of w now holds ! w(kw) = u(k)*d(k), ! where u(k) is the k-th column of u ! store subdiag. elements of column u(k) ! and 1-by-1 block d(k) in column k of a. ! note: diagonal element u(k,k) is a unit element ! and not stored. ! a(k,k) := d(k,k) = w(k,kw) ! a(1:k-1,k) := u(1:k-1,k) = w(1:k-1,kw)/d(k,k) call stdlib${ii}$_${ci}$copy( k, w( 1_${ik}$, kw ), 1_${ik}$, a( 1_${ik}$, k ), 1_${ik}$ ) r1 = cone / a( k, k ) call stdlib${ii}$_${ci}$scal( k-1, r1, a( 1_${ik}$, k ), 1_${ik}$ ) else ! 2-by-2 pivot block d(k): columns kw and kw-1 of w now hold ! ( w(kw-1) w(kw) ) = ( u(k-1) u(k) )*d(k) ! where u(k) and u(k-1) are the k-th and (k-1)-th columns ! of u ! store u(1:k-2,k-1) and u(1:k-2,k) and 2-by-2 ! block d(k-1:k,k-1:k) in columns k-1 and k of a. ! note: 2-by-2 diagonal block u(k-1:k,k-1:k) is a unit ! block and not stored. ! a(k-1:k,k-1:k) := d(k-1:k,k-1:k) = w(k-1:k,kw-1:kw) ! a(1:k-2,k-1:k) := u(1:k-2,k:k-1:k) = ! = w(1:k-2,kw-1:kw) * ( d(k-1:k,k-1:k)**(-1) ) if( k>2_${ik}$ ) then ! compose the columns of the inverse of 2-by-2 pivot ! block d in the following way to reduce the number ! of flops when we myltiply panel ( w(kw-1) w(kw) ) by ! this inverse ! d**(-1) = ( d11 d21 )**(-1) = ! ( d21 d22 ) ! = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) = ! ( (-d21 ) ( d11 ) ) ! = 1/d21 * 1/((d11/d21)*(d22/d21)-1) * ! * ( ( d22/d21 ) ( -1 ) ) = ! ( ( -1 ) ( d11/d21 ) ) ! = 1/d21 * 1/(d22*d11-1) * ( ( d11 ) ( -1 ) ) = ! ( ( -1 ) ( d22 ) ) ! = 1/d21 * t * ( ( d11 ) ( -1 ) ) ! ( ( -1 ) ( d22 ) ) ! = d21 * ( ( d11 ) ( -1 ) ) ! ( ( -1 ) ( d22 ) ) d21 = w( k-1, kw ) d11 = w( k, kw ) / d21 d22 = w( k-1, kw-1 ) / d21 t = cone / ( d11*d22-cone ) d21 = t / d21 ! update elements in columns a(k-1) and a(k) as ! dot products of rows of ( w(kw-1) w(kw) ) and columns ! of d**(-1) do j = 1, k - 2 a( j, k-1 ) = d21*( d11*w( j, kw-1 )-w( j, kw ) ) a( j, k ) = d21*( d22*w( j, kw )-w( j, kw-1 ) ) end do end if ! copy d(k) to a a( k-1, k-1 ) = w( k-1, kw-1 ) a( k-1, k ) = w( k-1, kw ) a( k, k ) = w( k, kw ) end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k-1 ) = -kp end if ! decrease k and return to the start of the main loop k = k - kstep go to 10 30 continue ! update the upper triangle of a11 (= a(1:k,1:k)) as ! a11 := a11 - u12*d*u12**t = a11 - u12*w**t ! computing blocks of nb columns at a time do j = ( ( k-1 ) / nb )*nb + 1, 1, -nb jb = min( nb, k-j+1 ) ! update the upper triangle of the diagonal block do jj = j, j + jb - 1 call stdlib${ii}$_${ci}$gemv( 'NO TRANSPOSE', jj-j+1, n-k, -cone,a( j, k+1 ), lda, w( jj,& kw+1 ), ldw, cone,a( j, jj ), 1_${ik}$ ) end do ! update the rectangular superdiagonal block call stdlib${ii}$_${ci}$gemm( 'NO TRANSPOSE', 'TRANSPOSE', j-1, jb, n-k,-cone, a( 1_${ik}$, k+1 ), & lda, w( j, kw+1 ), ldw,cone, a( 1_${ik}$, j ), lda ) end do ! put u12 in standard form by partially undoing the interchanges ! in columns k+1:n looping backwards from k+1 to n j = k + 1_${ik}$ 60 continue ! undo the interchanges (if any) of rows jj and jp at each ! step j ! (here, j is a diagonal index) jj = j jp = ipiv( j ) if( jp<0_${ik}$ ) then jp = -jp ! (here, j is a diagonal index) j = j + 1_${ik}$ end if ! (note: here, j is used to determine row length. length n-j+1 ! of the rows to swap back doesn't include diagonal element) j = j + 1_${ik}$ if( jp/=jj .and. j<=n )call stdlib${ii}$_${ci}$swap( n-j+1, a( jp, j ), lda, a( jj, j ), & lda ) if( j<n )go to 60 ! set kb to the number of columns factorized kb = n - k else ! factorize the leading columns of a using the lower triangle ! of a and working forwards, and compute the matrix w = l21*d ! for use in updating a22 ! k is the main loop index, increasing from 1 in steps of 1 or 2 k = 1_${ik}$ 70 continue ! exit from loop if( ( k>=nb .and. nb<n ) .or. k>n )go to 90 ! copy column k of a to column k of w and update it call stdlib${ii}$_${ci}$copy( n-k+1, a( k, k ), 1_${ik}$, w( k, k ), 1_${ik}$ ) call stdlib${ii}$_${ci}$gemv( 'NO TRANSPOSE', n-k+1, k-1, -cone, a( k, 1_${ik}$ ), lda,w( k, 1_${ik}$ ), ldw,& cone, w( k, k ), 1_${ik}$ ) kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = cabs1( w( k, k ) ) ! imax is the row-index of the largest off-diagonal element in if( k<n ) then imax = k + stdlib${ii}$_i${ci}$amax( n-k, w( k+1, k ), 1_${ik}$ ) colmax = cabs1( w( imax, k ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero or underflow: set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! copy column imax to column k+1 of w and update it call stdlib${ii}$_${ci}$copy( imax-k, a( imax, k ), lda, w( k, k+1 ), 1_${ik}$ ) call stdlib${ii}$_${ci}$copy( n-imax+1, a( imax, imax ), 1_${ik}$, w( imax, k+1 ),1_${ik}$ ) call stdlib${ii}$_${ci}$gemv( 'NO TRANSPOSE', n-k+1, k-1, -cone, a( k, 1_${ik}$ ),lda, w( imax, & 1_${ik}$ ), ldw, cone, w( k, k+1 ),1_${ik}$ ) ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value jmax = k - 1_${ik}$ + stdlib${ii}$_i${ci}$amax( imax-k, w( k, k+1 ), 1_${ik}$ ) rowmax = cabs1( w( jmax, k+1 ) ) if( imax<n ) then jmax = imax + stdlib${ii}$_i${ci}$amax( n-imax, w( imax+1, k+1 ), 1_${ik}$ ) rowmax = max( rowmax, cabs1( w( jmax, k+1 ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( cabs1( w( imax, k+1 ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax ! copy column k+1 of w to column k of w call stdlib${ii}$_${ci}$copy( n-k+1, w( k, k+1 ), 1_${ik}$, w( k, k ), 1_${ik}$ ) else ! interchange rows and columns k+1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if ! ============================================================ ! kk is the column of a where pivoting step stopped kk = k + kstep - 1_${ik}$ ! interchange rows and columns kp and kk. ! updated column kp is already stored in column kk of w. if( kp/=kk ) then ! copy non-updated column kk to column kp of submatrix a ! at step k. no need to copy element into column k ! (or k and k+1 for 2-by-2 pivot) of a, since these columns ! will be later overwritten. a( kp, kp ) = a( kk, kk ) call stdlib${ii}$_${ci}$copy( kp-kk-1, a( kk+1, kk ), 1_${ik}$, a( kp, kk+1 ),lda ) if( kp<n )call stdlib${ii}$_${ci}$copy( n-kp, a( kp+1, kk ), 1_${ik}$, a( kp+1, kp ), 1_${ik}$ ) ! interchange rows kk and kp in first k-1 columns of a ! (columns k (or k and k+1 for 2-by-2 pivot) of a will be ! later overwritten). interchange rows kk and kp ! in first kk columns of w. if( k>1_${ik}$ )call stdlib${ii}$_${ci}$swap( k-1, a( kk, 1_${ik}$ ), lda, a( kp, 1_${ik}$ ), lda ) call stdlib${ii}$_${ci}$swap( kk, w( kk, 1_${ik}$ ), ldw, w( kp, 1_${ik}$ ), ldw ) end if if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k of w now holds ! w(k) = l(k)*d(k), ! where l(k) is the k-th column of l ! store subdiag. elements of column l(k) ! and 1-by-1 block d(k) in column k of a. ! (note: diagonal element l(k,k) is a unit element ! and not stored) ! a(k,k) := d(k,k) = w(k,k) ! a(k+1:n,k) := l(k+1:n,k) = w(k+1:n,k)/d(k,k) call stdlib${ii}$_${ci}$copy( n-k+1, w( k, k ), 1_${ik}$, a( k, k ), 1_${ik}$ ) if( k<n ) then r1 = cone / a( k, k ) call stdlib${ii}$_${ci}$scal( n-k, r1, a( k+1, k ), 1_${ik}$ ) end if else ! 2-by-2 pivot block d(k): columns k and k+1 of w now hold ! ( w(k) w(k+1) ) = ( l(k) l(k+1) )*d(k) ! where l(k) and l(k+1) are the k-th and (k+1)-th columns ! of l ! store l(k+2:n,k) and l(k+2:n,k+1) and 2-by-2 ! block d(k:k+1,k:k+1) in columns k and k+1 of a. ! (note: 2-by-2 diagonal block l(k:k+1,k:k+1) is a unit ! block and not stored) ! a(k:k+1,k:k+1) := d(k:k+1,k:k+1) = w(k:k+1,k:k+1) ! a(k+2:n,k:k+1) := l(k+2:n,k:k+1) = ! = w(k+2:n,k:k+1) * ( d(k:k+1,k:k+1)**(-1) ) if( k<n-1 ) then ! compose the columns of the inverse of 2-by-2 pivot ! block d in the following way to reduce the number ! of flops when we myltiply panel ( w(k) w(k+1) ) by ! this inverse ! d**(-1) = ( d11 d21 )**(-1) = ! ( d21 d22 ) ! = 1/(d11*d22-d21**2) * ( ( d22 ) (-d21 ) ) = ! ( (-d21 ) ( d11 ) ) ! = 1/d21 * 1/((d11/d21)*(d22/d21)-1) * ! * ( ( d22/d21 ) ( -1 ) ) = ! ( ( -1 ) ( d11/d21 ) ) ! = 1/d21 * 1/(d22*d11-1) * ( ( d11 ) ( -1 ) ) = ! ( ( -1 ) ( d22 ) ) ! = 1/d21 * t * ( ( d11 ) ( -1 ) ) ! ( ( -1 ) ( d22 ) ) ! = d21 * ( ( d11 ) ( -1 ) ) ! ( ( -1 ) ( d22 ) ) d21 = w( k+1, k ) d11 = w( k+1, k+1 ) / d21 d22 = w( k, k ) / d21 t = cone / ( d11*d22-cone ) d21 = t / d21 ! update elements in columns a(k) and a(k+1) as ! dot products of rows of ( w(k) w(k+1) ) and columns ! of d**(-1) do j = k + 2, n a( j, k ) = d21*( d11*w( j, k )-w( j, k+1 ) ) a( j, k+1 ) = d21*( d22*w( j, k+1 )-w( j, k ) ) end do end if ! copy d(k) to a a( k, k ) = w( k, k ) a( k+1, k ) = w( k+1, k ) a( k+1, k+1 ) = w( k+1, k+1 ) end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k+1 ) = -kp end if ! increase k and return to the start of the main loop k = k + kstep go to 70 90 continue ! update the lower triangle of a22 (= a(k:n,k:n)) as ! a22 := a22 - l21*d*l21**t = a22 - l21*w**t ! computing blocks of nb columns at a time do j = k, n, nb jb = min( nb, n-j+1 ) ! update the lower triangle of the diagonal block do jj = j, j + jb - 1 call stdlib${ii}$_${ci}$gemv( 'NO TRANSPOSE', j+jb-jj, k-1, -cone,a( jj, 1_${ik}$ ), lda, w( jj,& 1_${ik}$ ), ldw, cone,a( jj, jj ), 1_${ik}$ ) end do ! update the rectangular subdiagonal block if( j+jb<=n )call stdlib${ii}$_${ci}$gemm( 'NO TRANSPOSE', 'TRANSPOSE', n-j-jb+1, jb,k-1, -& cone, a( j+jb, 1_${ik}$ ), lda, w( j, 1_${ik}$ ),ldw, cone, a( j+jb, j ), lda ) end do ! put l21 in standard form by partially undoing the interchanges ! of rows in columns 1:k-1 looping backwards from k-1 to 1 j = k - 1_${ik}$ 120 continue ! undo the interchanges (if any) of rows jj and jp at each ! step j ! (here, j is a diagonal index) jj = j jp = ipiv( j ) if( jp<0_${ik}$ ) then jp = -jp ! (here, j is a diagonal index) j = j - 1_${ik}$ end if ! (note: here, j is used to determine row length. length j ! of the rows to swap back doesn't include diagonal element) j = j - 1_${ik}$ if( jp/=jj .and. j>=1_${ik}$ )call stdlib${ii}$_${ci}$swap( j, a( jp, 1_${ik}$ ), lda, a( jj, 1_${ik}$ ), lda ) if( j>1 )go to 120 ! set kb to the number of columns factorized kb = k - 1_${ik}$ end if return end subroutine stdlib${ii}$_${ci}$lasyf #:endif #:endfor pure module subroutine stdlib${ii}$_ssytf2( uplo, n, a, lda, ipiv, info ) !! SSYTF2 computes the factorization of a real symmetric matrix A using !! the Bunch-Kaufman diagonal pivoting method: !! A = U*D*U**T or A = L*D*L**T !! where U (or L) is a product of permutation and unit upper (lower) !! triangular matrices, U**T is the transpose of U, and D is symmetric and !! block diagonal with 1-by-1 and 2-by-2 diagonal blocks. !! This is the unblocked version of the algorithm, calling Level 2 BLAS. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) real(sp), intent(inout) :: a(lda,*) ! ===================================================================== ! Parameters real(sp), parameter :: sevten = 17.0e+0_sp ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, imax, j, jmax, k, kk, kp, kstep real(sp) :: absakk, alpha, colmax, d11, d12, d21, d22, r1, rowmax, t, wk, wkm1, & wkp1 ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'SSYTF2', -info ) return end if ! initialize alpha for use in choosing pivot block size. alpha = ( one+sqrt( sevten ) ) / eight if( upper ) then ! factorize a as u*d*u**t using the upper triangle of a ! k is the main loop index, decreasing from n to 1 in steps of ! 1 or 2 k = n 10 continue ! if k < 1, exit from loop if( k<1 )go to 70 kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = abs( a( k, k ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value. ! determine both colmax and imax. if( k>1_${ik}$ ) then imax = stdlib${ii}$_isamax( k-1, a( 1_${ik}$, k ), 1_${ik}$ ) colmax = abs( a( imax, k ) ) else colmax = zero end if if( (max( absakk, colmax )==zero) .or. stdlib${ii}$_sisnan(absakk) ) then ! column k is zero or underflow, or contains a nan: ! set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value jmax = imax + stdlib${ii}$_isamax( k-imax, a( imax, imax+1 ), lda ) rowmax = abs( a( imax, jmax ) ) if( imax>1_${ik}$ ) then jmax = stdlib${ii}$_isamax( imax-1, a( 1_${ik}$, imax ), 1_${ik}$ ) rowmax = max( rowmax, abs( a( jmax, imax ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( abs( a( imax, imax ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax else ! interchange rows and columns k-1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if kk = k - kstep + 1_${ik}$ if( kp/=kk ) then ! interchange rows and columns kk and kp in the leading ! submatrix a(1:k,1:k) call stdlib${ii}$_sswap( kp-1, a( 1_${ik}$, kk ), 1_${ik}$, a( 1_${ik}$, kp ), 1_${ik}$ ) call stdlib${ii}$_sswap( kk-kp-1, a( kp+1, kk ), 1_${ik}$, a( kp, kp+1 ),lda ) t = a( kk, kk ) a( kk, kk ) = a( kp, kp ) a( kp, kp ) = t if( kstep==2_${ik}$ ) then t = a( k-1, k ) a( k-1, k ) = a( kp, k ) a( kp, k ) = t end if end if ! update the leading submatrix if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k now holds ! w(k) = u(k)*d(k) ! where u(k) is the k-th column of u ! perform a rank-1 update of a(1:k-1,1:k-1) as ! a := a - u(k)*d(k)*u(k)**t = a - w(k)*1/d(k)*w(k)**t r1 = one / a( k, k ) call stdlib${ii}$_ssyr( uplo, k-1, -r1, a( 1_${ik}$, k ), 1_${ik}$, a, lda ) ! store u(k) in column k call stdlib${ii}$_sscal( k-1, r1, a( 1_${ik}$, k ), 1_${ik}$ ) else ! 2-by-2 pivot block d(k): columns k and k-1 now hold ! ( w(k-1) w(k) ) = ( u(k-1) u(k) )*d(k) ! where u(k) and u(k-1) are the k-th and (k-1)-th columns ! of u ! perform a rank-2 update of a(1:k-2,1:k-2) as ! a := a - ( u(k-1) u(k) )*d(k)*( u(k-1) u(k) )**t ! = a - ( w(k-1) w(k) )*inv(d(k))*( w(k-1) w(k) )**t if( k>2_${ik}$ ) then d12 = a( k-1, k ) d22 = a( k-1, k-1 ) / d12 d11 = a( k, k ) / d12 t = one / ( d11*d22-one ) d12 = t / d12 do j = k - 2, 1, -1 wkm1 = d12*( d11*a( j, k-1 )-a( j, k ) ) wk = d12*( d22*a( j, k )-a( j, k-1 ) ) do i = j, 1, -1 a( i, j ) = a( i, j ) - a( i, k )*wk -a( i, k-1 )*wkm1 end do a( j, k ) = wk a( j, k-1 ) = wkm1 end do end if end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k-1 ) = -kp end if ! decrease k and return to the start of the main loop k = k - kstep go to 10 else ! factorize a as l*d*l**t using the lower triangle of a ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2 k = 1_${ik}$ 40 continue ! if k > n, exit from loop if( k>n )go to 70 kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = abs( a( k, k ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value. ! determine both colmax and imax. if( k<n ) then imax = k + stdlib${ii}$_isamax( n-k, a( k+1, k ), 1_${ik}$ ) colmax = abs( a( imax, k ) ) else colmax = zero end if if( (max( absakk, colmax )==zero) .or. stdlib${ii}$_sisnan(absakk) ) then ! column k is zero or underflow, or contains a nan: ! set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value jmax = k - 1_${ik}$ + stdlib${ii}$_isamax( imax-k, a( imax, k ), lda ) rowmax = abs( a( imax, jmax ) ) if( imax<n ) then jmax = imax + stdlib${ii}$_isamax( n-imax, a( imax+1, imax ), 1_${ik}$ ) rowmax = max( rowmax, abs( a( jmax, imax ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( abs( a( imax, imax ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax else ! interchange rows and columns k+1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if kk = k + kstep - 1_${ik}$ if( kp/=kk ) then ! interchange rows and columns kk and kp in the trailing ! submatrix a(k:n,k:n) if( kp<n )call stdlib${ii}$_sswap( n-kp, a( kp+1, kk ), 1_${ik}$, a( kp+1, kp ), 1_${ik}$ ) call stdlib${ii}$_sswap( kp-kk-1, a( kk+1, kk ), 1_${ik}$, a( kp, kk+1 ),lda ) t = a( kk, kk ) a( kk, kk ) = a( kp, kp ) a( kp, kp ) = t if( kstep==2_${ik}$ ) then t = a( k+1, k ) a( k+1, k ) = a( kp, k ) a( kp, k ) = t end if end if ! update the trailing submatrix if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k now holds ! w(k) = l(k)*d(k) ! where l(k) is the k-th column of l if( k<n ) then ! perform a rank-1 update of a(k+1:n,k+1:n) as ! a := a - l(k)*d(k)*l(k)**t = a - w(k)*(1/d(k))*w(k)**t d11 = one / a( k, k ) call stdlib${ii}$_ssyr( uplo, n-k, -d11, a( k+1, k ), 1_${ik}$,a( k+1, k+1 ), lda ) ! store l(k) in column k call stdlib${ii}$_sscal( n-k, d11, a( k+1, k ), 1_${ik}$ ) end if else ! 2-by-2 pivot block d(k) if( k<n-1 ) then ! perform a rank-2 update of a(k+2:n,k+2:n) as ! a := a - ( (a(k) a(k+1))*d(k)**(-1) ) * (a(k) a(k+1))**t ! where l(k) and l(k+1) are the k-th and (k+1)-th ! columns of l d21 = a( k+1, k ) d11 = a( k+1, k+1 ) / d21 d22 = a( k, k ) / d21 t = one / ( d11*d22-one ) d21 = t / d21 do j = k + 2, n wk = d21*( d11*a( j, k )-a( j, k+1 ) ) wkp1 = d21*( d22*a( j, k+1 )-a( j, k ) ) do i = j, n a( i, j ) = a( i, j ) - a( i, k )*wk -a( i, k+1 )*wkp1 end do a( j, k ) = wk a( j, k+1 ) = wkp1 end do end if end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k+1 ) = -kp end if ! increase k and return to the start of the main loop k = k + kstep go to 40 end if 70 continue return end subroutine stdlib${ii}$_ssytf2 pure module subroutine stdlib${ii}$_dsytf2( uplo, n, a, lda, ipiv, info ) !! DSYTF2 computes the factorization of a real symmetric matrix A using !! the Bunch-Kaufman diagonal pivoting method: !! A = U*D*U**T or A = L*D*L**T !! where U (or L) is a product of permutation and unit upper (lower) !! triangular matrices, U**T is the transpose of U, and D is symmetric and !! block diagonal with 1-by-1 and 2-by-2 diagonal blocks. !! This is the unblocked version of the algorithm, calling Level 2 BLAS. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) real(dp), intent(inout) :: a(lda,*) ! ===================================================================== ! Parameters real(dp), parameter :: sevten = 17.0e+0_dp ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, imax, j, jmax, k, kk, kp, kstep real(dp) :: absakk, alpha, colmax, d11, d12, d21, d22, r1, rowmax, t, wk, wkm1, & wkp1 ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'DSYTF2', -info ) return end if ! initialize alpha for use in choosing pivot block size. alpha = ( one+sqrt( sevten ) ) / eight if( upper ) then ! factorize a as u*d*u**t using the upper triangle of a ! k is the main loop index, decreasing from n to 1 in steps of ! 1 or 2 k = n 10 continue ! if k < 1, exit from loop if( k<1 )go to 70 kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = abs( a( k, k ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value. ! determine both colmax and imax. if( k>1_${ik}$ ) then imax = stdlib${ii}$_idamax( k-1, a( 1_${ik}$, k ), 1_${ik}$ ) colmax = abs( a( imax, k ) ) else colmax = zero end if if( (max( absakk, colmax )==zero) .or. stdlib${ii}$_disnan(absakk) ) then ! column k is zero or underflow, or contains a nan: ! set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value jmax = imax + stdlib${ii}$_idamax( k-imax, a( imax, imax+1 ), lda ) rowmax = abs( a( imax, jmax ) ) if( imax>1_${ik}$ ) then jmax = stdlib${ii}$_idamax( imax-1, a( 1_${ik}$, imax ), 1_${ik}$ ) rowmax = max( rowmax, abs( a( jmax, imax ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( abs( a( imax, imax ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax else ! interchange rows and columns k-1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if kk = k - kstep + 1_${ik}$ if( kp/=kk ) then ! interchange rows and columns kk and kp in the leading ! submatrix a(1:k,1:k) call stdlib${ii}$_dswap( kp-1, a( 1_${ik}$, kk ), 1_${ik}$, a( 1_${ik}$, kp ), 1_${ik}$ ) call stdlib${ii}$_dswap( kk-kp-1, a( kp+1, kk ), 1_${ik}$, a( kp, kp+1 ),lda ) t = a( kk, kk ) a( kk, kk ) = a( kp, kp ) a( kp, kp ) = t if( kstep==2_${ik}$ ) then t = a( k-1, k ) a( k-1, k ) = a( kp, k ) a( kp, k ) = t end if end if ! update the leading submatrix if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k now holds ! w(k) = u(k)*d(k) ! where u(k) is the k-th column of u ! perform a rank-1 update of a(1:k-1,1:k-1) as ! a := a - u(k)*d(k)*u(k)**t = a - w(k)*1/d(k)*w(k)**t r1 = one / a( k, k ) call stdlib${ii}$_dsyr( uplo, k-1, -r1, a( 1_${ik}$, k ), 1_${ik}$, a, lda ) ! store u(k) in column k call stdlib${ii}$_dscal( k-1, r1, a( 1_${ik}$, k ), 1_${ik}$ ) else ! 2-by-2 pivot block d(k): columns k and k-1 now hold ! ( w(k-1) w(k) ) = ( u(k-1) u(k) )*d(k) ! where u(k) and u(k-1) are the k-th and (k-1)-th columns ! of u ! perform a rank-2 update of a(1:k-2,1:k-2) as ! a := a - ( u(k-1) u(k) )*d(k)*( u(k-1) u(k) )**t ! = a - ( w(k-1) w(k) )*inv(d(k))*( w(k-1) w(k) )**t if( k>2_${ik}$ ) then d12 = a( k-1, k ) d22 = a( k-1, k-1 ) / d12 d11 = a( k, k ) / d12 t = one / ( d11*d22-one ) d12 = t / d12 do j = k - 2, 1, -1 wkm1 = d12*( d11*a( j, k-1 )-a( j, k ) ) wk = d12*( d22*a( j, k )-a( j, k-1 ) ) do i = j, 1, -1 a( i, j ) = a( i, j ) - a( i, k )*wk -a( i, k-1 )*wkm1 end do a( j, k ) = wk a( j, k-1 ) = wkm1 end do end if end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k-1 ) = -kp end if ! decrease k and return to the start of the main loop k = k - kstep go to 10 else ! factorize a as l*d*l**t using the lower triangle of a ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2 k = 1_${ik}$ 40 continue ! if k > n, exit from loop if( k>n )go to 70 kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = abs( a( k, k ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value. ! determine both colmax and imax. if( k<n ) then imax = k + stdlib${ii}$_idamax( n-k, a( k+1, k ), 1_${ik}$ ) colmax = abs( a( imax, k ) ) else colmax = zero end if if( (max( absakk, colmax )==zero) .or. stdlib${ii}$_disnan(absakk) ) then ! column k is zero or underflow, or contains a nan: ! set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value jmax = k - 1_${ik}$ + stdlib${ii}$_idamax( imax-k, a( imax, k ), lda ) rowmax = abs( a( imax, jmax ) ) if( imax<n ) then jmax = imax + stdlib${ii}$_idamax( n-imax, a( imax+1, imax ), 1_${ik}$ ) rowmax = max( rowmax, abs( a( jmax, imax ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( abs( a( imax, imax ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax else ! interchange rows and columns k+1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if kk = k + kstep - 1_${ik}$ if( kp/=kk ) then ! interchange rows and columns kk and kp in the trailing ! submatrix a(k:n,k:n) if( kp<n )call stdlib${ii}$_dswap( n-kp, a( kp+1, kk ), 1_${ik}$, a( kp+1, kp ), 1_${ik}$ ) call stdlib${ii}$_dswap( kp-kk-1, a( kk+1, kk ), 1_${ik}$, a( kp, kk+1 ),lda ) t = a( kk, kk ) a( kk, kk ) = a( kp, kp ) a( kp, kp ) = t if( kstep==2_${ik}$ ) then t = a( k+1, k ) a( k+1, k ) = a( kp, k ) a( kp, k ) = t end if end if ! update the trailing submatrix if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k now holds ! w(k) = l(k)*d(k) ! where l(k) is the k-th column of l if( k<n ) then ! perform a rank-1 update of a(k+1:n,k+1:n) as ! a := a - l(k)*d(k)*l(k)**t = a - w(k)*(1/d(k))*w(k)**t d11 = one / a( k, k ) call stdlib${ii}$_dsyr( uplo, n-k, -d11, a( k+1, k ), 1_${ik}$,a( k+1, k+1 ), lda ) ! store l(k) in column k call stdlib${ii}$_dscal( n-k, d11, a( k+1, k ), 1_${ik}$ ) end if else ! 2-by-2 pivot block d(k) if( k<n-1 ) then ! perform a rank-2 update of a(k+2:n,k+2:n) as ! a := a - ( (a(k) a(k+1))*d(k)**(-1) ) * (a(k) a(k+1))**t ! where l(k) and l(k+1) are the k-th and (k+1)-th ! columns of l d21 = a( k+1, k ) d11 = a( k+1, k+1 ) / d21 d22 = a( k, k ) / d21 t = one / ( d11*d22-one ) d21 = t / d21 do j = k + 2, n wk = d21*( d11*a( j, k )-a( j, k+1 ) ) wkp1 = d21*( d22*a( j, k+1 )-a( j, k ) ) do i = j, n a( i, j ) = a( i, j ) - a( i, k )*wk -a( i, k+1 )*wkp1 end do a( j, k ) = wk a( j, k+1 ) = wkp1 end do end if end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k+1 ) = -kp end if ! increase k and return to the start of the main loop k = k + kstep go to 40 end if 70 continue return end subroutine stdlib${ii}$_dsytf2 #:for rk,rt,ri in REAL_KINDS_TYPES #:if not rk in ["sp","dp"] pure module subroutine stdlib${ii}$_${ri}$sytf2( uplo, n, a, lda, ipiv, info ) !! DSYTF2: computes the factorization of a real symmetric matrix A using !! the Bunch-Kaufman diagonal pivoting method: !! A = U*D*U**T or A = L*D*L**T !! where U (or L) is a product of permutation and unit upper (lower) !! triangular matrices, U**T is the transpose of U, and D is symmetric and !! block diagonal with 1-by-1 and 2-by-2 diagonal blocks. !! This is the unblocked version of the algorithm, calling Level 2 BLAS. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${rk}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) real(${rk}$), intent(inout) :: a(lda,*) ! ===================================================================== ! Parameters real(${rk}$), parameter :: sevten = 17.0e+0_${rk}$ ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, imax, j, jmax, k, kk, kp, kstep real(${rk}$) :: absakk, alpha, colmax, d11, d12, d21, d22, r1, rowmax, t, wk, wkm1, & wkp1 ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'DSYTF2', -info ) return end if ! initialize alpha for use in choosing pivot block size. alpha = ( one+sqrt( sevten ) ) / eight if( upper ) then ! factorize a as u*d*u**t using the upper triangle of a ! k is the main loop index, decreasing from n to 1 in steps of ! 1 or 2 k = n 10 continue ! if k < 1, exit from loop if( k<1 )go to 70 kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = abs( a( k, k ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value. ! determine both colmax and imax. if( k>1_${ik}$ ) then imax = stdlib${ii}$_i${ri}$amax( k-1, a( 1_${ik}$, k ), 1_${ik}$ ) colmax = abs( a( imax, k ) ) else colmax = zero end if if( (max( absakk, colmax )==zero) .or. stdlib${ii}$_${ri}$isnan(absakk) ) then ! column k is zero or underflow, or contains a nan: ! set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value jmax = imax + stdlib${ii}$_i${ri}$amax( k-imax, a( imax, imax+1 ), lda ) rowmax = abs( a( imax, jmax ) ) if( imax>1_${ik}$ ) then jmax = stdlib${ii}$_i${ri}$amax( imax-1, a( 1_${ik}$, imax ), 1_${ik}$ ) rowmax = max( rowmax, abs( a( jmax, imax ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( abs( a( imax, imax ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax else ! interchange rows and columns k-1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if kk = k - kstep + 1_${ik}$ if( kp/=kk ) then ! interchange rows and columns kk and kp in the leading ! submatrix a(1:k,1:k) call stdlib${ii}$_${ri}$swap( kp-1, a( 1_${ik}$, kk ), 1_${ik}$, a( 1_${ik}$, kp ), 1_${ik}$ ) call stdlib${ii}$_${ri}$swap( kk-kp-1, a( kp+1, kk ), 1_${ik}$, a( kp, kp+1 ),lda ) t = a( kk, kk ) a( kk, kk ) = a( kp, kp ) a( kp, kp ) = t if( kstep==2_${ik}$ ) then t = a( k-1, k ) a( k-1, k ) = a( kp, k ) a( kp, k ) = t end if end if ! update the leading submatrix if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k now holds ! w(k) = u(k)*d(k) ! where u(k) is the k-th column of u ! perform a rank-1 update of a(1:k-1,1:k-1) as ! a := a - u(k)*d(k)*u(k)**t = a - w(k)*1/d(k)*w(k)**t r1 = one / a( k, k ) call stdlib${ii}$_${ri}$syr( uplo, k-1, -r1, a( 1_${ik}$, k ), 1_${ik}$, a, lda ) ! store u(k) in column k call stdlib${ii}$_${ri}$scal( k-1, r1, a( 1_${ik}$, k ), 1_${ik}$ ) else ! 2-by-2 pivot block d(k): columns k and k-1 now hold ! ( w(k-1) w(k) ) = ( u(k-1) u(k) )*d(k) ! where u(k) and u(k-1) are the k-th and (k-1)-th columns ! of u ! perform a rank-2 update of a(1:k-2,1:k-2) as ! a := a - ( u(k-1) u(k) )*d(k)*( u(k-1) u(k) )**t ! = a - ( w(k-1) w(k) )*inv(d(k))*( w(k-1) w(k) )**t if( k>2_${ik}$ ) then d12 = a( k-1, k ) d22 = a( k-1, k-1 ) / d12 d11 = a( k, k ) / d12 t = one / ( d11*d22-one ) d12 = t / d12 do j = k - 2, 1, -1 wkm1 = d12*( d11*a( j, k-1 )-a( j, k ) ) wk = d12*( d22*a( j, k )-a( j, k-1 ) ) do i = j, 1, -1 a( i, j ) = a( i, j ) - a( i, k )*wk -a( i, k-1 )*wkm1 end do a( j, k ) = wk a( j, k-1 ) = wkm1 end do end if end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k-1 ) = -kp end if ! decrease k and return to the start of the main loop k = k - kstep go to 10 else ! factorize a as l*d*l**t using the lower triangle of a ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2 k = 1_${ik}$ 40 continue ! if k > n, exit from loop if( k>n )go to 70 kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = abs( a( k, k ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value. ! determine both colmax and imax. if( k<n ) then imax = k + stdlib${ii}$_i${ri}$amax( n-k, a( k+1, k ), 1_${ik}$ ) colmax = abs( a( imax, k ) ) else colmax = zero end if if( (max( absakk, colmax )==zero) .or. stdlib${ii}$_${ri}$isnan(absakk) ) then ! column k is zero or underflow, or contains a nan: ! set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value jmax = k - 1_${ik}$ + stdlib${ii}$_i${ri}$amax( imax-k, a( imax, k ), lda ) rowmax = abs( a( imax, jmax ) ) if( imax<n ) then jmax = imax + stdlib${ii}$_i${ri}$amax( n-imax, a( imax+1, imax ), 1_${ik}$ ) rowmax = max( rowmax, abs( a( jmax, imax ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( abs( a( imax, imax ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax else ! interchange rows and columns k+1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if kk = k + kstep - 1_${ik}$ if( kp/=kk ) then ! interchange rows and columns kk and kp in the trailing ! submatrix a(k:n,k:n) if( kp<n )call stdlib${ii}$_${ri}$swap( n-kp, a( kp+1, kk ), 1_${ik}$, a( kp+1, kp ), 1_${ik}$ ) call stdlib${ii}$_${ri}$swap( kp-kk-1, a( kk+1, kk ), 1_${ik}$, a( kp, kk+1 ),lda ) t = a( kk, kk ) a( kk, kk ) = a( kp, kp ) a( kp, kp ) = t if( kstep==2_${ik}$ ) then t = a( k+1, k ) a( k+1, k ) = a( kp, k ) a( kp, k ) = t end if end if ! update the trailing submatrix if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k now holds ! w(k) = l(k)*d(k) ! where l(k) is the k-th column of l if( k<n ) then ! perform a rank-1 update of a(k+1:n,k+1:n) as ! a := a - l(k)*d(k)*l(k)**t = a - w(k)*(1/d(k))*w(k)**t d11 = one / a( k, k ) call stdlib${ii}$_${ri}$syr( uplo, n-k, -d11, a( k+1, k ), 1_${ik}$,a( k+1, k+1 ), lda ) ! store l(k) in column k call stdlib${ii}$_${ri}$scal( n-k, d11, a( k+1, k ), 1_${ik}$ ) end if else ! 2-by-2 pivot block d(k) if( k<n-1 ) then ! perform a rank-2 update of a(k+2:n,k+2:n) as ! a := a - ( (a(k) a(k+1))*d(k)**(-1) ) * (a(k) a(k+1))**t ! where l(k) and l(k+1) are the k-th and (k+1)-th ! columns of l d21 = a( k+1, k ) d11 = a( k+1, k+1 ) / d21 d22 = a( k, k ) / d21 t = one / ( d11*d22-one ) d21 = t / d21 do j = k + 2, n wk = d21*( d11*a( j, k )-a( j, k+1 ) ) wkp1 = d21*( d22*a( j, k+1 )-a( j, k ) ) do i = j, n a( i, j ) = a( i, j ) - a( i, k )*wk -a( i, k+1 )*wkp1 end do a( j, k ) = wk a( j, k+1 ) = wkp1 end do end if end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k+1 ) = -kp end if ! increase k and return to the start of the main loop k = k + kstep go to 40 end if 70 continue return end subroutine stdlib${ii}$_${ri}$sytf2 #:endif #:endfor pure module subroutine stdlib${ii}$_csytf2( uplo, n, a, lda, ipiv, info ) !! CSYTF2 computes the factorization of a complex symmetric matrix A !! using the Bunch-Kaufman diagonal pivoting method: !! A = U*D*U**T or A = L*D*L**T !! where U (or L) is a product of permutation and unit upper (lower) !! triangular matrices, U**T is the transpose of U, and D is symmetric and !! block diagonal with 1-by-1 and 2-by-2 diagonal blocks. !! This is the unblocked version of the algorithm, calling Level 2 BLAS. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) complex(sp), intent(inout) :: a(lda,*) ! ===================================================================== ! Parameters real(sp), parameter :: sevten = 17.0e+0_sp ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, imax, j, jmax, k, kk, kp, kstep real(sp) :: absakk, alpha, colmax, rowmax complex(sp) :: d11, d12, d21, d22, r1, t, wk, wkm1, wkp1, z ! Intrinsic Functions ! Statement Functions real(sp) :: cabs1 ! Statement Function Definitions cabs1( z ) = abs( real( z,KIND=sp) ) + abs( aimag( z ) ) ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'CSYTF2', -info ) return end if ! initialize alpha for use in choosing pivot block size. alpha = ( one+sqrt( sevten ) ) / eight if( upper ) then ! factorize a as u*d*u**t using the upper triangle of a ! k is the main loop index, decreasing from n to 1 in steps of ! 1 or 2 k = n 10 continue ! if k < 1, exit from loop if( k<1 )go to 70 kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = cabs1( a( k, k ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value. ! determine both colmax and imax. if( k>1_${ik}$ ) then imax = stdlib${ii}$_icamax( k-1, a( 1_${ik}$, k ), 1_${ik}$ ) colmax = cabs1( a( imax, k ) ) else colmax = zero end if if( max( absakk, colmax )==zero .or. stdlib${ii}$_sisnan(absakk) ) then ! column k is zero or underflow, or contains a nan: ! set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value jmax = imax + stdlib${ii}$_icamax( k-imax, a( imax, imax+1 ), lda ) rowmax = cabs1( a( imax, jmax ) ) if( imax>1_${ik}$ ) then jmax = stdlib${ii}$_icamax( imax-1, a( 1_${ik}$, imax ), 1_${ik}$ ) rowmax = max( rowmax, cabs1( a( jmax, imax ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( cabs1( a( imax, imax ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax else ! interchange rows and columns k-1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if kk = k - kstep + 1_${ik}$ if( kp/=kk ) then ! interchange rows and columns kk and kp in the leading ! submatrix a(1:k,1:k) call stdlib${ii}$_cswap( kp-1, a( 1_${ik}$, kk ), 1_${ik}$, a( 1_${ik}$, kp ), 1_${ik}$ ) call stdlib${ii}$_cswap( kk-kp-1, a( kp+1, kk ), 1_${ik}$, a( kp, kp+1 ),lda ) t = a( kk, kk ) a( kk, kk ) = a( kp, kp ) a( kp, kp ) = t if( kstep==2_${ik}$ ) then t = a( k-1, k ) a( k-1, k ) = a( kp, k ) a( kp, k ) = t end if end if ! update the leading submatrix if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k now holds ! w(k) = u(k)*d(k) ! where u(k) is the k-th column of u ! perform a rank-1 update of a(1:k-1,1:k-1) as ! a := a - u(k)*d(k)*u(k)**t = a - w(k)*1/d(k)*w(k)**t r1 = cone / a( k, k ) call stdlib${ii}$_csyr( uplo, k-1, -r1, a( 1_${ik}$, k ), 1_${ik}$, a, lda ) ! store u(k) in column k call stdlib${ii}$_cscal( k-1, r1, a( 1_${ik}$, k ), 1_${ik}$ ) else ! 2-by-2 pivot block d(k): columns k and k-1 now hold ! ( w(k-1) w(k) ) = ( u(k-1) u(k) )*d(k) ! where u(k) and u(k-1) are the k-th and (k-1)-th columns ! of u ! perform a rank-2 update of a(1:k-2,1:k-2) as ! a := a - ( u(k-1) u(k) )*d(k)*( u(k-1) u(k) )**t ! = a - ( w(k-1) w(k) )*inv(d(k))*( w(k-1) w(k) )**t if( k>2_${ik}$ ) then d12 = a( k-1, k ) d22 = a( k-1, k-1 ) / d12 d11 = a( k, k ) / d12 t = cone / ( d11*d22-cone ) d12 = t / d12 do j = k - 2, 1, -1 wkm1 = d12*( d11*a( j, k-1 )-a( j, k ) ) wk = d12*( d22*a( j, k )-a( j, k-1 ) ) do i = j, 1, -1 a( i, j ) = a( i, j ) - a( i, k )*wk -a( i, k-1 )*wkm1 end do a( j, k ) = wk a( j, k-1 ) = wkm1 end do end if end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k-1 ) = -kp end if ! decrease k and return to the start of the main loop k = k - kstep go to 10 else ! factorize a as l*d*l**t using the lower triangle of a ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2 k = 1_${ik}$ 40 continue ! if k > n, exit from loop if( k>n )go to 70 kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = cabs1( a( k, k ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value. ! determine both colmax and imax. if( k<n ) then imax = k + stdlib${ii}$_icamax( n-k, a( k+1, k ), 1_${ik}$ ) colmax = cabs1( a( imax, k ) ) else colmax = zero end if if( max( absakk, colmax )==zero .or. stdlib${ii}$_sisnan(absakk) ) then ! column k is zero or underflow, or contains a nan: ! set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value jmax = k - 1_${ik}$ + stdlib${ii}$_icamax( imax-k, a( imax, k ), lda ) rowmax = cabs1( a( imax, jmax ) ) if( imax<n ) then jmax = imax + stdlib${ii}$_icamax( n-imax, a( imax+1, imax ), 1_${ik}$ ) rowmax = max( rowmax, cabs1( a( jmax, imax ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( cabs1( a( imax, imax ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax else ! interchange rows and columns k+1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if kk = k + kstep - 1_${ik}$ if( kp/=kk ) then ! interchange rows and columns kk and kp in the trailing ! submatrix a(k:n,k:n) if( kp<n )call stdlib${ii}$_cswap( n-kp, a( kp+1, kk ), 1_${ik}$, a( kp+1, kp ), 1_${ik}$ ) call stdlib${ii}$_cswap( kp-kk-1, a( kk+1, kk ), 1_${ik}$, a( kp, kk+1 ),lda ) t = a( kk, kk ) a( kk, kk ) = a( kp, kp ) a( kp, kp ) = t if( kstep==2_${ik}$ ) then t = a( k+1, k ) a( k+1, k ) = a( kp, k ) a( kp, k ) = t end if end if ! update the trailing submatrix if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k now holds ! w(k) = l(k)*d(k) ! where l(k) is the k-th column of l if( k<n ) then ! perform a rank-1 update of a(k+1:n,k+1:n) as ! a := a - l(k)*d(k)*l(k)**t = a - w(k)*(1/d(k))*w(k)**t r1 = cone / a( k, k ) call stdlib${ii}$_csyr( uplo, n-k, -r1, a( k+1, k ), 1_${ik}$,a( k+1, k+1 ), lda ) ! store l(k) in column k call stdlib${ii}$_cscal( n-k, r1, a( k+1, k ), 1_${ik}$ ) end if else ! 2-by-2 pivot block d(k) if( k<n-1 ) then ! perform a rank-2 update of a(k+2:n,k+2:n) as ! a := a - ( l(k) l(k+1) )*d(k)*( l(k) l(k+1) )**t ! = a - ( w(k) w(k+1) )*inv(d(k))*( w(k) w(k+1) )**t ! where l(k) and l(k+1) are the k-th and (k+1)-th ! columns of l d21 = a( k+1, k ) d11 = a( k+1, k+1 ) / d21 d22 = a( k, k ) / d21 t = cone / ( d11*d22-cone ) d21 = t / d21 do j = k + 2, n wk = d21*( d11*a( j, k )-a( j, k+1 ) ) wkp1 = d21*( d22*a( j, k+1 )-a( j, k ) ) do i = j, n a( i, j ) = a( i, j ) - a( i, k )*wk -a( i, k+1 )*wkp1 end do a( j, k ) = wk a( j, k+1 ) = wkp1 end do end if end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k+1 ) = -kp end if ! increase k and return to the start of the main loop k = k + kstep go to 40 end if 70 continue return end subroutine stdlib${ii}$_csytf2 pure module subroutine stdlib${ii}$_zsytf2( uplo, n, a, lda, ipiv, info ) !! ZSYTF2 computes the factorization of a complex symmetric matrix A !! using the Bunch-Kaufman diagonal pivoting method: !! A = U*D*U**T or A = L*D*L**T !! where U (or L) is a product of permutation and unit upper (lower) !! triangular matrices, U**T is the transpose of U, and D is symmetric and !! block diagonal with 1-by-1 and 2-by-2 diagonal blocks. !! This is the unblocked version of the algorithm, calling Level 2 BLAS. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) complex(dp), intent(inout) :: a(lda,*) ! ===================================================================== ! Parameters real(dp), parameter :: sevten = 17.0e+0_dp ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, imax, j, jmax, k, kk, kp, kstep real(dp) :: absakk, alpha, colmax, rowmax complex(dp) :: d11, d12, d21, d22, r1, t, wk, wkm1, wkp1, z ! Intrinsic Functions ! Statement Functions real(dp) :: cabs1 ! Statement Function Definitions cabs1( z ) = abs( real( z,KIND=dp) ) + abs( aimag( z ) ) ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZSYTF2', -info ) return end if ! initialize alpha for use in choosing pivot block size. alpha = ( one+sqrt( sevten ) ) / eight if( upper ) then ! factorize a as u*d*u**t using the upper triangle of a ! k is the main loop index, decreasing from n to 1 in steps of ! 1 or 2 k = n 10 continue ! if k < 1, exit from loop if( k<1 )go to 70 kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = cabs1( a( k, k ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value. ! determine both colmax and imax. if( k>1_${ik}$ ) then imax = stdlib${ii}$_izamax( k-1, a( 1_${ik}$, k ), 1_${ik}$ ) colmax = cabs1( a( imax, k ) ) else colmax = zero end if if( max( absakk, colmax )==zero .or. stdlib${ii}$_disnan(absakk) ) then ! column k is zero or underflow, or contains a nan: ! set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value jmax = imax + stdlib${ii}$_izamax( k-imax, a( imax, imax+1 ), lda ) rowmax = cabs1( a( imax, jmax ) ) if( imax>1_${ik}$ ) then jmax = stdlib${ii}$_izamax( imax-1, a( 1_${ik}$, imax ), 1_${ik}$ ) rowmax = max( rowmax, cabs1( a( jmax, imax ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( cabs1( a( imax, imax ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax else ! interchange rows and columns k-1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if kk = k - kstep + 1_${ik}$ if( kp/=kk ) then ! interchange rows and columns kk and kp in the leading ! submatrix a(1:k,1:k) call stdlib${ii}$_zswap( kp-1, a( 1_${ik}$, kk ), 1_${ik}$, a( 1_${ik}$, kp ), 1_${ik}$ ) call stdlib${ii}$_zswap( kk-kp-1, a( kp+1, kk ), 1_${ik}$, a( kp, kp+1 ),lda ) t = a( kk, kk ) a( kk, kk ) = a( kp, kp ) a( kp, kp ) = t if( kstep==2_${ik}$ ) then t = a( k-1, k ) a( k-1, k ) = a( kp, k ) a( kp, k ) = t end if end if ! update the leading submatrix if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k now holds ! w(k) = u(k)*d(k) ! where u(k) is the k-th column of u ! perform a rank-1 update of a(1:k-1,1:k-1) as ! a := a - u(k)*d(k)*u(k)**t = a - w(k)*1/d(k)*w(k)**t r1 = cone / a( k, k ) call stdlib${ii}$_zsyr( uplo, k-1, -r1, a( 1_${ik}$, k ), 1_${ik}$, a, lda ) ! store u(k) in column k call stdlib${ii}$_zscal( k-1, r1, a( 1_${ik}$, k ), 1_${ik}$ ) else ! 2-by-2 pivot block d(k): columns k and k-1 now hold ! ( w(k-1) w(k) ) = ( u(k-1) u(k) )*d(k) ! where u(k) and u(k-1) are the k-th and (k-1)-th columns ! of u ! perform a rank-2 update of a(1:k-2,1:k-2) as ! a := a - ( u(k-1) u(k) )*d(k)*( u(k-1) u(k) )**t ! = a - ( w(k-1) w(k) )*inv(d(k))*( w(k-1) w(k) )**t if( k>2_${ik}$ ) then d12 = a( k-1, k ) d22 = a( k-1, k-1 ) / d12 d11 = a( k, k ) / d12 t = cone / ( d11*d22-cone ) d12 = t / d12 do j = k - 2, 1, -1 wkm1 = d12*( d11*a( j, k-1 )-a( j, k ) ) wk = d12*( d22*a( j, k )-a( j, k-1 ) ) do i = j, 1, -1 a( i, j ) = a( i, j ) - a( i, k )*wk -a( i, k-1 )*wkm1 end do a( j, k ) = wk a( j, k-1 ) = wkm1 end do end if end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k-1 ) = -kp end if ! decrease k and return to the start of the main loop k = k - kstep go to 10 else ! factorize a as l*d*l**t using the lower triangle of a ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2 k = 1_${ik}$ 40 continue ! if k > n, exit from loop if( k>n )go to 70 kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = cabs1( a( k, k ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value. ! determine both colmax and imax. if( k<n ) then imax = k + stdlib${ii}$_izamax( n-k, a( k+1, k ), 1_${ik}$ ) colmax = cabs1( a( imax, k ) ) else colmax = zero end if if( max( absakk, colmax )==zero .or. stdlib${ii}$_disnan(absakk) ) then ! column k is zero or underflow, or contains a nan: ! set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value jmax = k - 1_${ik}$ + stdlib${ii}$_izamax( imax-k, a( imax, k ), lda ) rowmax = cabs1( a( imax, jmax ) ) if( imax<n ) then jmax = imax + stdlib${ii}$_izamax( n-imax, a( imax+1, imax ), 1_${ik}$ ) rowmax = max( rowmax, cabs1( a( jmax, imax ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( cabs1( a( imax, imax ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax else ! interchange rows and columns k+1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if kk = k + kstep - 1_${ik}$ if( kp/=kk ) then ! interchange rows and columns kk and kp in the trailing ! submatrix a(k:n,k:n) if( kp<n )call stdlib${ii}$_zswap( n-kp, a( kp+1, kk ), 1_${ik}$, a( kp+1, kp ), 1_${ik}$ ) call stdlib${ii}$_zswap( kp-kk-1, a( kk+1, kk ), 1_${ik}$, a( kp, kk+1 ),lda ) t = a( kk, kk ) a( kk, kk ) = a( kp, kp ) a( kp, kp ) = t if( kstep==2_${ik}$ ) then t = a( k+1, k ) a( k+1, k ) = a( kp, k ) a( kp, k ) = t end if end if ! update the trailing submatrix if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k now holds ! w(k) = l(k)*d(k) ! where l(k) is the k-th column of l if( k<n ) then ! perform a rank-1 update of a(k+1:n,k+1:n) as ! a := a - l(k)*d(k)*l(k)**t = a - w(k)*(1/d(k))*w(k)**t r1 = cone / a( k, k ) call stdlib${ii}$_zsyr( uplo, n-k, -r1, a( k+1, k ), 1_${ik}$,a( k+1, k+1 ), lda ) ! store l(k) in column k call stdlib${ii}$_zscal( n-k, r1, a( k+1, k ), 1_${ik}$ ) end if else ! 2-by-2 pivot block d(k) if( k<n-1 ) then ! perform a rank-2 update of a(k+2:n,k+2:n) as ! a := a - ( l(k) l(k+1) )*d(k)*( l(k) l(k+1) )**t ! = a - ( w(k) w(k+1) )*inv(d(k))*( w(k) w(k+1) )**t ! where l(k) and l(k+1) are the k-th and (k+1)-th ! columns of l d21 = a( k+1, k ) d11 = a( k+1, k+1 ) / d21 d22 = a( k, k ) / d21 t = cone / ( d11*d22-cone ) d21 = t / d21 do j = k + 2, n wk = d21*( d11*a( j, k )-a( j, k+1 ) ) wkp1 = d21*( d22*a( j, k+1 )-a( j, k ) ) do i = j, n a( i, j ) = a( i, j ) - a( i, k )*wk -a( i, k+1 )*wkp1 end do a( j, k ) = wk a( j, k+1 ) = wkp1 end do end if end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k+1 ) = -kp end if ! increase k and return to the start of the main loop k = k + kstep go to 40 end if 70 continue return end subroutine stdlib${ii}$_zsytf2 #:for ck,ct,ci in CMPLX_KINDS_TYPES #:if not ck in ["sp","dp"] pure module subroutine stdlib${ii}$_${ci}$sytf2( uplo, n, a, lda, ipiv, info ) !! ZSYTF2: computes the factorization of a complex symmetric matrix A !! using the Bunch-Kaufman diagonal pivoting method: !! A = U*D*U**T or A = L*D*L**T !! where U (or L) is a product of permutation and unit upper (lower) !! triangular matrices, U**T is the transpose of U, and D is symmetric and !! block diagonal with 1-by-1 and 2-by-2 diagonal blocks. !! This is the unblocked version of the algorithm, calling Level 2 BLAS. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${ck}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) complex(${ck}$), intent(inout) :: a(lda,*) ! ===================================================================== ! Parameters real(${ck}$), parameter :: sevten = 17.0e+0_${ck}$ ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, imax, j, jmax, k, kk, kp, kstep real(${ck}$) :: absakk, alpha, colmax, rowmax complex(${ck}$) :: d11, d12, d21, d22, r1, t, wk, wkm1, wkp1, z ! Intrinsic Functions ! Statement Functions real(${ck}$) :: cabs1 ! Statement Function Definitions cabs1( z ) = abs( real( z,KIND=${ck}$) ) + abs( aimag( z ) ) ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZSYTF2', -info ) return end if ! initialize alpha for use in choosing pivot block size. alpha = ( one+sqrt( sevten ) ) / eight if( upper ) then ! factorize a as u*d*u**t using the upper triangle of a ! k is the main loop index, decreasing from n to 1 in steps of ! 1 or 2 k = n 10 continue ! if k < 1, exit from loop if( k<1 )go to 70 kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = cabs1( a( k, k ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value. ! determine both colmax and imax. if( k>1_${ik}$ ) then imax = stdlib${ii}$_i${ci}$amax( k-1, a( 1_${ik}$, k ), 1_${ik}$ ) colmax = cabs1( a( imax, k ) ) else colmax = zero end if if( max( absakk, colmax )==zero .or. stdlib${ii}$_${c2ri(ci)}$isnan(absakk) ) then ! column k is zero or underflow, or contains a nan: ! set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value jmax = imax + stdlib${ii}$_i${ci}$amax( k-imax, a( imax, imax+1 ), lda ) rowmax = cabs1( a( imax, jmax ) ) if( imax>1_${ik}$ ) then jmax = stdlib${ii}$_i${ci}$amax( imax-1, a( 1_${ik}$, imax ), 1_${ik}$ ) rowmax = max( rowmax, cabs1( a( jmax, imax ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( cabs1( a( imax, imax ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax else ! interchange rows and columns k-1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if kk = k - kstep + 1_${ik}$ if( kp/=kk ) then ! interchange rows and columns kk and kp in the leading ! submatrix a(1:k,1:k) call stdlib${ii}$_${ci}$swap( kp-1, a( 1_${ik}$, kk ), 1_${ik}$, a( 1_${ik}$, kp ), 1_${ik}$ ) call stdlib${ii}$_${ci}$swap( kk-kp-1, a( kp+1, kk ), 1_${ik}$, a( kp, kp+1 ),lda ) t = a( kk, kk ) a( kk, kk ) = a( kp, kp ) a( kp, kp ) = t if( kstep==2_${ik}$ ) then t = a( k-1, k ) a( k-1, k ) = a( kp, k ) a( kp, k ) = t end if end if ! update the leading submatrix if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k now holds ! w(k) = u(k)*d(k) ! where u(k) is the k-th column of u ! perform a rank-1 update of a(1:k-1,1:k-1) as ! a := a - u(k)*d(k)*u(k)**t = a - w(k)*1/d(k)*w(k)**t r1 = cone / a( k, k ) call stdlib${ii}$_${ci}$syr( uplo, k-1, -r1, a( 1_${ik}$, k ), 1_${ik}$, a, lda ) ! store u(k) in column k call stdlib${ii}$_${ci}$scal( k-1, r1, a( 1_${ik}$, k ), 1_${ik}$ ) else ! 2-by-2 pivot block d(k): columns k and k-1 now hold ! ( w(k-1) w(k) ) = ( u(k-1) u(k) )*d(k) ! where u(k) and u(k-1) are the k-th and (k-1)-th columns ! of u ! perform a rank-2 update of a(1:k-2,1:k-2) as ! a := a - ( u(k-1) u(k) )*d(k)*( u(k-1) u(k) )**t ! = a - ( w(k-1) w(k) )*inv(d(k))*( w(k-1) w(k) )**t if( k>2_${ik}$ ) then d12 = a( k-1, k ) d22 = a( k-1, k-1 ) / d12 d11 = a( k, k ) / d12 t = cone / ( d11*d22-cone ) d12 = t / d12 do j = k - 2, 1, -1 wkm1 = d12*( d11*a( j, k-1 )-a( j, k ) ) wk = d12*( d22*a( j, k )-a( j, k-1 ) ) do i = j, 1, -1 a( i, j ) = a( i, j ) - a( i, k )*wk -a( i, k-1 )*wkm1 end do a( j, k ) = wk a( j, k-1 ) = wkm1 end do end if end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k-1 ) = -kp end if ! decrease k and return to the start of the main loop k = k - kstep go to 10 else ! factorize a as l*d*l**t using the lower triangle of a ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2 k = 1_${ik}$ 40 continue ! if k > n, exit from loop if( k>n )go to 70 kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = cabs1( a( k, k ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value. ! determine both colmax and imax. if( k<n ) then imax = k + stdlib${ii}$_i${ci}$amax( n-k, a( k+1, k ), 1_${ik}$ ) colmax = cabs1( a( imax, k ) ) else colmax = zero end if if( max( absakk, colmax )==zero .or. stdlib${ii}$_${c2ri(ci)}$isnan(absakk) ) then ! column k is zero or underflow, or contains a nan: ! set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value jmax = k - 1_${ik}$ + stdlib${ii}$_i${ci}$amax( imax-k, a( imax, k ), lda ) rowmax = cabs1( a( imax, jmax ) ) if( imax<n ) then jmax = imax + stdlib${ii}$_i${ci}$amax( n-imax, a( imax+1, imax ), 1_${ik}$ ) rowmax = max( rowmax, cabs1( a( jmax, imax ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( cabs1( a( imax, imax ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax else ! interchange rows and columns k+1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if kk = k + kstep - 1_${ik}$ if( kp/=kk ) then ! interchange rows and columns kk and kp in the trailing ! submatrix a(k:n,k:n) if( kp<n )call stdlib${ii}$_${ci}$swap( n-kp, a( kp+1, kk ), 1_${ik}$, a( kp+1, kp ), 1_${ik}$ ) call stdlib${ii}$_${ci}$swap( kp-kk-1, a( kk+1, kk ), 1_${ik}$, a( kp, kk+1 ),lda ) t = a( kk, kk ) a( kk, kk ) = a( kp, kp ) a( kp, kp ) = t if( kstep==2_${ik}$ ) then t = a( k+1, k ) a( k+1, k ) = a( kp, k ) a( kp, k ) = t end if end if ! update the trailing submatrix if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k now holds ! w(k) = l(k)*d(k) ! where l(k) is the k-th column of l if( k<n ) then ! perform a rank-1 update of a(k+1:n,k+1:n) as ! a := a - l(k)*d(k)*l(k)**t = a - w(k)*(1/d(k))*w(k)**t r1 = cone / a( k, k ) call stdlib${ii}$_${ci}$syr( uplo, n-k, -r1, a( k+1, k ), 1_${ik}$,a( k+1, k+1 ), lda ) ! store l(k) in column k call stdlib${ii}$_${ci}$scal( n-k, r1, a( k+1, k ), 1_${ik}$ ) end if else ! 2-by-2 pivot block d(k) if( k<n-1 ) then ! perform a rank-2 update of a(k+2:n,k+2:n) as ! a := a - ( l(k) l(k+1) )*d(k)*( l(k) l(k+1) )**t ! = a - ( w(k) w(k+1) )*inv(d(k))*( w(k) w(k+1) )**t ! where l(k) and l(k+1) are the k-th and (k+1)-th ! columns of l d21 = a( k+1, k ) d11 = a( k+1, k+1 ) / d21 d22 = a( k, k ) / d21 t = cone / ( d11*d22-cone ) d21 = t / d21 do j = k + 2, n wk = d21*( d11*a( j, k )-a( j, k+1 ) ) wkp1 = d21*( d22*a( j, k+1 )-a( j, k ) ) do i = j, n a( i, j ) = a( i, j ) - a( i, k )*wk -a( i, k+1 )*wkp1 end do a( j, k ) = wk a( j, k+1 ) = wkp1 end do end if end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k+1 ) = -kp end if ! increase k and return to the start of the main loop k = k + kstep go to 40 end if 70 continue return end subroutine stdlib${ii}$_${ci}$sytf2 #:endif #:endfor pure module subroutine stdlib${ii}$_ssytrs( uplo, n, nrhs, a, lda, ipiv, b, ldb, info ) !! SSYTRS solves a system of linear equations A*X = B with a real !! symmetric matrix A using the factorization A = U*D*U**T or !! A = L*D*L**T computed by SSYTRF. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, ldb, n, nrhs ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) real(sp), intent(in) :: a(lda,*) real(sp), intent(inout) :: b(ldb,*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: j, k, kp real(sp) :: ak, akm1, akm1k, bk, bkm1, denom ! Intrinsic Functions ! Executable Statements info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( nrhs<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ else if( ldb<max( 1_${ik}$, n ) ) then info = -8_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'SSYTRS', -info ) return end if ! quick return if possible if( n==0 .or. nrhs==0 )return if( upper ) then ! solve a*x = b, where a = u*d*u**t. ! first solve u*d*x = b, overwriting b with x. ! k is the main loop index, decreasing from n to 1 in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = n 10 continue ! if k < 1, exit from loop. if( k<1 )go to 30 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_sswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) ! multiply by inv(u(k)), where u(k) is the transformation ! stored in column k of a. call stdlib${ii}$_sger( k-1, nrhs, -one, a( 1_${ik}$, k ), 1_${ik}$, b( k, 1_${ik}$ ), ldb,b( 1_${ik}$, 1_${ik}$ ), ldb ) ! multiply by the inverse of the diagonal block. call stdlib${ii}$_sscal( nrhs, one / a( k, k ), b( k, 1_${ik}$ ), ldb ) k = k - 1_${ik}$ else ! 2 x 2 diagonal block ! interchange rows k-1 and -ipiv(k). kp = -ipiv( k ) if( kp/=k-1 )call stdlib${ii}$_sswap( nrhs, b( k-1, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) ! multiply by inv(u(k)), where u(k) is the transformation ! stored in columns k-1 and k of a. call stdlib${ii}$_sger( k-2, nrhs, -one, a( 1_${ik}$, k ), 1_${ik}$, b( k, 1_${ik}$ ), ldb,b( 1_${ik}$, 1_${ik}$ ), ldb ) call stdlib${ii}$_sger( k-2, nrhs, -one, a( 1_${ik}$, k-1 ), 1_${ik}$, b( k-1, 1_${ik}$ ),ldb, b( 1_${ik}$, 1_${ik}$ ), & ldb ) ! multiply by the inverse of the diagonal block. akm1k = a( k-1, k ) akm1 = a( k-1, k-1 ) / akm1k ak = a( k, k ) / akm1k denom = akm1*ak - one do j = 1, nrhs bkm1 = b( k-1, j ) / akm1k bk = b( k, j ) / akm1k b( k-1, j ) = ( ak*bkm1-bk ) / denom b( k, j ) = ( akm1*bk-bkm1 ) / denom end do k = k - 2_${ik}$ end if go to 10 30 continue ! next solve u**t *x = b, overwriting b with x. ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = 1_${ik}$ 40 continue ! if k > n, exit from loop. if( k>n )go to 50 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! multiply by inv(u**t(k)), where u(k) is the transformation ! stored in column k of a. call stdlib${ii}$_sgemv( 'TRANSPOSE', k-1, nrhs, -one, b, ldb, a( 1_${ik}$, k ),1_${ik}$, one, b( k, & 1_${ik}$ ), ldb ) ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_sswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k = k + 1_${ik}$ else ! 2 x 2 diagonal block ! multiply by inv(u**t(k+1)), where u(k+1) is the transformation ! stored in columns k and k+1 of a. call stdlib${ii}$_sgemv( 'TRANSPOSE', k-1, nrhs, -one, b, ldb, a( 1_${ik}$, k ),1_${ik}$, one, b( k, & 1_${ik}$ ), ldb ) call stdlib${ii}$_sgemv( 'TRANSPOSE', k-1, nrhs, -one, b, ldb,a( 1_${ik}$, k+1 ), 1_${ik}$, one, b( & k+1, 1_${ik}$ ), ldb ) ! interchange rows k and -ipiv(k). kp = -ipiv( k ) if( kp/=k )call stdlib${ii}$_sswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k = k + 2_${ik}$ end if go to 40 50 continue else ! solve a*x = b, where a = l*d*l**t. ! first solve l*d*x = b, overwriting b with x. ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = 1_${ik}$ 60 continue ! if k > n, exit from loop. if( k>n )go to 80 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_sswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) ! multiply by inv(l(k)), where l(k) is the transformation ! stored in column k of a. if( k<n )call stdlib${ii}$_sger( n-k, nrhs, -one, a( k+1, k ), 1_${ik}$, b( k, 1_${ik}$ ),ldb, b( k+& 1_${ik}$, 1_${ik}$ ), ldb ) ! multiply by the inverse of the diagonal block. call stdlib${ii}$_sscal( nrhs, one / a( k, k ), b( k, 1_${ik}$ ), ldb ) k = k + 1_${ik}$ else ! 2 x 2 diagonal block ! interchange rows k+1 and -ipiv(k). kp = -ipiv( k ) if( kp/=k+1 )call stdlib${ii}$_sswap( nrhs, b( k+1, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) ! multiply by inv(l(k)), where l(k) is the transformation ! stored in columns k and k+1 of a. if( k<n-1 ) then call stdlib${ii}$_sger( n-k-1, nrhs, -one, a( k+2, k ), 1_${ik}$, b( k, 1_${ik}$ ),ldb, b( k+2, 1_${ik}$ & ), ldb ) call stdlib${ii}$_sger( n-k-1, nrhs, -one, a( k+2, k+1 ), 1_${ik}$,b( k+1, 1_${ik}$ ), ldb, b( k+& 2_${ik}$, 1_${ik}$ ), ldb ) end if ! multiply by the inverse of the diagonal block. akm1k = a( k+1, k ) akm1 = a( k, k ) / akm1k ak = a( k+1, k+1 ) / akm1k denom = akm1*ak - one do j = 1, nrhs bkm1 = b( k, j ) / akm1k bk = b( k+1, j ) / akm1k b( k, j ) = ( ak*bkm1-bk ) / denom b( k+1, j ) = ( akm1*bk-bkm1 ) / denom end do k = k + 2_${ik}$ end if go to 60 80 continue ! next solve l**t *x = b, overwriting b with x. ! k is the main loop index, decreasing from n to 1 in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = n 90 continue ! if k < 1, exit from loop. if( k<1 )go to 100 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! multiply by inv(l**t(k)), where l(k) is the transformation ! stored in column k of a. if( k<n )call stdlib${ii}$_sgemv( 'TRANSPOSE', n-k, nrhs, -one, b( k+1, 1_${ik}$ ),ldb, a( k+& 1_${ik}$, k ), 1_${ik}$, one, b( k, 1_${ik}$ ), ldb ) ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_sswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k = k - 1_${ik}$ else ! 2 x 2 diagonal block ! multiply by inv(l**t(k-1)), where l(k-1) is the transformation ! stored in columns k-1 and k of a. if( k<n ) then call stdlib${ii}$_sgemv( 'TRANSPOSE', n-k, nrhs, -one, b( k+1, 1_${ik}$ ),ldb, a( k+1, k ),& 1_${ik}$, one, b( k, 1_${ik}$ ), ldb ) call stdlib${ii}$_sgemv( 'TRANSPOSE', n-k, nrhs, -one, b( k+1, 1_${ik}$ ),ldb, a( k+1, k-1 & ), 1_${ik}$, one, b( k-1, 1_${ik}$ ),ldb ) end if ! interchange rows k and -ipiv(k). kp = -ipiv( k ) if( kp/=k )call stdlib${ii}$_sswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k = k - 2_${ik}$ end if go to 90 100 continue end if return end subroutine stdlib${ii}$_ssytrs pure module subroutine stdlib${ii}$_dsytrs( uplo, n, nrhs, a, lda, ipiv, b, ldb, info ) !! DSYTRS solves a system of linear equations A*X = B with a real !! symmetric matrix A using the factorization A = U*D*U**T or !! A = L*D*L**T computed by DSYTRF. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, ldb, n, nrhs ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) real(dp), intent(in) :: a(lda,*) real(dp), intent(inout) :: b(ldb,*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: j, k, kp real(dp) :: ak, akm1, akm1k, bk, bkm1, denom ! Intrinsic Functions ! Executable Statements info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( nrhs<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ else if( ldb<max( 1_${ik}$, n ) ) then info = -8_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'DSYTRS', -info ) return end if ! quick return if possible if( n==0 .or. nrhs==0 )return if( upper ) then ! solve a*x = b, where a = u*d*u**t. ! first solve u*d*x = b, overwriting b with x. ! k is the main loop index, decreasing from n to 1 in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = n 10 continue ! if k < 1, exit from loop. if( k<1 )go to 30 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_dswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) ! multiply by inv(u(k)), where u(k) is the transformation ! stored in column k of a. call stdlib${ii}$_dger( k-1, nrhs, -one, a( 1_${ik}$, k ), 1_${ik}$, b( k, 1_${ik}$ ), ldb,b( 1_${ik}$, 1_${ik}$ ), ldb ) ! multiply by the inverse of the diagonal block. call stdlib${ii}$_dscal( nrhs, one / a( k, k ), b( k, 1_${ik}$ ), ldb ) k = k - 1_${ik}$ else ! 2 x 2 diagonal block ! interchange rows k-1 and -ipiv(k). kp = -ipiv( k ) if( kp/=k-1 )call stdlib${ii}$_dswap( nrhs, b( k-1, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) ! multiply by inv(u(k)), where u(k) is the transformation ! stored in columns k-1 and k of a. call stdlib${ii}$_dger( k-2, nrhs, -one, a( 1_${ik}$, k ), 1_${ik}$, b( k, 1_${ik}$ ), ldb,b( 1_${ik}$, 1_${ik}$ ), ldb ) call stdlib${ii}$_dger( k-2, nrhs, -one, a( 1_${ik}$, k-1 ), 1_${ik}$, b( k-1, 1_${ik}$ ),ldb, b( 1_${ik}$, 1_${ik}$ ), & ldb ) ! multiply by the inverse of the diagonal block. akm1k = a( k-1, k ) akm1 = a( k-1, k-1 ) / akm1k ak = a( k, k ) / akm1k denom = akm1*ak - one do j = 1, nrhs bkm1 = b( k-1, j ) / akm1k bk = b( k, j ) / akm1k b( k-1, j ) = ( ak*bkm1-bk ) / denom b( k, j ) = ( akm1*bk-bkm1 ) / denom end do k = k - 2_${ik}$ end if go to 10 30 continue ! next solve u**t *x = b, overwriting b with x. ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = 1_${ik}$ 40 continue ! if k > n, exit from loop. if( k>n )go to 50 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! multiply by inv(u**t(k)), where u(k) is the transformation ! stored in column k of a. call stdlib${ii}$_dgemv( 'TRANSPOSE', k-1, nrhs, -one, b, ldb, a( 1_${ik}$, k ),1_${ik}$, one, b( k, & 1_${ik}$ ), ldb ) ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_dswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k = k + 1_${ik}$ else ! 2 x 2 diagonal block ! multiply by inv(u**t(k+1)), where u(k+1) is the transformation ! stored in columns k and k+1 of a. call stdlib${ii}$_dgemv( 'TRANSPOSE', k-1, nrhs, -one, b, ldb, a( 1_${ik}$, k ),1_${ik}$, one, b( k, & 1_${ik}$ ), ldb ) call stdlib${ii}$_dgemv( 'TRANSPOSE', k-1, nrhs, -one, b, ldb,a( 1_${ik}$, k+1 ), 1_${ik}$, one, b( & k+1, 1_${ik}$ ), ldb ) ! interchange rows k and -ipiv(k). kp = -ipiv( k ) if( kp/=k )call stdlib${ii}$_dswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k = k + 2_${ik}$ end if go to 40 50 continue else ! solve a*x = b, where a = l*d*l**t. ! first solve l*d*x = b, overwriting b with x. ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = 1_${ik}$ 60 continue ! if k > n, exit from loop. if( k>n )go to 80 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_dswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) ! multiply by inv(l(k)), where l(k) is the transformation ! stored in column k of a. if( k<n )call stdlib${ii}$_dger( n-k, nrhs, -one, a( k+1, k ), 1_${ik}$, b( k, 1_${ik}$ ),ldb, b( k+& 1_${ik}$, 1_${ik}$ ), ldb ) ! multiply by the inverse of the diagonal block. call stdlib${ii}$_dscal( nrhs, one / a( k, k ), b( k, 1_${ik}$ ), ldb ) k = k + 1_${ik}$ else ! 2 x 2 diagonal block ! interchange rows k+1 and -ipiv(k). kp = -ipiv( k ) if( kp/=k+1 )call stdlib${ii}$_dswap( nrhs, b( k+1, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) ! multiply by inv(l(k)), where l(k) is the transformation ! stored in columns k and k+1 of a. if( k<n-1 ) then call stdlib${ii}$_dger( n-k-1, nrhs, -one, a( k+2, k ), 1_${ik}$, b( k, 1_${ik}$ ),ldb, b( k+2, 1_${ik}$ & ), ldb ) call stdlib${ii}$_dger( n-k-1, nrhs, -one, a( k+2, k+1 ), 1_${ik}$,b( k+1, 1_${ik}$ ), ldb, b( k+& 2_${ik}$, 1_${ik}$ ), ldb ) end if ! multiply by the inverse of the diagonal block. akm1k = a( k+1, k ) akm1 = a( k, k ) / akm1k ak = a( k+1, k+1 ) / akm1k denom = akm1*ak - one do j = 1, nrhs bkm1 = b( k, j ) / akm1k bk = b( k+1, j ) / akm1k b( k, j ) = ( ak*bkm1-bk ) / denom b( k+1, j ) = ( akm1*bk-bkm1 ) / denom end do k = k + 2_${ik}$ end if go to 60 80 continue ! next solve l**t *x = b, overwriting b with x. ! k is the main loop index, decreasing from n to 1 in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = n 90 continue ! if k < 1, exit from loop. if( k<1 )go to 100 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! multiply by inv(l**t(k)), where l(k) is the transformation ! stored in column k of a. if( k<n )call stdlib${ii}$_dgemv( 'TRANSPOSE', n-k, nrhs, -one, b( k+1, 1_${ik}$ ),ldb, a( k+& 1_${ik}$, k ), 1_${ik}$, one, b( k, 1_${ik}$ ), ldb ) ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_dswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k = k - 1_${ik}$ else ! 2 x 2 diagonal block ! multiply by inv(l**t(k-1)), where l(k-1) is the transformation ! stored in columns k-1 and k of a. if( k<n ) then call stdlib${ii}$_dgemv( 'TRANSPOSE', n-k, nrhs, -one, b( k+1, 1_${ik}$ ),ldb, a( k+1, k ),& 1_${ik}$, one, b( k, 1_${ik}$ ), ldb ) call stdlib${ii}$_dgemv( 'TRANSPOSE', n-k, nrhs, -one, b( k+1, 1_${ik}$ ),ldb, a( k+1, k-1 & ), 1_${ik}$, one, b( k-1, 1_${ik}$ ),ldb ) end if ! interchange rows k and -ipiv(k). kp = -ipiv( k ) if( kp/=k )call stdlib${ii}$_dswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k = k - 2_${ik}$ end if go to 90 100 continue end if return end subroutine stdlib${ii}$_dsytrs #:for rk,rt,ri in REAL_KINDS_TYPES #:if not rk in ["sp","dp"] pure module subroutine stdlib${ii}$_${ri}$sytrs( uplo, n, nrhs, a, lda, ipiv, b, ldb, info ) !! DSYTRS: solves a system of linear equations A*X = B with a real !! symmetric matrix A using the factorization A = U*D*U**T or !! A = L*D*L**T computed by DSYTRF. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${rk}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, ldb, n, nrhs ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) real(${rk}$), intent(in) :: a(lda,*) real(${rk}$), intent(inout) :: b(ldb,*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: j, k, kp real(${rk}$) :: ak, akm1, akm1k, bk, bkm1, denom ! Intrinsic Functions ! Executable Statements info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( nrhs<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ else if( ldb<max( 1_${ik}$, n ) ) then info = -8_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'DSYTRS', -info ) return end if ! quick return if possible if( n==0 .or. nrhs==0 )return if( upper ) then ! solve a*x = b, where a = u*d*u**t. ! first solve u*d*x = b, overwriting b with x. ! k is the main loop index, decreasing from n to 1 in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = n 10 continue ! if k < 1, exit from loop. if( k<1 )go to 30 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_${ri}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) ! multiply by inv(u(k)), where u(k) is the transformation ! stored in column k of a. call stdlib${ii}$_${ri}$ger( k-1, nrhs, -one, a( 1_${ik}$, k ), 1_${ik}$, b( k, 1_${ik}$ ), ldb,b( 1_${ik}$, 1_${ik}$ ), ldb ) ! multiply by the inverse of the diagonal block. call stdlib${ii}$_${ri}$scal( nrhs, one / a( k, k ), b( k, 1_${ik}$ ), ldb ) k = k - 1_${ik}$ else ! 2 x 2 diagonal block ! interchange rows k-1 and -ipiv(k). kp = -ipiv( k ) if( kp/=k-1 )call stdlib${ii}$_${ri}$swap( nrhs, b( k-1, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) ! multiply by inv(u(k)), where u(k) is the transformation ! stored in columns k-1 and k of a. call stdlib${ii}$_${ri}$ger( k-2, nrhs, -one, a( 1_${ik}$, k ), 1_${ik}$, b( k, 1_${ik}$ ), ldb,b( 1_${ik}$, 1_${ik}$ ), ldb ) call stdlib${ii}$_${ri}$ger( k-2, nrhs, -one, a( 1_${ik}$, k-1 ), 1_${ik}$, b( k-1, 1_${ik}$ ),ldb, b( 1_${ik}$, 1_${ik}$ ), & ldb ) ! multiply by the inverse of the diagonal block. akm1k = a( k-1, k ) akm1 = a( k-1, k-1 ) / akm1k ak = a( k, k ) / akm1k denom = akm1*ak - one do j = 1, nrhs bkm1 = b( k-1, j ) / akm1k bk = b( k, j ) / akm1k b( k-1, j ) = ( ak*bkm1-bk ) / denom b( k, j ) = ( akm1*bk-bkm1 ) / denom end do k = k - 2_${ik}$ end if go to 10 30 continue ! next solve u**t *x = b, overwriting b with x. ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = 1_${ik}$ 40 continue ! if k > n, exit from loop. if( k>n )go to 50 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! multiply by inv(u**t(k)), where u(k) is the transformation ! stored in column k of a. call stdlib${ii}$_${ri}$gemv( 'TRANSPOSE', k-1, nrhs, -one, b, ldb, a( 1_${ik}$, k ),1_${ik}$, one, b( k, & 1_${ik}$ ), ldb ) ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_${ri}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k = k + 1_${ik}$ else ! 2 x 2 diagonal block ! multiply by inv(u**t(k+1)), where u(k+1) is the transformation ! stored in columns k and k+1 of a. call stdlib${ii}$_${ri}$gemv( 'TRANSPOSE', k-1, nrhs, -one, b, ldb, a( 1_${ik}$, k ),1_${ik}$, one, b( k, & 1_${ik}$ ), ldb ) call stdlib${ii}$_${ri}$gemv( 'TRANSPOSE', k-1, nrhs, -one, b, ldb,a( 1_${ik}$, k+1 ), 1_${ik}$, one, b( & k+1, 1_${ik}$ ), ldb ) ! interchange rows k and -ipiv(k). kp = -ipiv( k ) if( kp/=k )call stdlib${ii}$_${ri}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k = k + 2_${ik}$ end if go to 40 50 continue else ! solve a*x = b, where a = l*d*l**t. ! first solve l*d*x = b, overwriting b with x. ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = 1_${ik}$ 60 continue ! if k > n, exit from loop. if( k>n )go to 80 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_${ri}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) ! multiply by inv(l(k)), where l(k) is the transformation ! stored in column k of a. if( k<n )call stdlib${ii}$_${ri}$ger( n-k, nrhs, -one, a( k+1, k ), 1_${ik}$, b( k, 1_${ik}$ ),ldb, b( k+& 1_${ik}$, 1_${ik}$ ), ldb ) ! multiply by the inverse of the diagonal block. call stdlib${ii}$_${ri}$scal( nrhs, one / a( k, k ), b( k, 1_${ik}$ ), ldb ) k = k + 1_${ik}$ else ! 2 x 2 diagonal block ! interchange rows k+1 and -ipiv(k). kp = -ipiv( k ) if( kp/=k+1 )call stdlib${ii}$_${ri}$swap( nrhs, b( k+1, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) ! multiply by inv(l(k)), where l(k) is the transformation ! stored in columns k and k+1 of a. if( k<n-1 ) then call stdlib${ii}$_${ri}$ger( n-k-1, nrhs, -one, a( k+2, k ), 1_${ik}$, b( k, 1_${ik}$ ),ldb, b( k+2, 1_${ik}$ & ), ldb ) call stdlib${ii}$_${ri}$ger( n-k-1, nrhs, -one, a( k+2, k+1 ), 1_${ik}$,b( k+1, 1_${ik}$ ), ldb, b( k+& 2_${ik}$, 1_${ik}$ ), ldb ) end if ! multiply by the inverse of the diagonal block. akm1k = a( k+1, k ) akm1 = a( k, k ) / akm1k ak = a( k+1, k+1 ) / akm1k denom = akm1*ak - one do j = 1, nrhs bkm1 = b( k, j ) / akm1k bk = b( k+1, j ) / akm1k b( k, j ) = ( ak*bkm1-bk ) / denom b( k+1, j ) = ( akm1*bk-bkm1 ) / denom end do k = k + 2_${ik}$ end if go to 60 80 continue ! next solve l**t *x = b, overwriting b with x. ! k is the main loop index, decreasing from n to 1 in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = n 90 continue ! if k < 1, exit from loop. if( k<1 )go to 100 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! multiply by inv(l**t(k)), where l(k) is the transformation ! stored in column k of a. if( k<n )call stdlib${ii}$_${ri}$gemv( 'TRANSPOSE', n-k, nrhs, -one, b( k+1, 1_${ik}$ ),ldb, a( k+& 1_${ik}$, k ), 1_${ik}$, one, b( k, 1_${ik}$ ), ldb ) ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_${ri}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k = k - 1_${ik}$ else ! 2 x 2 diagonal block ! multiply by inv(l**t(k-1)), where l(k-1) is the transformation ! stored in columns k-1 and k of a. if( k<n ) then call stdlib${ii}$_${ri}$gemv( 'TRANSPOSE', n-k, nrhs, -one, b( k+1, 1_${ik}$ ),ldb, a( k+1, k ),& 1_${ik}$, one, b( k, 1_${ik}$ ), ldb ) call stdlib${ii}$_${ri}$gemv( 'TRANSPOSE', n-k, nrhs, -one, b( k+1, 1_${ik}$ ),ldb, a( k+1, k-1 & ), 1_${ik}$, one, b( k-1, 1_${ik}$ ),ldb ) end if ! interchange rows k and -ipiv(k). kp = -ipiv( k ) if( kp/=k )call stdlib${ii}$_${ri}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k = k - 2_${ik}$ end if go to 90 100 continue end if return end subroutine stdlib${ii}$_${ri}$sytrs #:endif #:endfor pure module subroutine stdlib${ii}$_csytrs( uplo, n, nrhs, a, lda, ipiv, b, ldb, info ) !! CSYTRS solves a system of linear equations A*X = B with a complex !! symmetric matrix A using the factorization A = U*D*U**T or !! A = L*D*L**T computed by CSYTRF. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, ldb, n, nrhs ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) complex(sp), intent(in) :: a(lda,*) complex(sp), intent(inout) :: b(ldb,*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: j, k, kp complex(sp) :: ak, akm1, akm1k, bk, bkm1, denom ! Intrinsic Functions ! Executable Statements info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( nrhs<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ else if( ldb<max( 1_${ik}$, n ) ) then info = -8_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'CSYTRS', -info ) return end if ! quick return if possible if( n==0 .or. nrhs==0 )return if( upper ) then ! solve a*x = b, where a = u*d*u**t. ! first solve u*d*x = b, overwriting b with x. ! k is the main loop index, decreasing from n to 1 in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = n 10 continue ! if k < 1, exit from loop. if( k<1 )go to 30 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_cswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) ! multiply by inv(u(k)), where u(k) is the transformation ! stored in column k of a. call stdlib${ii}$_cgeru( k-1, nrhs, -cone, a( 1_${ik}$, k ), 1_${ik}$, b( k, 1_${ik}$ ), ldb,b( 1_${ik}$, 1_${ik}$ ), ldb & ) ! multiply by the inverse of the diagonal block. call stdlib${ii}$_cscal( nrhs, cone / a( k, k ), b( k, 1_${ik}$ ), ldb ) k = k - 1_${ik}$ else ! 2 x 2 diagonal block ! interchange rows k-1 and -ipiv(k). kp = -ipiv( k ) if( kp/=k-1 )call stdlib${ii}$_cswap( nrhs, b( k-1, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) ! multiply by inv(u(k)), where u(k) is the transformation ! stored in columns k-1 and k of a. call stdlib${ii}$_cgeru( k-2, nrhs, -cone, a( 1_${ik}$, k ), 1_${ik}$, b( k, 1_${ik}$ ), ldb,b( 1_${ik}$, 1_${ik}$ ), ldb & ) call stdlib${ii}$_cgeru( k-2, nrhs, -cone, a( 1_${ik}$, k-1 ), 1_${ik}$, b( k-1, 1_${ik}$ ),ldb, b( 1_${ik}$, 1_${ik}$ ), & ldb ) ! multiply by the inverse of the diagonal block. akm1k = a( k-1, k ) akm1 = a( k-1, k-1 ) / akm1k ak = a( k, k ) / akm1k denom = akm1*ak - cone do j = 1, nrhs bkm1 = b( k-1, j ) / akm1k bk = b( k, j ) / akm1k b( k-1, j ) = ( ak*bkm1-bk ) / denom b( k, j ) = ( akm1*bk-bkm1 ) / denom end do k = k - 2_${ik}$ end if go to 10 30 continue ! next solve u**t *x = b, overwriting b with x. ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = 1_${ik}$ 40 continue ! if k > n, exit from loop. if( k>n )go to 50 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! multiply by inv(u**t(k)), where u(k) is the transformation ! stored in column k of a. call stdlib${ii}$_cgemv( 'TRANSPOSE', k-1, nrhs, -cone, b, ldb, a( 1_${ik}$, k ),1_${ik}$, cone, b( & k, 1_${ik}$ ), ldb ) ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_cswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k = k + 1_${ik}$ else ! 2 x 2 diagonal block ! multiply by inv(u**t(k+1)), where u(k+1) is the transformation ! stored in columns k and k+1 of a. call stdlib${ii}$_cgemv( 'TRANSPOSE', k-1, nrhs, -cone, b, ldb, a( 1_${ik}$, k ),1_${ik}$, cone, b( & k, 1_${ik}$ ), ldb ) call stdlib${ii}$_cgemv( 'TRANSPOSE', k-1, nrhs, -cone, b, ldb,a( 1_${ik}$, k+1 ), 1_${ik}$, cone, b(& k+1, 1_${ik}$ ), ldb ) ! interchange rows k and -ipiv(k). kp = -ipiv( k ) if( kp/=k )call stdlib${ii}$_cswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k = k + 2_${ik}$ end if go to 40 50 continue else ! solve a*x = b, where a = l*d*l**t. ! first solve l*d*x = b, overwriting b with x. ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = 1_${ik}$ 60 continue ! if k > n, exit from loop. if( k>n )go to 80 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_cswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) ! multiply by inv(l(k)), where l(k) is the transformation ! stored in column k of a. if( k<n )call stdlib${ii}$_cgeru( n-k, nrhs, -cone, a( k+1, k ), 1_${ik}$, b( k, 1_${ik}$ ),ldb, b( & k+1, 1_${ik}$ ), ldb ) ! multiply by the inverse of the diagonal block. call stdlib${ii}$_cscal( nrhs, cone / a( k, k ), b( k, 1_${ik}$ ), ldb ) k = k + 1_${ik}$ else ! 2 x 2 diagonal block ! interchange rows k+1 and -ipiv(k). kp = -ipiv( k ) if( kp/=k+1 )call stdlib${ii}$_cswap( nrhs, b( k+1, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) ! multiply by inv(l(k)), where l(k) is the transformation ! stored in columns k and k+1 of a. if( k<n-1 ) then call stdlib${ii}$_cgeru( n-k-1, nrhs, -cone, a( k+2, k ), 1_${ik}$, b( k, 1_${ik}$ ),ldb, b( k+2, & 1_${ik}$ ), ldb ) call stdlib${ii}$_cgeru( n-k-1, nrhs, -cone, a( k+2, k+1 ), 1_${ik}$,b( k+1, 1_${ik}$ ), ldb, b( & k+2, 1_${ik}$ ), ldb ) end if ! multiply by the inverse of the diagonal block. akm1k = a( k+1, k ) akm1 = a( k, k ) / akm1k ak = a( k+1, k+1 ) / akm1k denom = akm1*ak - cone do j = 1, nrhs bkm1 = b( k, j ) / akm1k bk = b( k+1, j ) / akm1k b( k, j ) = ( ak*bkm1-bk ) / denom b( k+1, j ) = ( akm1*bk-bkm1 ) / denom end do k = k + 2_${ik}$ end if go to 60 80 continue ! next solve l**t *x = b, overwriting b with x. ! k is the main loop index, decreasing from n to 1 in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = n 90 continue ! if k < 1, exit from loop. if( k<1 )go to 100 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! multiply by inv(l**t(k)), where l(k) is the transformation ! stored in column k of a. if( k<n )call stdlib${ii}$_cgemv( 'TRANSPOSE', n-k, nrhs, -cone, b( k+1, 1_${ik}$ ),ldb, a( k+& 1_${ik}$, k ), 1_${ik}$, cone, b( k, 1_${ik}$ ), ldb ) ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_cswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k = k - 1_${ik}$ else ! 2 x 2 diagonal block ! multiply by inv(l**t(k-1)), where l(k-1) is the transformation ! stored in columns k-1 and k of a. if( k<n ) then call stdlib${ii}$_cgemv( 'TRANSPOSE', n-k, nrhs, -cone, b( k+1, 1_${ik}$ ),ldb, a( k+1, k )& , 1_${ik}$, cone, b( k, 1_${ik}$ ), ldb ) call stdlib${ii}$_cgemv( 'TRANSPOSE', n-k, nrhs, -cone, b( k+1, 1_${ik}$ ),ldb, a( k+1, k-& 1_${ik}$ ), 1_${ik}$, cone, b( k-1, 1_${ik}$ ),ldb ) end if ! interchange rows k and -ipiv(k). kp = -ipiv( k ) if( kp/=k )call stdlib${ii}$_cswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k = k - 2_${ik}$ end if go to 90 100 continue end if return end subroutine stdlib${ii}$_csytrs pure module subroutine stdlib${ii}$_zsytrs( uplo, n, nrhs, a, lda, ipiv, b, ldb, info ) !! ZSYTRS solves a system of linear equations A*X = B with a complex !! symmetric matrix A using the factorization A = U*D*U**T or !! A = L*D*L**T computed by ZSYTRF. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, ldb, n, nrhs ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) complex(dp), intent(in) :: a(lda,*) complex(dp), intent(inout) :: b(ldb,*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: j, k, kp complex(dp) :: ak, akm1, akm1k, bk, bkm1, denom ! Intrinsic Functions ! Executable Statements info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( nrhs<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ else if( ldb<max( 1_${ik}$, n ) ) then info = -8_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZSYTRS', -info ) return end if ! quick return if possible if( n==0 .or. nrhs==0 )return if( upper ) then ! solve a*x = b, where a = u*d*u**t. ! first solve u*d*x = b, overwriting b with x. ! k is the main loop index, decreasing from n to 1 in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = n 10 continue ! if k < 1, exit from loop. if( k<1 )go to 30 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_zswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) ! multiply by inv(u(k)), where u(k) is the transformation ! stored in column k of a. call stdlib${ii}$_zgeru( k-1, nrhs, -cone, a( 1_${ik}$, k ), 1_${ik}$, b( k, 1_${ik}$ ), ldb,b( 1_${ik}$, 1_${ik}$ ), ldb & ) ! multiply by the inverse of the diagonal block. call stdlib${ii}$_zscal( nrhs, cone / a( k, k ), b( k, 1_${ik}$ ), ldb ) k = k - 1_${ik}$ else ! 2 x 2 diagonal block ! interchange rows k-1 and -ipiv(k). kp = -ipiv( k ) if( kp/=k-1 )call stdlib${ii}$_zswap( nrhs, b( k-1, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) ! multiply by inv(u(k)), where u(k) is the transformation ! stored in columns k-1 and k of a. call stdlib${ii}$_zgeru( k-2, nrhs, -cone, a( 1_${ik}$, k ), 1_${ik}$, b( k, 1_${ik}$ ), ldb,b( 1_${ik}$, 1_${ik}$ ), ldb & ) call stdlib${ii}$_zgeru( k-2, nrhs, -cone, a( 1_${ik}$, k-1 ), 1_${ik}$, b( k-1, 1_${ik}$ ),ldb, b( 1_${ik}$, 1_${ik}$ ), & ldb ) ! multiply by the inverse of the diagonal block. akm1k = a( k-1, k ) akm1 = a( k-1, k-1 ) / akm1k ak = a( k, k ) / akm1k denom = akm1*ak - cone do j = 1, nrhs bkm1 = b( k-1, j ) / akm1k bk = b( k, j ) / akm1k b( k-1, j ) = ( ak*bkm1-bk ) / denom b( k, j ) = ( akm1*bk-bkm1 ) / denom end do k = k - 2_${ik}$ end if go to 10 30 continue ! next solve u**t *x = b, overwriting b with x. ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = 1_${ik}$ 40 continue ! if k > n, exit from loop. if( k>n )go to 50 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! multiply by inv(u**t(k)), where u(k) is the transformation ! stored in column k of a. call stdlib${ii}$_zgemv( 'TRANSPOSE', k-1, nrhs, -cone, b, ldb, a( 1_${ik}$, k ),1_${ik}$, cone, b( & k, 1_${ik}$ ), ldb ) ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_zswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k = k + 1_${ik}$ else ! 2 x 2 diagonal block ! multiply by inv(u**t(k+1)), where u(k+1) is the transformation ! stored in columns k and k+1 of a. call stdlib${ii}$_zgemv( 'TRANSPOSE', k-1, nrhs, -cone, b, ldb, a( 1_${ik}$, k ),1_${ik}$, cone, b( & k, 1_${ik}$ ), ldb ) call stdlib${ii}$_zgemv( 'TRANSPOSE', k-1, nrhs, -cone, b, ldb,a( 1_${ik}$, k+1 ), 1_${ik}$, cone, b(& k+1, 1_${ik}$ ), ldb ) ! interchange rows k and -ipiv(k). kp = -ipiv( k ) if( kp/=k )call stdlib${ii}$_zswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k = k + 2_${ik}$ end if go to 40 50 continue else ! solve a*x = b, where a = l*d*l**t. ! first solve l*d*x = b, overwriting b with x. ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = 1_${ik}$ 60 continue ! if k > n, exit from loop. if( k>n )go to 80 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_zswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) ! multiply by inv(l(k)), where l(k) is the transformation ! stored in column k of a. if( k<n )call stdlib${ii}$_zgeru( n-k, nrhs, -cone, a( k+1, k ), 1_${ik}$, b( k, 1_${ik}$ ),ldb, b( & k+1, 1_${ik}$ ), ldb ) ! multiply by the inverse of the diagonal block. call stdlib${ii}$_zscal( nrhs, cone / a( k, k ), b( k, 1_${ik}$ ), ldb ) k = k + 1_${ik}$ else ! 2 x 2 diagonal block ! interchange rows k+1 and -ipiv(k). kp = -ipiv( k ) if( kp/=k+1 )call stdlib${ii}$_zswap( nrhs, b( k+1, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) ! multiply by inv(l(k)), where l(k) is the transformation ! stored in columns k and k+1 of a. if( k<n-1 ) then call stdlib${ii}$_zgeru( n-k-1, nrhs, -cone, a( k+2, k ), 1_${ik}$, b( k, 1_${ik}$ ),ldb, b( k+2, & 1_${ik}$ ), ldb ) call stdlib${ii}$_zgeru( n-k-1, nrhs, -cone, a( k+2, k+1 ), 1_${ik}$,b( k+1, 1_${ik}$ ), ldb, b( & k+2, 1_${ik}$ ), ldb ) end if ! multiply by the inverse of the diagonal block. akm1k = a( k+1, k ) akm1 = a( k, k ) / akm1k ak = a( k+1, k+1 ) / akm1k denom = akm1*ak - cone do j = 1, nrhs bkm1 = b( k, j ) / akm1k bk = b( k+1, j ) / akm1k b( k, j ) = ( ak*bkm1-bk ) / denom b( k+1, j ) = ( akm1*bk-bkm1 ) / denom end do k = k + 2_${ik}$ end if go to 60 80 continue ! next solve l**t *x = b, overwriting b with x. ! k is the main loop index, decreasing from n to 1 in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = n 90 continue ! if k < 1, exit from loop. if( k<1 )go to 100 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! multiply by inv(l**t(k)), where l(k) is the transformation ! stored in column k of a. if( k<n )call stdlib${ii}$_zgemv( 'TRANSPOSE', n-k, nrhs, -cone, b( k+1, 1_${ik}$ ),ldb, a( k+& 1_${ik}$, k ), 1_${ik}$, cone, b( k, 1_${ik}$ ), ldb ) ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_zswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k = k - 1_${ik}$ else ! 2 x 2 diagonal block ! multiply by inv(l**t(k-1)), where l(k-1) is the transformation ! stored in columns k-1 and k of a. if( k<n ) then call stdlib${ii}$_zgemv( 'TRANSPOSE', n-k, nrhs, -cone, b( k+1, 1_${ik}$ ),ldb, a( k+1, k )& , 1_${ik}$, cone, b( k, 1_${ik}$ ), ldb ) call stdlib${ii}$_zgemv( 'TRANSPOSE', n-k, nrhs, -cone, b( k+1, 1_${ik}$ ),ldb, a( k+1, k-& 1_${ik}$ ), 1_${ik}$, cone, b( k-1, 1_${ik}$ ),ldb ) end if ! interchange rows k and -ipiv(k). kp = -ipiv( k ) if( kp/=k )call stdlib${ii}$_zswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k = k - 2_${ik}$ end if go to 90 100 continue end if return end subroutine stdlib${ii}$_zsytrs #:for ck,ct,ci in CMPLX_KINDS_TYPES #:if not ck in ["sp","dp"] pure module subroutine stdlib${ii}$_${ci}$sytrs( uplo, n, nrhs, a, lda, ipiv, b, ldb, info ) !! ZSYTRS: solves a system of linear equations A*X = B with a complex !! symmetric matrix A using the factorization A = U*D*U**T or !! A = L*D*L**T computed by ZSYTRF. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${ck}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, ldb, n, nrhs ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) complex(${ck}$), intent(in) :: a(lda,*) complex(${ck}$), intent(inout) :: b(ldb,*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: j, k, kp complex(${ck}$) :: ak, akm1, akm1k, bk, bkm1, denom ! Intrinsic Functions ! Executable Statements info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( nrhs<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ else if( ldb<max( 1_${ik}$, n ) ) then info = -8_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZSYTRS', -info ) return end if ! quick return if possible if( n==0 .or. nrhs==0 )return if( upper ) then ! solve a*x = b, where a = u*d*u**t. ! first solve u*d*x = b, overwriting b with x. ! k is the main loop index, decreasing from n to 1 in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = n 10 continue ! if k < 1, exit from loop. if( k<1 )go to 30 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_${ci}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) ! multiply by inv(u(k)), where u(k) is the transformation ! stored in column k of a. call stdlib${ii}$_${ci}$geru( k-1, nrhs, -cone, a( 1_${ik}$, k ), 1_${ik}$, b( k, 1_${ik}$ ), ldb,b( 1_${ik}$, 1_${ik}$ ), ldb & ) ! multiply by the inverse of the diagonal block. call stdlib${ii}$_${ci}$scal( nrhs, cone / a( k, k ), b( k, 1_${ik}$ ), ldb ) k = k - 1_${ik}$ else ! 2 x 2 diagonal block ! interchange rows k-1 and -ipiv(k). kp = -ipiv( k ) if( kp/=k-1 )call stdlib${ii}$_${ci}$swap( nrhs, b( k-1, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) ! multiply by inv(u(k)), where u(k) is the transformation ! stored in columns k-1 and k of a. call stdlib${ii}$_${ci}$geru( k-2, nrhs, -cone, a( 1_${ik}$, k ), 1_${ik}$, b( k, 1_${ik}$ ), ldb,b( 1_${ik}$, 1_${ik}$ ), ldb & ) call stdlib${ii}$_${ci}$geru( k-2, nrhs, -cone, a( 1_${ik}$, k-1 ), 1_${ik}$, b( k-1, 1_${ik}$ ),ldb, b( 1_${ik}$, 1_${ik}$ ), & ldb ) ! multiply by the inverse of the diagonal block. akm1k = a( k-1, k ) akm1 = a( k-1, k-1 ) / akm1k ak = a( k, k ) / akm1k denom = akm1*ak - cone do j = 1, nrhs bkm1 = b( k-1, j ) / akm1k bk = b( k, j ) / akm1k b( k-1, j ) = ( ak*bkm1-bk ) / denom b( k, j ) = ( akm1*bk-bkm1 ) / denom end do k = k - 2_${ik}$ end if go to 10 30 continue ! next solve u**t *x = b, overwriting b with x. ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = 1_${ik}$ 40 continue ! if k > n, exit from loop. if( k>n )go to 50 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! multiply by inv(u**t(k)), where u(k) is the transformation ! stored in column k of a. call stdlib${ii}$_${ci}$gemv( 'TRANSPOSE', k-1, nrhs, -cone, b, ldb, a( 1_${ik}$, k ),1_${ik}$, cone, b( & k, 1_${ik}$ ), ldb ) ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_${ci}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k = k + 1_${ik}$ else ! 2 x 2 diagonal block ! multiply by inv(u**t(k+1)), where u(k+1) is the transformation ! stored in columns k and k+1 of a. call stdlib${ii}$_${ci}$gemv( 'TRANSPOSE', k-1, nrhs, -cone, b, ldb, a( 1_${ik}$, k ),1_${ik}$, cone, b( & k, 1_${ik}$ ), ldb ) call stdlib${ii}$_${ci}$gemv( 'TRANSPOSE', k-1, nrhs, -cone, b, ldb,a( 1_${ik}$, k+1 ), 1_${ik}$, cone, b(& k+1, 1_${ik}$ ), ldb ) ! interchange rows k and -ipiv(k). kp = -ipiv( k ) if( kp/=k )call stdlib${ii}$_${ci}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k = k + 2_${ik}$ end if go to 40 50 continue else ! solve a*x = b, where a = l*d*l**t. ! first solve l*d*x = b, overwriting b with x. ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = 1_${ik}$ 60 continue ! if k > n, exit from loop. if( k>n )go to 80 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_${ci}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) ! multiply by inv(l(k)), where l(k) is the transformation ! stored in column k of a. if( k<n )call stdlib${ii}$_${ci}$geru( n-k, nrhs, -cone, a( k+1, k ), 1_${ik}$, b( k, 1_${ik}$ ),ldb, b( & k+1, 1_${ik}$ ), ldb ) ! multiply by the inverse of the diagonal block. call stdlib${ii}$_${ci}$scal( nrhs, cone / a( k, k ), b( k, 1_${ik}$ ), ldb ) k = k + 1_${ik}$ else ! 2 x 2 diagonal block ! interchange rows k+1 and -ipiv(k). kp = -ipiv( k ) if( kp/=k+1 )call stdlib${ii}$_${ci}$swap( nrhs, b( k+1, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) ! multiply by inv(l(k)), where l(k) is the transformation ! stored in columns k and k+1 of a. if( k<n-1 ) then call stdlib${ii}$_${ci}$geru( n-k-1, nrhs, -cone, a( k+2, k ), 1_${ik}$, b( k, 1_${ik}$ ),ldb, b( k+2, & 1_${ik}$ ), ldb ) call stdlib${ii}$_${ci}$geru( n-k-1, nrhs, -cone, a( k+2, k+1 ), 1_${ik}$,b( k+1, 1_${ik}$ ), ldb, b( & k+2, 1_${ik}$ ), ldb ) end if ! multiply by the inverse of the diagonal block. akm1k = a( k+1, k ) akm1 = a( k, k ) / akm1k ak = a( k+1, k+1 ) / akm1k denom = akm1*ak - cone do j = 1, nrhs bkm1 = b( k, j ) / akm1k bk = b( k+1, j ) / akm1k b( k, j ) = ( ak*bkm1-bk ) / denom b( k+1, j ) = ( akm1*bk-bkm1 ) / denom end do k = k + 2_${ik}$ end if go to 60 80 continue ! next solve l**t *x = b, overwriting b with x. ! k is the main loop index, decreasing from n to 1 in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = n 90 continue ! if k < 1, exit from loop. if( k<1 )go to 100 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! multiply by inv(l**t(k)), where l(k) is the transformation ! stored in column k of a. if( k<n )call stdlib${ii}$_${ci}$gemv( 'TRANSPOSE', n-k, nrhs, -cone, b( k+1, 1_${ik}$ ),ldb, a( k+& 1_${ik}$, k ), 1_${ik}$, cone, b( k, 1_${ik}$ ), ldb ) ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_${ci}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k = k - 1_${ik}$ else ! 2 x 2 diagonal block ! multiply by inv(l**t(k-1)), where l(k-1) is the transformation ! stored in columns k-1 and k of a. if( k<n ) then call stdlib${ii}$_${ci}$gemv( 'TRANSPOSE', n-k, nrhs, -cone, b( k+1, 1_${ik}$ ),ldb, a( k+1, k )& , 1_${ik}$, cone, b( k, 1_${ik}$ ), ldb ) call stdlib${ii}$_${ci}$gemv( 'TRANSPOSE', n-k, nrhs, -cone, b( k+1, 1_${ik}$ ),ldb, a( k+1, k-& 1_${ik}$ ), 1_${ik}$, cone, b( k-1, 1_${ik}$ ),ldb ) end if ! interchange rows k and -ipiv(k). kp = -ipiv( k ) if( kp/=k )call stdlib${ii}$_${ci}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k = k - 2_${ik}$ end if go to 90 100 continue end if return end subroutine stdlib${ii}$_${ci}$sytrs #:endif #:endfor pure module subroutine stdlib${ii}$_ssytri( uplo, n, a, lda, ipiv, work, info ) !! SSYTRI computes the inverse of a real symmetric indefinite matrix !! A using the factorization A = U*D*U**T or A = L*D*L**T computed by !! SSYTRF. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) real(sp), intent(inout) :: a(lda,*) real(sp), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: k, kp, kstep real(sp) :: ak, akkp1, akp1, d, t, temp ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'SSYTRI', -info ) return end if ! quick return if possible if( n==0 )return ! check that the diagonal matrix d is nonsingular. if( upper ) then ! upper triangular storage: examine d from bottom to top do info = n, 1, -1 if( ipiv( info )>0 .and. a( info, info )==zero )return end do else ! lower triangular storage: examine d from top to bottom. do info = 1, n if( ipiv( info )>0 .and. a( info, info )==zero )return end do end if info = 0_${ik}$ if( upper ) then ! compute inv(a) from the factorization a = u*d*u**t. ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = 1_${ik}$ 30 continue ! if k > n, exit from loop. if( k>n )go to 40 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! invert the diagonal block. a( k, k ) = one / a( k, k ) ! compute column k of the inverse. if( k>1_${ik}$ ) then call stdlib${ii}$_scopy( k-1, a( 1_${ik}$, k ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_ssymv( uplo, k-1, -one, a, lda, work, 1_${ik}$, zero,a( 1_${ik}$, k ), 1_${ik}$ ) a( k, k ) = a( k, k ) - stdlib${ii}$_sdot( k-1, work, 1_${ik}$, a( 1_${ik}$, k ),1_${ik}$ ) end if kstep = 1_${ik}$ else ! 2 x 2 diagonal block ! invert the diagonal block. t = abs( a( k, k+1 ) ) ak = a( k, k ) / t akp1 = a( k+1, k+1 ) / t akkp1 = a( k, k+1 ) / t d = t*( ak*akp1-one ) a( k, k ) = akp1 / d a( k+1, k+1 ) = ak / d a( k, k+1 ) = -akkp1 / d ! compute columns k and k+1 of the inverse. if( k>1_${ik}$ ) then call stdlib${ii}$_scopy( k-1, a( 1_${ik}$, k ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_ssymv( uplo, k-1, -one, a, lda, work, 1_${ik}$, zero,a( 1_${ik}$, k ), 1_${ik}$ ) a( k, k ) = a( k, k ) - stdlib${ii}$_sdot( k-1, work, 1_${ik}$, a( 1_${ik}$, k ),1_${ik}$ ) a( k, k+1 ) = a( k, k+1 ) -stdlib${ii}$_sdot( k-1, a( 1_${ik}$, k ), 1_${ik}$, a( 1_${ik}$, k+1 ), 1_${ik}$ ) call stdlib${ii}$_scopy( k-1, a( 1_${ik}$, k+1 ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_ssymv( uplo, k-1, -one, a, lda, work, 1_${ik}$, zero,a( 1_${ik}$, k+1 ), 1_${ik}$ ) a( k+1, k+1 ) = a( k+1, k+1 ) -stdlib${ii}$_sdot( k-1, work, 1_${ik}$, a( 1_${ik}$, k+1 ), 1_${ik}$ ) end if kstep = 2_${ik}$ end if kp = abs( ipiv( k ) ) if( kp/=k ) then ! interchange rows and columns k and kp in the leading ! submatrix a(1:k+1,1:k+1) call stdlib${ii}$_sswap( kp-1, a( 1_${ik}$, k ), 1_${ik}$, a( 1_${ik}$, kp ), 1_${ik}$ ) call stdlib${ii}$_sswap( k-kp-1, a( kp+1, k ), 1_${ik}$, a( kp, kp+1 ), lda ) temp = a( k, k ) a( k, k ) = a( kp, kp ) a( kp, kp ) = temp if( kstep==2_${ik}$ ) then temp = a( k, k+1 ) a( k, k+1 ) = a( kp, k+1 ) a( kp, k+1 ) = temp end if end if k = k + kstep go to 30 40 continue else ! compute inv(a) from the factorization a = l*d*l**t. ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = n 50 continue ! if k < 1, exit from loop. if( k<1 )go to 60 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! invert the diagonal block. a( k, k ) = one / a( k, k ) ! compute column k of the inverse. if( k<n ) then call stdlib${ii}$_scopy( n-k, a( k+1, k ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_ssymv( uplo, n-k, -one, a( k+1, k+1 ), lda, work, 1_${ik}$,zero, a( k+1, & k ), 1_${ik}$ ) a( k, k ) = a( k, k ) - stdlib${ii}$_sdot( n-k, work, 1_${ik}$, a( k+1, k ),1_${ik}$ ) end if kstep = 1_${ik}$ else ! 2 x 2 diagonal block ! invert the diagonal block. t = abs( a( k, k-1 ) ) ak = a( k-1, k-1 ) / t akp1 = a( k, k ) / t akkp1 = a( k, k-1 ) / t d = t*( ak*akp1-one ) a( k-1, k-1 ) = akp1 / d a( k, k ) = ak / d a( k, k-1 ) = -akkp1 / d ! compute columns k-1 and k of the inverse. if( k<n ) then call stdlib${ii}$_scopy( n-k, a( k+1, k ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_ssymv( uplo, n-k, -one, a( k+1, k+1 ), lda, work, 1_${ik}$,zero, a( k+1, & k ), 1_${ik}$ ) a( k, k ) = a( k, k ) - stdlib${ii}$_sdot( n-k, work, 1_${ik}$, a( k+1, k ),1_${ik}$ ) a( k, k-1 ) = a( k, k-1 ) -stdlib${ii}$_sdot( n-k, a( k+1, k ), 1_${ik}$, a( k+1, k-1 ),1_${ik}$ ) call stdlib${ii}$_scopy( n-k, a( k+1, k-1 ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_ssymv( uplo, n-k, -one, a( k+1, k+1 ), lda, work, 1_${ik}$,zero, a( k+1, & k-1 ), 1_${ik}$ ) a( k-1, k-1 ) = a( k-1, k-1 ) -stdlib${ii}$_sdot( n-k, work, 1_${ik}$, a( k+1, k-1 ), 1_${ik}$ ) end if kstep = 2_${ik}$ end if kp = abs( ipiv( k ) ) if( kp/=k ) then ! interchange rows and columns k and kp in the trailing ! submatrix a(k-1:n,k-1:n) if( kp<n )call stdlib${ii}$_sswap( n-kp, a( kp+1, k ), 1_${ik}$, a( kp+1, kp ), 1_${ik}$ ) call stdlib${ii}$_sswap( kp-k-1, a( k+1, k ), 1_${ik}$, a( kp, k+1 ), lda ) temp = a( k, k ) a( k, k ) = a( kp, kp ) a( kp, kp ) = temp if( kstep==2_${ik}$ ) then temp = a( k, k-1 ) a( k, k-1 ) = a( kp, k-1 ) a( kp, k-1 ) = temp end if end if k = k - kstep go to 50 60 continue end if return end subroutine stdlib${ii}$_ssytri pure module subroutine stdlib${ii}$_dsytri( uplo, n, a, lda, ipiv, work, info ) !! DSYTRI computes the inverse of a real symmetric indefinite matrix !! A using the factorization A = U*D*U**T or A = L*D*L**T computed by !! DSYTRF. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) real(dp), intent(inout) :: a(lda,*) real(dp), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: k, kp, kstep real(dp) :: ak, akkp1, akp1, d, t, temp ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'DSYTRI', -info ) return end if ! quick return if possible if( n==0 )return ! check that the diagonal matrix d is nonsingular. if( upper ) then ! upper triangular storage: examine d from bottom to top do info = n, 1, -1 if( ipiv( info )>0 .and. a( info, info )==zero )return end do else ! lower triangular storage: examine d from top to bottom. do info = 1, n if( ipiv( info )>0 .and. a( info, info )==zero )return end do end if info = 0_${ik}$ if( upper ) then ! compute inv(a) from the factorization a = u*d*u**t. ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = 1_${ik}$ 30 continue ! if k > n, exit from loop. if( k>n )go to 40 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! invert the diagonal block. a( k, k ) = one / a( k, k ) ! compute column k of the inverse. if( k>1_${ik}$ ) then call stdlib${ii}$_dcopy( k-1, a( 1_${ik}$, k ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_dsymv( uplo, k-1, -one, a, lda, work, 1_${ik}$, zero,a( 1_${ik}$, k ), 1_${ik}$ ) a( k, k ) = a( k, k ) - stdlib${ii}$_ddot( k-1, work, 1_${ik}$, a( 1_${ik}$, k ),1_${ik}$ ) end if kstep = 1_${ik}$ else ! 2 x 2 diagonal block ! invert the diagonal block. t = abs( a( k, k+1 ) ) ak = a( k, k ) / t akp1 = a( k+1, k+1 ) / t akkp1 = a( k, k+1 ) / t d = t*( ak*akp1-one ) a( k, k ) = akp1 / d a( k+1, k+1 ) = ak / d a( k, k+1 ) = -akkp1 / d ! compute columns k and k+1 of the inverse. if( k>1_${ik}$ ) then call stdlib${ii}$_dcopy( k-1, a( 1_${ik}$, k ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_dsymv( uplo, k-1, -one, a, lda, work, 1_${ik}$, zero,a( 1_${ik}$, k ), 1_${ik}$ ) a( k, k ) = a( k, k ) - stdlib${ii}$_ddot( k-1, work, 1_${ik}$, a( 1_${ik}$, k ),1_${ik}$ ) a( k, k+1 ) = a( k, k+1 ) -stdlib${ii}$_ddot( k-1, a( 1_${ik}$, k ), 1_${ik}$, a( 1_${ik}$, k+1 ), 1_${ik}$ ) call stdlib${ii}$_dcopy( k-1, a( 1_${ik}$, k+1 ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_dsymv( uplo, k-1, -one, a, lda, work, 1_${ik}$, zero,a( 1_${ik}$, k+1 ), 1_${ik}$ ) a( k+1, k+1 ) = a( k+1, k+1 ) -stdlib${ii}$_ddot( k-1, work, 1_${ik}$, a( 1_${ik}$, k+1 ), 1_${ik}$ ) end if kstep = 2_${ik}$ end if kp = abs( ipiv( k ) ) if( kp/=k ) then ! interchange rows and columns k and kp in the leading ! submatrix a(1:k+1,1:k+1) call stdlib${ii}$_dswap( kp-1, a( 1_${ik}$, k ), 1_${ik}$, a( 1_${ik}$, kp ), 1_${ik}$ ) call stdlib${ii}$_dswap( k-kp-1, a( kp+1, k ), 1_${ik}$, a( kp, kp+1 ), lda ) temp = a( k, k ) a( k, k ) = a( kp, kp ) a( kp, kp ) = temp if( kstep==2_${ik}$ ) then temp = a( k, k+1 ) a( k, k+1 ) = a( kp, k+1 ) a( kp, k+1 ) = temp end if end if k = k + kstep go to 30 40 continue else ! compute inv(a) from the factorization a = l*d*l**t. ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = n 50 continue ! if k < 1, exit from loop. if( k<1 )go to 60 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! invert the diagonal block. a( k, k ) = one / a( k, k ) ! compute column k of the inverse. if( k<n ) then call stdlib${ii}$_dcopy( n-k, a( k+1, k ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_dsymv( uplo, n-k, -one, a( k+1, k+1 ), lda, work, 1_${ik}$,zero, a( k+1, & k ), 1_${ik}$ ) a( k, k ) = a( k, k ) - stdlib${ii}$_ddot( n-k, work, 1_${ik}$, a( k+1, k ),1_${ik}$ ) end if kstep = 1_${ik}$ else ! 2 x 2 diagonal block ! invert the diagonal block. t = abs( a( k, k-1 ) ) ak = a( k-1, k-1 ) / t akp1 = a( k, k ) / t akkp1 = a( k, k-1 ) / t d = t*( ak*akp1-one ) a( k-1, k-1 ) = akp1 / d a( k, k ) = ak / d a( k, k-1 ) = -akkp1 / d ! compute columns k-1 and k of the inverse. if( k<n ) then call stdlib${ii}$_dcopy( n-k, a( k+1, k ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_dsymv( uplo, n-k, -one, a( k+1, k+1 ), lda, work, 1_${ik}$,zero, a( k+1, & k ), 1_${ik}$ ) a( k, k ) = a( k, k ) - stdlib${ii}$_ddot( n-k, work, 1_${ik}$, a( k+1, k ),1_${ik}$ ) a( k, k-1 ) = a( k, k-1 ) -stdlib${ii}$_ddot( n-k, a( k+1, k ), 1_${ik}$, a( k+1, k-1 ),1_${ik}$ ) call stdlib${ii}$_dcopy( n-k, a( k+1, k-1 ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_dsymv( uplo, n-k, -one, a( k+1, k+1 ), lda, work, 1_${ik}$,zero, a( k+1, & k-1 ), 1_${ik}$ ) a( k-1, k-1 ) = a( k-1, k-1 ) -stdlib${ii}$_ddot( n-k, work, 1_${ik}$, a( k+1, k-1 ), 1_${ik}$ ) end if kstep = 2_${ik}$ end if kp = abs( ipiv( k ) ) if( kp/=k ) then ! interchange rows and columns k and kp in the trailing ! submatrix a(k-1:n,k-1:n) if( kp<n )call stdlib${ii}$_dswap( n-kp, a( kp+1, k ), 1_${ik}$, a( kp+1, kp ), 1_${ik}$ ) call stdlib${ii}$_dswap( kp-k-1, a( k+1, k ), 1_${ik}$, a( kp, k+1 ), lda ) temp = a( k, k ) a( k, k ) = a( kp, kp ) a( kp, kp ) = temp if( kstep==2_${ik}$ ) then temp = a( k, k-1 ) a( k, k-1 ) = a( kp, k-1 ) a( kp, k-1 ) = temp end if end if k = k - kstep go to 50 60 continue end if return end subroutine stdlib${ii}$_dsytri #:for rk,rt,ri in REAL_KINDS_TYPES #:if not rk in ["sp","dp"] pure module subroutine stdlib${ii}$_${ri}$sytri( uplo, n, a, lda, ipiv, work, info ) !! DSYTRI: computes the inverse of a real symmetric indefinite matrix !! A using the factorization A = U*D*U**T or A = L*D*L**T computed by !! DSYTRF. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${rk}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) real(${rk}$), intent(inout) :: a(lda,*) real(${rk}$), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: k, kp, kstep real(${rk}$) :: ak, akkp1, akp1, d, t, temp ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'DSYTRI', -info ) return end if ! quick return if possible if( n==0 )return ! check that the diagonal matrix d is nonsingular. if( upper ) then ! upper triangular storage: examine d from bottom to top do info = n, 1, -1 if( ipiv( info )>0 .and. a( info, info )==zero )return end do else ! lower triangular storage: examine d from top to bottom. do info = 1, n if( ipiv( info )>0 .and. a( info, info )==zero )return end do end if info = 0_${ik}$ if( upper ) then ! compute inv(a) from the factorization a = u*d*u**t. ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = 1_${ik}$ 30 continue ! if k > n, exit from loop. if( k>n )go to 40 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! invert the diagonal block. a( k, k ) = one / a( k, k ) ! compute column k of the inverse. if( k>1_${ik}$ ) then call stdlib${ii}$_${ri}$copy( k-1, a( 1_${ik}$, k ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_${ri}$symv( uplo, k-1, -one, a, lda, work, 1_${ik}$, zero,a( 1_${ik}$, k ), 1_${ik}$ ) a( k, k ) = a( k, k ) - stdlib${ii}$_${ri}$dot( k-1, work, 1_${ik}$, a( 1_${ik}$, k ),1_${ik}$ ) end if kstep = 1_${ik}$ else ! 2 x 2 diagonal block ! invert the diagonal block. t = abs( a( k, k+1 ) ) ak = a( k, k ) / t akp1 = a( k+1, k+1 ) / t akkp1 = a( k, k+1 ) / t d = t*( ak*akp1-one ) a( k, k ) = akp1 / d a( k+1, k+1 ) = ak / d a( k, k+1 ) = -akkp1 / d ! compute columns k and k+1 of the inverse. if( k>1_${ik}$ ) then call stdlib${ii}$_${ri}$copy( k-1, a( 1_${ik}$, k ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_${ri}$symv( uplo, k-1, -one, a, lda, work, 1_${ik}$, zero,a( 1_${ik}$, k ), 1_${ik}$ ) a( k, k ) = a( k, k ) - stdlib${ii}$_${ri}$dot( k-1, work, 1_${ik}$, a( 1_${ik}$, k ),1_${ik}$ ) a( k, k+1 ) = a( k, k+1 ) -stdlib${ii}$_${ri}$dot( k-1, a( 1_${ik}$, k ), 1_${ik}$, a( 1_${ik}$, k+1 ), 1_${ik}$ ) call stdlib${ii}$_${ri}$copy( k-1, a( 1_${ik}$, k+1 ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_${ri}$symv( uplo, k-1, -one, a, lda, work, 1_${ik}$, zero,a( 1_${ik}$, k+1 ), 1_${ik}$ ) a( k+1, k+1 ) = a( k+1, k+1 ) -stdlib${ii}$_${ri}$dot( k-1, work, 1_${ik}$, a( 1_${ik}$, k+1 ), 1_${ik}$ ) end if kstep = 2_${ik}$ end if kp = abs( ipiv( k ) ) if( kp/=k ) then ! interchange rows and columns k and kp in the leading ! submatrix a(1:k+1,1:k+1) call stdlib${ii}$_${ri}$swap( kp-1, a( 1_${ik}$, k ), 1_${ik}$, a( 1_${ik}$, kp ), 1_${ik}$ ) call stdlib${ii}$_${ri}$swap( k-kp-1, a( kp+1, k ), 1_${ik}$, a( kp, kp+1 ), lda ) temp = a( k, k ) a( k, k ) = a( kp, kp ) a( kp, kp ) = temp if( kstep==2_${ik}$ ) then temp = a( k, k+1 ) a( k, k+1 ) = a( kp, k+1 ) a( kp, k+1 ) = temp end if end if k = k + kstep go to 30 40 continue else ! compute inv(a) from the factorization a = l*d*l**t. ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = n 50 continue ! if k < 1, exit from loop. if( k<1 )go to 60 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! invert the diagonal block. a( k, k ) = one / a( k, k ) ! compute column k of the inverse. if( k<n ) then call stdlib${ii}$_${ri}$copy( n-k, a( k+1, k ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_${ri}$symv( uplo, n-k, -one, a( k+1, k+1 ), lda, work, 1_${ik}$,zero, a( k+1, & k ), 1_${ik}$ ) a( k, k ) = a( k, k ) - stdlib${ii}$_${ri}$dot( n-k, work, 1_${ik}$, a( k+1, k ),1_${ik}$ ) end if kstep = 1_${ik}$ else ! 2 x 2 diagonal block ! invert the diagonal block. t = abs( a( k, k-1 ) ) ak = a( k-1, k-1 ) / t akp1 = a( k, k ) / t akkp1 = a( k, k-1 ) / t d = t*( ak*akp1-one ) a( k-1, k-1 ) = akp1 / d a( k, k ) = ak / d a( k, k-1 ) = -akkp1 / d ! compute columns k-1 and k of the inverse. if( k<n ) then call stdlib${ii}$_${ri}$copy( n-k, a( k+1, k ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_${ri}$symv( uplo, n-k, -one, a( k+1, k+1 ), lda, work, 1_${ik}$,zero, a( k+1, & k ), 1_${ik}$ ) a( k, k ) = a( k, k ) - stdlib${ii}$_${ri}$dot( n-k, work, 1_${ik}$, a( k+1, k ),1_${ik}$ ) a( k, k-1 ) = a( k, k-1 ) -stdlib${ii}$_${ri}$dot( n-k, a( k+1, k ), 1_${ik}$, a( k+1, k-1 ),1_${ik}$ ) call stdlib${ii}$_${ri}$copy( n-k, a( k+1, k-1 ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_${ri}$symv( uplo, n-k, -one, a( k+1, k+1 ), lda, work, 1_${ik}$,zero, a( k+1, & k-1 ), 1_${ik}$ ) a( k-1, k-1 ) = a( k-1, k-1 ) -stdlib${ii}$_${ri}$dot( n-k, work, 1_${ik}$, a( k+1, k-1 ), 1_${ik}$ ) end if kstep = 2_${ik}$ end if kp = abs( ipiv( k ) ) if( kp/=k ) then ! interchange rows and columns k and kp in the trailing ! submatrix a(k-1:n,k-1:n) if( kp<n )call stdlib${ii}$_${ri}$swap( n-kp, a( kp+1, k ), 1_${ik}$, a( kp+1, kp ), 1_${ik}$ ) call stdlib${ii}$_${ri}$swap( kp-k-1, a( k+1, k ), 1_${ik}$, a( kp, k+1 ), lda ) temp = a( k, k ) a( k, k ) = a( kp, kp ) a( kp, kp ) = temp if( kstep==2_${ik}$ ) then temp = a( k, k-1 ) a( k, k-1 ) = a( kp, k-1 ) a( kp, k-1 ) = temp end if end if k = k - kstep go to 50 60 continue end if return end subroutine stdlib${ii}$_${ri}$sytri #:endif #:endfor pure module subroutine stdlib${ii}$_csytri( uplo, n, a, lda, ipiv, work, info ) !! CSYTRI computes the inverse of a complex symmetric indefinite matrix !! A using the factorization A = U*D*U**T or A = L*D*L**T computed by !! CSYTRF. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) complex(sp), intent(inout) :: a(lda,*) complex(sp), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: k, kp, kstep complex(sp) :: ak, akkp1, akp1, d, t, temp ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'CSYTRI', -info ) return end if ! quick return if possible if( n==0 )return ! check that the diagonal matrix d is nonsingular. if( upper ) then ! upper triangular storage: examine d from bottom to top do info = n, 1, -1 if( ipiv( info )>0 .and. a( info, info )==czero )return end do else ! lower triangular storage: examine d from top to bottom. do info = 1, n if( ipiv( info )>0 .and. a( info, info )==czero )return end do end if info = 0_${ik}$ if( upper ) then ! compute inv(a) from the factorization a = u*d*u**t. ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = 1_${ik}$ 30 continue ! if k > n, exit from loop. if( k>n )go to 40 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! invert the diagonal block. a( k, k ) = cone / a( k, k ) ! compute column k of the inverse. if( k>1_${ik}$ ) then call stdlib${ii}$_ccopy( k-1, a( 1_${ik}$, k ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_csymv( uplo, k-1, -cone, a, lda, work, 1_${ik}$, czero,a( 1_${ik}$, k ), 1_${ik}$ ) a( k, k ) = a( k, k ) - stdlib${ii}$_cdotu( k-1, work, 1_${ik}$, a( 1_${ik}$, k ),1_${ik}$ ) end if kstep = 1_${ik}$ else ! 2 x 2 diagonal block ! invert the diagonal block. t = a( k, k+1 ) ak = a( k, k ) / t akp1 = a( k+1, k+1 ) / t akkp1 = a( k, k+1 ) / t d = t*( ak*akp1-cone ) a( k, k ) = akp1 / d a( k+1, k+1 ) = ak / d a( k, k+1 ) = -akkp1 / d ! compute columns k and k+1 of the inverse. if( k>1_${ik}$ ) then call stdlib${ii}$_ccopy( k-1, a( 1_${ik}$, k ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_csymv( uplo, k-1, -cone, a, lda, work, 1_${ik}$, czero,a( 1_${ik}$, k ), 1_${ik}$ ) a( k, k ) = a( k, k ) - stdlib${ii}$_cdotu( k-1, work, 1_${ik}$, a( 1_${ik}$, k ),1_${ik}$ ) a( k, k+1 ) = a( k, k+1 ) -stdlib${ii}$_cdotu( k-1, a( 1_${ik}$, k ), 1_${ik}$, a( 1_${ik}$, k+1 ), 1_${ik}$ ) call stdlib${ii}$_ccopy( k-1, a( 1_${ik}$, k+1 ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_csymv( uplo, k-1, -cone, a, lda, work, 1_${ik}$, czero,a( 1_${ik}$, k+1 ), 1_${ik}$ ) a( k+1, k+1 ) = a( k+1, k+1 ) -stdlib${ii}$_cdotu( k-1, work, 1_${ik}$, a( 1_${ik}$, k+1 ), 1_${ik}$ ) end if kstep = 2_${ik}$ end if kp = abs( ipiv( k ) ) if( kp/=k ) then ! interchange rows and columns k and kp in the leading ! submatrix a(1:k+1,1:k+1) call stdlib${ii}$_cswap( kp-1, a( 1_${ik}$, k ), 1_${ik}$, a( 1_${ik}$, kp ), 1_${ik}$ ) call stdlib${ii}$_cswap( k-kp-1, a( kp+1, k ), 1_${ik}$, a( kp, kp+1 ), lda ) temp = a( k, k ) a( k, k ) = a( kp, kp ) a( kp, kp ) = temp if( kstep==2_${ik}$ ) then temp = a( k, k+1 ) a( k, k+1 ) = a( kp, k+1 ) a( kp, k+1 ) = temp end if end if k = k + kstep go to 30 40 continue else ! compute inv(a) from the factorization a = l*d*l**t. ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = n 50 continue ! if k < 1, exit from loop. if( k<1 )go to 60 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! invert the diagonal block. a( k, k ) = cone / a( k, k ) ! compute column k of the inverse. if( k<n ) then call stdlib${ii}$_ccopy( n-k, a( k+1, k ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_csymv( uplo, n-k, -cone, a( k+1, k+1 ), lda, work, 1_${ik}$,czero, a( k+& 1_${ik}$, k ), 1_${ik}$ ) a( k, k ) = a( k, k ) - stdlib${ii}$_cdotu( n-k, work, 1_${ik}$, a( k+1, k ),1_${ik}$ ) end if kstep = 1_${ik}$ else ! 2 x 2 diagonal block ! invert the diagonal block. t = a( k, k-1 ) ak = a( k-1, k-1 ) / t akp1 = a( k, k ) / t akkp1 = a( k, k-1 ) / t d = t*( ak*akp1-cone ) a( k-1, k-1 ) = akp1 / d a( k, k ) = ak / d a( k, k-1 ) = -akkp1 / d ! compute columns k-1 and k of the inverse. if( k<n ) then call stdlib${ii}$_ccopy( n-k, a( k+1, k ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_csymv( uplo, n-k, -cone, a( k+1, k+1 ), lda, work, 1_${ik}$,czero, a( k+& 1_${ik}$, k ), 1_${ik}$ ) a( k, k ) = a( k, k ) - stdlib${ii}$_cdotu( n-k, work, 1_${ik}$, a( k+1, k ),1_${ik}$ ) a( k, k-1 ) = a( k, k-1 ) -stdlib${ii}$_cdotu( n-k, a( k+1, k ), 1_${ik}$, a( k+1, k-1 ),1_${ik}$ & ) call stdlib${ii}$_ccopy( n-k, a( k+1, k-1 ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_csymv( uplo, n-k, -cone, a( k+1, k+1 ), lda, work, 1_${ik}$,czero, a( k+& 1_${ik}$, k-1 ), 1_${ik}$ ) a( k-1, k-1 ) = a( k-1, k-1 ) -stdlib${ii}$_cdotu( n-k, work, 1_${ik}$, a( k+1, k-1 ), 1_${ik}$ ) end if kstep = 2_${ik}$ end if kp = abs( ipiv( k ) ) if( kp/=k ) then ! interchange rows and columns k and kp in the trailing ! submatrix a(k-1:n,k-1:n) if( kp<n )call stdlib${ii}$_cswap( n-kp, a( kp+1, k ), 1_${ik}$, a( kp+1, kp ), 1_${ik}$ ) call stdlib${ii}$_cswap( kp-k-1, a( k+1, k ), 1_${ik}$, a( kp, k+1 ), lda ) temp = a( k, k ) a( k, k ) = a( kp, kp ) a( kp, kp ) = temp if( kstep==2_${ik}$ ) then temp = a( k, k-1 ) a( k, k-1 ) = a( kp, k-1 ) a( kp, k-1 ) = temp end if end if k = k - kstep go to 50 60 continue end if return end subroutine stdlib${ii}$_csytri pure module subroutine stdlib${ii}$_zsytri( uplo, n, a, lda, ipiv, work, info ) !! ZSYTRI computes the inverse of a complex symmetric indefinite matrix !! A using the factorization A = U*D*U**T or A = L*D*L**T computed by !! ZSYTRF. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) complex(dp), intent(inout) :: a(lda,*) complex(dp), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: k, kp, kstep complex(dp) :: ak, akkp1, akp1, d, t, temp ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZSYTRI', -info ) return end if ! quick return if possible if( n==0 )return ! check that the diagonal matrix d is nonsingular. if( upper ) then ! upper triangular storage: examine d from bottom to top do info = n, 1, -1 if( ipiv( info )>0 .and. a( info, info )==czero )return end do else ! lower triangular storage: examine d from top to bottom. do info = 1, n if( ipiv( info )>0 .and. a( info, info )==czero )return end do end if info = 0_${ik}$ if( upper ) then ! compute inv(a) from the factorization a = u*d*u**t. ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = 1_${ik}$ 30 continue ! if k > n, exit from loop. if( k>n )go to 40 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! invert the diagonal block. a( k, k ) = cone / a( k, k ) ! compute column k of the inverse. if( k>1_${ik}$ ) then call stdlib${ii}$_zcopy( k-1, a( 1_${ik}$, k ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_zsymv( uplo, k-1, -cone, a, lda, work, 1_${ik}$, czero,a( 1_${ik}$, k ), 1_${ik}$ ) a( k, k ) = a( k, k ) - stdlib${ii}$_zdotu( k-1, work, 1_${ik}$, a( 1_${ik}$, k ),1_${ik}$ ) end if kstep = 1_${ik}$ else ! 2 x 2 diagonal block ! invert the diagonal block. t = a( k, k+1 ) ak = a( k, k ) / t akp1 = a( k+1, k+1 ) / t akkp1 = a( k, k+1 ) / t d = t*( ak*akp1-cone ) a( k, k ) = akp1 / d a( k+1, k+1 ) = ak / d a( k, k+1 ) = -akkp1 / d ! compute columns k and k+1 of the inverse. if( k>1_${ik}$ ) then call stdlib${ii}$_zcopy( k-1, a( 1_${ik}$, k ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_zsymv( uplo, k-1, -cone, a, lda, work, 1_${ik}$, czero,a( 1_${ik}$, k ), 1_${ik}$ ) a( k, k ) = a( k, k ) - stdlib${ii}$_zdotu( k-1, work, 1_${ik}$, a( 1_${ik}$, k ),1_${ik}$ ) a( k, k+1 ) = a( k, k+1 ) -stdlib${ii}$_zdotu( k-1, a( 1_${ik}$, k ), 1_${ik}$, a( 1_${ik}$, k+1 ), 1_${ik}$ ) call stdlib${ii}$_zcopy( k-1, a( 1_${ik}$, k+1 ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_zsymv( uplo, k-1, -cone, a, lda, work, 1_${ik}$, czero,a( 1_${ik}$, k+1 ), 1_${ik}$ ) a( k+1, k+1 ) = a( k+1, k+1 ) -stdlib${ii}$_zdotu( k-1, work, 1_${ik}$, a( 1_${ik}$, k+1 ), 1_${ik}$ ) end if kstep = 2_${ik}$ end if kp = abs( ipiv( k ) ) if( kp/=k ) then ! interchange rows and columns k and kp in the leading ! submatrix a(1:k+1,1:k+1) call stdlib${ii}$_zswap( kp-1, a( 1_${ik}$, k ), 1_${ik}$, a( 1_${ik}$, kp ), 1_${ik}$ ) call stdlib${ii}$_zswap( k-kp-1, a( kp+1, k ), 1_${ik}$, a( kp, kp+1 ), lda ) temp = a( k, k ) a( k, k ) = a( kp, kp ) a( kp, kp ) = temp if( kstep==2_${ik}$ ) then temp = a( k, k+1 ) a( k, k+1 ) = a( kp, k+1 ) a( kp, k+1 ) = temp end if end if k = k + kstep go to 30 40 continue else ! compute inv(a) from the factorization a = l*d*l**t. ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = n 50 continue ! if k < 1, exit from loop. if( k<1 )go to 60 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! invert the diagonal block. a( k, k ) = cone / a( k, k ) ! compute column k of the inverse. if( k<n ) then call stdlib${ii}$_zcopy( n-k, a( k+1, k ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_zsymv( uplo, n-k, -cone, a( k+1, k+1 ), lda, work, 1_${ik}$,czero, a( k+& 1_${ik}$, k ), 1_${ik}$ ) a( k, k ) = a( k, k ) - stdlib${ii}$_zdotu( n-k, work, 1_${ik}$, a( k+1, k ),1_${ik}$ ) end if kstep = 1_${ik}$ else ! 2 x 2 diagonal block ! invert the diagonal block. t = a( k, k-1 ) ak = a( k-1, k-1 ) / t akp1 = a( k, k ) / t akkp1 = a( k, k-1 ) / t d = t*( ak*akp1-cone ) a( k-1, k-1 ) = akp1 / d a( k, k ) = ak / d a( k, k-1 ) = -akkp1 / d ! compute columns k-1 and k of the inverse. if( k<n ) then call stdlib${ii}$_zcopy( n-k, a( k+1, k ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_zsymv( uplo, n-k, -cone, a( k+1, k+1 ), lda, work, 1_${ik}$,czero, a( k+& 1_${ik}$, k ), 1_${ik}$ ) a( k, k ) = a( k, k ) - stdlib${ii}$_zdotu( n-k, work, 1_${ik}$, a( k+1, k ),1_${ik}$ ) a( k, k-1 ) = a( k, k-1 ) -stdlib${ii}$_zdotu( n-k, a( k+1, k ), 1_${ik}$, a( k+1, k-1 ),1_${ik}$ & ) call stdlib${ii}$_zcopy( n-k, a( k+1, k-1 ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_zsymv( uplo, n-k, -cone, a( k+1, k+1 ), lda, work, 1_${ik}$,czero, a( k+& 1_${ik}$, k-1 ), 1_${ik}$ ) a( k-1, k-1 ) = a( k-1, k-1 ) -stdlib${ii}$_zdotu( n-k, work, 1_${ik}$, a( k+1, k-1 ), 1_${ik}$ ) end if kstep = 2_${ik}$ end if kp = abs( ipiv( k ) ) if( kp/=k ) then ! interchange rows and columns k and kp in the trailing ! submatrix a(k-1:n,k-1:n) if( kp<n )call stdlib${ii}$_zswap( n-kp, a( kp+1, k ), 1_${ik}$, a( kp+1, kp ), 1_${ik}$ ) call stdlib${ii}$_zswap( kp-k-1, a( k+1, k ), 1_${ik}$, a( kp, k+1 ), lda ) temp = a( k, k ) a( k, k ) = a( kp, kp ) a( kp, kp ) = temp if( kstep==2_${ik}$ ) then temp = a( k, k-1 ) a( k, k-1 ) = a( kp, k-1 ) a( kp, k-1 ) = temp end if end if k = k - kstep go to 50 60 continue end if return end subroutine stdlib${ii}$_zsytri #:for ck,ct,ci in CMPLX_KINDS_TYPES #:if not ck in ["sp","dp"] pure module subroutine stdlib${ii}$_${ci}$sytri( uplo, n, a, lda, ipiv, work, info ) !! ZSYTRI: computes the inverse of a complex symmetric indefinite matrix !! A using the factorization A = U*D*U**T or A = L*D*L**T computed by !! ZSYTRF. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${ck}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) complex(${ck}$), intent(inout) :: a(lda,*) complex(${ck}$), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: k, kp, kstep complex(${ck}$) :: ak, akkp1, akp1, d, t, temp ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZSYTRI', -info ) return end if ! quick return if possible if( n==0 )return ! check that the diagonal matrix d is nonsingular. if( upper ) then ! upper triangular storage: examine d from bottom to top do info = n, 1, -1 if( ipiv( info )>0 .and. a( info, info )==czero )return end do else ! lower triangular storage: examine d from top to bottom. do info = 1, n if( ipiv( info )>0 .and. a( info, info )==czero )return end do end if info = 0_${ik}$ if( upper ) then ! compute inv(a) from the factorization a = u*d*u**t. ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = 1_${ik}$ 30 continue ! if k > n, exit from loop. if( k>n )go to 40 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! invert the diagonal block. a( k, k ) = cone / a( k, k ) ! compute column k of the inverse. if( k>1_${ik}$ ) then call stdlib${ii}$_${ci}$copy( k-1, a( 1_${ik}$, k ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_${ci}$symv( uplo, k-1, -cone, a, lda, work, 1_${ik}$, czero,a( 1_${ik}$, k ), 1_${ik}$ ) a( k, k ) = a( k, k ) - stdlib${ii}$_${ci}$dotu( k-1, work, 1_${ik}$, a( 1_${ik}$, k ),1_${ik}$ ) end if kstep = 1_${ik}$ else ! 2 x 2 diagonal block ! invert the diagonal block. t = a( k, k+1 ) ak = a( k, k ) / t akp1 = a( k+1, k+1 ) / t akkp1 = a( k, k+1 ) / t d = t*( ak*akp1-cone ) a( k, k ) = akp1 / d a( k+1, k+1 ) = ak / d a( k, k+1 ) = -akkp1 / d ! compute columns k and k+1 of the inverse. if( k>1_${ik}$ ) then call stdlib${ii}$_${ci}$copy( k-1, a( 1_${ik}$, k ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_${ci}$symv( uplo, k-1, -cone, a, lda, work, 1_${ik}$, czero,a( 1_${ik}$, k ), 1_${ik}$ ) a( k, k ) = a( k, k ) - stdlib${ii}$_${ci}$dotu( k-1, work, 1_${ik}$, a( 1_${ik}$, k ),1_${ik}$ ) a( k, k+1 ) = a( k, k+1 ) -stdlib${ii}$_${ci}$dotu( k-1, a( 1_${ik}$, k ), 1_${ik}$, a( 1_${ik}$, k+1 ), 1_${ik}$ ) call stdlib${ii}$_${ci}$copy( k-1, a( 1_${ik}$, k+1 ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_${ci}$symv( uplo, k-1, -cone, a, lda, work, 1_${ik}$, czero,a( 1_${ik}$, k+1 ), 1_${ik}$ ) a( k+1, k+1 ) = a( k+1, k+1 ) -stdlib${ii}$_${ci}$dotu( k-1, work, 1_${ik}$, a( 1_${ik}$, k+1 ), 1_${ik}$ ) end if kstep = 2_${ik}$ end if kp = abs( ipiv( k ) ) if( kp/=k ) then ! interchange rows and columns k and kp in the leading ! submatrix a(1:k+1,1:k+1) call stdlib${ii}$_${ci}$swap( kp-1, a( 1_${ik}$, k ), 1_${ik}$, a( 1_${ik}$, kp ), 1_${ik}$ ) call stdlib${ii}$_${ci}$swap( k-kp-1, a( kp+1, k ), 1_${ik}$, a( kp, kp+1 ), lda ) temp = a( k, k ) a( k, k ) = a( kp, kp ) a( kp, kp ) = temp if( kstep==2_${ik}$ ) then temp = a( k, k+1 ) a( k, k+1 ) = a( kp, k+1 ) a( kp, k+1 ) = temp end if end if k = k + kstep go to 30 40 continue else ! compute inv(a) from the factorization a = l*d*l**t. ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2, depending on the size of the diagonal blocks. k = n 50 continue ! if k < 1, exit from loop. if( k<1 )go to 60 if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! invert the diagonal block. a( k, k ) = cone / a( k, k ) ! compute column k of the inverse. if( k<n ) then call stdlib${ii}$_${ci}$copy( n-k, a( k+1, k ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_${ci}$symv( uplo, n-k, -cone, a( k+1, k+1 ), lda, work, 1_${ik}$,czero, a( k+& 1_${ik}$, k ), 1_${ik}$ ) a( k, k ) = a( k, k ) - stdlib${ii}$_${ci}$dotu( n-k, work, 1_${ik}$, a( k+1, k ),1_${ik}$ ) end if kstep = 1_${ik}$ else ! 2 x 2 diagonal block ! invert the diagonal block. t = a( k, k-1 ) ak = a( k-1, k-1 ) / t akp1 = a( k, k ) / t akkp1 = a( k, k-1 ) / t d = t*( ak*akp1-cone ) a( k-1, k-1 ) = akp1 / d a( k, k ) = ak / d a( k, k-1 ) = -akkp1 / d ! compute columns k-1 and k of the inverse. if( k<n ) then call stdlib${ii}$_${ci}$copy( n-k, a( k+1, k ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_${ci}$symv( uplo, n-k, -cone, a( k+1, k+1 ), lda, work, 1_${ik}$,czero, a( k+& 1_${ik}$, k ), 1_${ik}$ ) a( k, k ) = a( k, k ) - stdlib${ii}$_${ci}$dotu( n-k, work, 1_${ik}$, a( k+1, k ),1_${ik}$ ) a( k, k-1 ) = a( k, k-1 ) -stdlib${ii}$_${ci}$dotu( n-k, a( k+1, k ), 1_${ik}$, a( k+1, k-1 ),1_${ik}$ & ) call stdlib${ii}$_${ci}$copy( n-k, a( k+1, k-1 ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_${ci}$symv( uplo, n-k, -cone, a( k+1, k+1 ), lda, work, 1_${ik}$,czero, a( k+& 1_${ik}$, k-1 ), 1_${ik}$ ) a( k-1, k-1 ) = a( k-1, k-1 ) -stdlib${ii}$_${ci}$dotu( n-k, work, 1_${ik}$, a( k+1, k-1 ), 1_${ik}$ ) end if kstep = 2_${ik}$ end if kp = abs( ipiv( k ) ) if( kp/=k ) then ! interchange rows and columns k and kp in the trailing ! submatrix a(k-1:n,k-1:n) if( kp<n )call stdlib${ii}$_${ci}$swap( n-kp, a( kp+1, k ), 1_${ik}$, a( kp+1, kp ), 1_${ik}$ ) call stdlib${ii}$_${ci}$swap( kp-k-1, a( k+1, k ), 1_${ik}$, a( kp, k+1 ), lda ) temp = a( k, k ) a( k, k ) = a( kp, kp ) a( kp, kp ) = temp if( kstep==2_${ik}$ ) then temp = a( k, k-1 ) a( k, k-1 ) = a( kp, k-1 ) a( kp, k-1 ) = temp end if end if k = k - kstep go to 50 60 continue end if return end subroutine stdlib${ii}$_${ci}$sytri #:endif #:endfor pure module subroutine stdlib${ii}$_ssyrfs( uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb,x, ldx, ferr, & !! SSYRFS improves the computed solution to a system of linear !! equations when the coefficient matrix is symmetric indefinite, and !! provides error bounds and backward error estimates for the solution. berr, work, iwork, info ) ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, ldaf, ldb, ldx, n, nrhs ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) integer(${ik}$), intent(out) :: iwork(*) real(sp), intent(in) :: a(lda,*), af(ldaf,*), b(ldb,*) real(sp), intent(out) :: berr(*), ferr(*), work(*) real(sp), intent(inout) :: x(ldx,*) ! ===================================================================== ! Parameters integer(${ik}$), parameter :: itmax = 5_${ik}$ ! Local Scalars logical(lk) :: upper integer(${ik}$) :: count, i, j, k, kase, nz real(sp) :: eps, lstres, s, safe1, safe2, safmin, xk ! Local Arrays integer(${ik}$) :: isave(3_${ik}$) ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( nrhs<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ else if( ldaf<max( 1_${ik}$, n ) ) then info = -7_${ik}$ else if( ldb<max( 1_${ik}$, n ) ) then info = -10_${ik}$ else if( ldx<max( 1_${ik}$, n ) ) then info = -12_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'SSYRFS', -info ) return end if ! quick return if possible if( n==0_${ik}$ .or. nrhs==0_${ik}$ ) then do j = 1, nrhs ferr( j ) = zero berr( j ) = zero end do return end if ! nz = maximum number of nonzero elements in each row of a, plus 1 nz = n + 1_${ik}$ eps = stdlib${ii}$_slamch( 'EPSILON' ) safmin = stdlib${ii}$_slamch( 'SAFE MINIMUM' ) safe1 = nz*safmin safe2 = safe1 / eps ! do for each right hand side loop_140: do j = 1, nrhs count = 1_${ik}$ lstres = three 20 continue ! loop until stopping criterion is satisfied. ! compute residual r = b - a * x call stdlib${ii}$_scopy( n, b( 1_${ik}$, j ), 1_${ik}$, work( n+1 ), 1_${ik}$ ) call stdlib${ii}$_ssymv( uplo, n, -one, a, lda, x( 1_${ik}$, j ), 1_${ik}$, one,work( n+1 ), 1_${ik}$ ) ! compute componentwise relative backward error from formula ! max(i) ( abs(r(i)) / ( abs(a)*abs(x) + abs(b) )(i) ) ! where abs(z) is the componentwise absolute value of the matrix ! or vector z. if the i-th component of the denominator is less ! than safe2, then safe1 is added to the i-th components of the ! numerator and denominator before dividing. do i = 1, n work( i ) = abs( b( i, j ) ) end do ! compute abs(a)*abs(x) + abs(b). if( upper ) then do k = 1, n s = zero xk = abs( x( k, j ) ) do i = 1, k - 1 work( i ) = work( i ) + abs( a( i, k ) )*xk s = s + abs( a( i, k ) )*abs( x( i, j ) ) end do work( k ) = work( k ) + abs( a( k, k ) )*xk + s end do else do k = 1, n s = zero xk = abs( x( k, j ) ) work( k ) = work( k ) + abs( a( k, k ) )*xk do i = k + 1, n work( i ) = work( i ) + abs( a( i, k ) )*xk s = s + abs( a( i, k ) )*abs( x( i, j ) ) end do work( k ) = work( k ) + s end do end if s = zero do i = 1, n if( work( i )>safe2 ) then s = max( s, abs( work( n+i ) ) / work( i ) ) else s = max( s, ( abs( work( n+i ) )+safe1 ) /( work( i )+safe1 ) ) end if end do berr( j ) = s ! test stopping criterion. continue iterating if ! 1) the residual berr(j) is larger than machine epsilon, and ! 2) berr(j) decreased by at least a factor of 2 during the ! last iteration, and ! 3) at most itmax iterations tried. if( berr( j )>eps .and. two*berr( j )<=lstres .and.count<=itmax ) then ! update solution and try again. call stdlib${ii}$_ssytrs( uplo, n, 1_${ik}$, af, ldaf, ipiv, work( n+1 ), n,info ) call stdlib${ii}$_saxpy( n, one, work( n+1 ), 1_${ik}$, x( 1_${ik}$, j ), 1_${ik}$ ) lstres = berr( j ) count = count + 1_${ik}$ go to 20 end if ! bound error from formula ! norm(x - xtrue) / norm(x) .le. ferr = ! norm( abs(inv(a))* ! ( abs(r) + nz*eps*( abs(a)*abs(x)+abs(b) ))) / norm(x) ! where ! norm(z) is the magnitude of the largest component of z ! inv(a) is the inverse of a ! abs(z) is the componentwise absolute value of the matrix or ! vector z ! nz is the maximum number of nonzeros in any row of a, plus 1 ! eps is machine epsilon ! the i-th component of abs(r)+nz*eps*(abs(a)*abs(x)+abs(b)) ! is incremented by safe1 if the i-th component of ! abs(a)*abs(x) + abs(b) is less than safe2. ! use stdlib_slacn2 to estimate the infinity-norm of the matrix ! inv(a) * diag(w), ! where w = abs(r) + nz*eps*( abs(a)*abs(x)+abs(b) ))) do i = 1, n if( work( i )>safe2 ) then work( i ) = abs( work( n+i ) ) + nz*eps*work( i ) else work( i ) = abs( work( n+i ) ) + nz*eps*work( i ) + safe1 end if end do kase = 0_${ik}$ 100 continue call stdlib${ii}$_slacn2( n, work( 2_${ik}$*n+1 ), work( n+1 ), iwork, ferr( j ),kase, isave ) if( kase/=0_${ik}$ ) then if( kase==1_${ik}$ ) then ! multiply by diag(w)*inv(a**t). call stdlib${ii}$_ssytrs( uplo, n, 1_${ik}$, af, ldaf, ipiv, work( n+1 ), n,info ) do i = 1, n work( n+i ) = work( i )*work( n+i ) end do else if( kase==2_${ik}$ ) then ! multiply by inv(a)*diag(w). do i = 1, n work( n+i ) = work( i )*work( n+i ) end do call stdlib${ii}$_ssytrs( uplo, n, 1_${ik}$, af, ldaf, ipiv, work( n+1 ), n,info ) end if go to 100 end if ! normalize error. lstres = zero do i = 1, n lstres = max( lstres, abs( x( i, j ) ) ) end do if( lstres/=zero )ferr( j ) = ferr( j ) / lstres end do loop_140 return end subroutine stdlib${ii}$_ssyrfs pure module subroutine stdlib${ii}$_dsyrfs( uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb,x, ldx, ferr, & !! DSYRFS improves the computed solution to a system of linear !! equations when the coefficient matrix is symmetric indefinite, and !! provides error bounds and backward error estimates for the solution. berr, work, iwork, info ) ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, ldaf, ldb, ldx, n, nrhs ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) integer(${ik}$), intent(out) :: iwork(*) real(dp), intent(in) :: a(lda,*), af(ldaf,*), b(ldb,*) real(dp), intent(out) :: berr(*), ferr(*), work(*) real(dp), intent(inout) :: x(ldx,*) ! ===================================================================== ! Parameters integer(${ik}$), parameter :: itmax = 5_${ik}$ ! Local Scalars logical(lk) :: upper integer(${ik}$) :: count, i, j, k, kase, nz real(dp) :: eps, lstres, s, safe1, safe2, safmin, xk ! Local Arrays integer(${ik}$) :: isave(3_${ik}$) ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( nrhs<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ else if( ldaf<max( 1_${ik}$, n ) ) then info = -7_${ik}$ else if( ldb<max( 1_${ik}$, n ) ) then info = -10_${ik}$ else if( ldx<max( 1_${ik}$, n ) ) then info = -12_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'DSYRFS', -info ) return end if ! quick return if possible if( n==0_${ik}$ .or. nrhs==0_${ik}$ ) then do j = 1, nrhs ferr( j ) = zero berr( j ) = zero end do return end if ! nz = maximum number of nonzero elements in each row of a, plus 1 nz = n + 1_${ik}$ eps = stdlib${ii}$_dlamch( 'EPSILON' ) safmin = stdlib${ii}$_dlamch( 'SAFE MINIMUM' ) safe1 = nz*safmin safe2 = safe1 / eps ! do for each right hand side loop_140: do j = 1, nrhs count = 1_${ik}$ lstres = three 20 continue ! loop until stopping criterion is satisfied. ! compute residual r = b - a * x call stdlib${ii}$_dcopy( n, b( 1_${ik}$, j ), 1_${ik}$, work( n+1 ), 1_${ik}$ ) call stdlib${ii}$_dsymv( uplo, n, -one, a, lda, x( 1_${ik}$, j ), 1_${ik}$, one,work( n+1 ), 1_${ik}$ ) ! compute componentwise relative backward error from formula ! max(i) ( abs(r(i)) / ( abs(a)*abs(x) + abs(b) )(i) ) ! where abs(z) is the componentwise absolute value of the matrix ! or vector z. if the i-th component of the denominator is less ! than safe2, then safe1 is added to the i-th components of the ! numerator and denominator before dividing. do i = 1, n work( i ) = abs( b( i, j ) ) end do ! compute abs(a)*abs(x) + abs(b). if( upper ) then do k = 1, n s = zero xk = abs( x( k, j ) ) do i = 1, k - 1 work( i ) = work( i ) + abs( a( i, k ) )*xk s = s + abs( a( i, k ) )*abs( x( i, j ) ) end do work( k ) = work( k ) + abs( a( k, k ) )*xk + s end do else do k = 1, n s = zero xk = abs( x( k, j ) ) work( k ) = work( k ) + abs( a( k, k ) )*xk do i = k + 1, n work( i ) = work( i ) + abs( a( i, k ) )*xk s = s + abs( a( i, k ) )*abs( x( i, j ) ) end do work( k ) = work( k ) + s end do end if s = zero do i = 1, n if( work( i )>safe2 ) then s = max( s, abs( work( n+i ) ) / work( i ) ) else s = max( s, ( abs( work( n+i ) )+safe1 ) /( work( i )+safe1 ) ) end if end do berr( j ) = s ! test stopping criterion. continue iterating if ! 1) the residual berr(j) is larger than machine epsilon, and ! 2) berr(j) decreased by at least a factor of 2 during the ! last iteration, and ! 3) at most itmax iterations tried. if( berr( j )>eps .and. two*berr( j )<=lstres .and.count<=itmax ) then ! update solution and try again. call stdlib${ii}$_dsytrs( uplo, n, 1_${ik}$, af, ldaf, ipiv, work( n+1 ), n,info ) call stdlib${ii}$_daxpy( n, one, work( n+1 ), 1_${ik}$, x( 1_${ik}$, j ), 1_${ik}$ ) lstres = berr( j ) count = count + 1_${ik}$ go to 20 end if ! bound error from formula ! norm(x - xtrue) / norm(x) .le. ferr = ! norm( abs(inv(a))* ! ( abs(r) + nz*eps*( abs(a)*abs(x)+abs(b) ))) / norm(x) ! where ! norm(z) is the magnitude of the largest component of z ! inv(a) is the inverse of a ! abs(z) is the componentwise absolute value of the matrix or ! vector z ! nz is the maximum number of nonzeros in any row of a, plus 1 ! eps is machine epsilon ! the i-th component of abs(r)+nz*eps*(abs(a)*abs(x)+abs(b)) ! is incremented by safe1 if the i-th component of ! abs(a)*abs(x) + abs(b) is less than safe2. ! use stdlib_dlacn2 to estimate the infinity-norm of the matrix ! inv(a) * diag(w), ! where w = abs(r) + nz*eps*( abs(a)*abs(x)+abs(b) ))) do i = 1, n if( work( i )>safe2 ) then work( i ) = abs( work( n+i ) ) + nz*eps*work( i ) else work( i ) = abs( work( n+i ) ) + nz*eps*work( i ) + safe1 end if end do kase = 0_${ik}$ 100 continue call stdlib${ii}$_dlacn2( n, work( 2_${ik}$*n+1 ), work( n+1 ), iwork, ferr( j ),kase, isave ) if( kase/=0_${ik}$ ) then if( kase==1_${ik}$ ) then ! multiply by diag(w)*inv(a**t). call stdlib${ii}$_dsytrs( uplo, n, 1_${ik}$, af, ldaf, ipiv, work( n+1 ), n,info ) do i = 1, n work( n+i ) = work( i )*work( n+i ) end do else if( kase==2_${ik}$ ) then ! multiply by inv(a)*diag(w). do i = 1, n work( n+i ) = work( i )*work( n+i ) end do call stdlib${ii}$_dsytrs( uplo, n, 1_${ik}$, af, ldaf, ipiv, work( n+1 ), n,info ) end if go to 100 end if ! normalize error. lstres = zero do i = 1, n lstres = max( lstres, abs( x( i, j ) ) ) end do if( lstres/=zero )ferr( j ) = ferr( j ) / lstres end do loop_140 return end subroutine stdlib${ii}$_dsyrfs #:for rk,rt,ri in REAL_KINDS_TYPES #:if not rk in ["sp","dp"] pure module subroutine stdlib${ii}$_${ri}$syrfs( uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb,x, ldx, ferr, & !! DSYRFS: improves the computed solution to a system of linear !! equations when the coefficient matrix is symmetric indefinite, and !! provides error bounds and backward error estimates for the solution. berr, work, iwork, info ) ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${rk}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, ldaf, ldb, ldx, n, nrhs ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) integer(${ik}$), intent(out) :: iwork(*) real(${rk}$), intent(in) :: a(lda,*), af(ldaf,*), b(ldb,*) real(${rk}$), intent(out) :: berr(*), ferr(*), work(*) real(${rk}$), intent(inout) :: x(ldx,*) ! ===================================================================== ! Parameters integer(${ik}$), parameter :: itmax = 5_${ik}$ ! Local Scalars logical(lk) :: upper integer(${ik}$) :: count, i, j, k, kase, nz real(${rk}$) :: eps, lstres, s, safe1, safe2, safmin, xk ! Local Arrays integer(${ik}$) :: isave(3_${ik}$) ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( nrhs<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ else if( ldaf<max( 1_${ik}$, n ) ) then info = -7_${ik}$ else if( ldb<max( 1_${ik}$, n ) ) then info = -10_${ik}$ else if( ldx<max( 1_${ik}$, n ) ) then info = -12_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'DSYRFS', -info ) return end if ! quick return if possible if( n==0_${ik}$ .or. nrhs==0_${ik}$ ) then do j = 1, nrhs ferr( j ) = zero berr( j ) = zero end do return end if ! nz = maximum number of nonzero elements in each row of a, plus 1 nz = n + 1_${ik}$ eps = stdlib${ii}$_${ri}$lamch( 'EPSILON' ) safmin = stdlib${ii}$_${ri}$lamch( 'SAFE MINIMUM' ) safe1 = nz*safmin safe2 = safe1 / eps ! do for each right hand side loop_140: do j = 1, nrhs count = 1_${ik}$ lstres = three 20 continue ! loop until stopping criterion is satisfied. ! compute residual r = b - a * x call stdlib${ii}$_${ri}$copy( n, b( 1_${ik}$, j ), 1_${ik}$, work( n+1 ), 1_${ik}$ ) call stdlib${ii}$_${ri}$symv( uplo, n, -one, a, lda, x( 1_${ik}$, j ), 1_${ik}$, one,work( n+1 ), 1_${ik}$ ) ! compute componentwise relative backward error from formula ! max(i) ( abs(r(i)) / ( abs(a)*abs(x) + abs(b) )(i) ) ! where abs(z) is the componentwise absolute value of the matrix ! or vector z. if the i-th component of the denominator is less ! than safe2, then safe1 is added to the i-th components of the ! numerator and denominator before dividing. do i = 1, n work( i ) = abs( b( i, j ) ) end do ! compute abs(a)*abs(x) + abs(b). if( upper ) then do k = 1, n s = zero xk = abs( x( k, j ) ) do i = 1, k - 1 work( i ) = work( i ) + abs( a( i, k ) )*xk s = s + abs( a( i, k ) )*abs( x( i, j ) ) end do work( k ) = work( k ) + abs( a( k, k ) )*xk + s end do else do k = 1, n s = zero xk = abs( x( k, j ) ) work( k ) = work( k ) + abs( a( k, k ) )*xk do i = k + 1, n work( i ) = work( i ) + abs( a( i, k ) )*xk s = s + abs( a( i, k ) )*abs( x( i, j ) ) end do work( k ) = work( k ) + s end do end if s = zero do i = 1, n if( work( i )>safe2 ) then s = max( s, abs( work( n+i ) ) / work( i ) ) else s = max( s, ( abs( work( n+i ) )+safe1 ) /( work( i )+safe1 ) ) end if end do berr( j ) = s ! test stopping criterion. continue iterating if ! 1) the residual berr(j) is larger than machine epsilon, and ! 2) berr(j) decreased by at least a factor of 2 during the ! last iteration, and ! 3) at most itmax iterations tried. if( berr( j )>eps .and. two*berr( j )<=lstres .and.count<=itmax ) then ! update solution and try again. call stdlib${ii}$_${ri}$sytrs( uplo, n, 1_${ik}$, af, ldaf, ipiv, work( n+1 ), n,info ) call stdlib${ii}$_${ri}$axpy( n, one, work( n+1 ), 1_${ik}$, x( 1_${ik}$, j ), 1_${ik}$ ) lstres = berr( j ) count = count + 1_${ik}$ go to 20 end if ! bound error from formula ! norm(x - xtrue) / norm(x) .le. ferr = ! norm( abs(inv(a))* ! ( abs(r) + nz*eps*( abs(a)*abs(x)+abs(b) ))) / norm(x) ! where ! norm(z) is the magnitude of the largest component of z ! inv(a) is the inverse of a ! abs(z) is the componentwise absolute value of the matrix or ! vector z ! nz is the maximum number of nonzeros in any row of a, plus 1 ! eps is machine epsilon ! the i-th component of abs(r)+nz*eps*(abs(a)*abs(x)+abs(b)) ! is incremented by safe1 if the i-th component of ! abs(a)*abs(x) + abs(b) is less than safe2. ! use stdlib_${ri}$lacn2 to estimate the infinity-norm of the matrix ! inv(a) * diag(w), ! where w = abs(r) + nz*eps*( abs(a)*abs(x)+abs(b) ))) do i = 1, n if( work( i )>safe2 ) then work( i ) = abs( work( n+i ) ) + nz*eps*work( i ) else work( i ) = abs( work( n+i ) ) + nz*eps*work( i ) + safe1 end if end do kase = 0_${ik}$ 100 continue call stdlib${ii}$_${ri}$lacn2( n, work( 2_${ik}$*n+1 ), work( n+1 ), iwork, ferr( j ),kase, isave ) if( kase/=0_${ik}$ ) then if( kase==1_${ik}$ ) then ! multiply by diag(w)*inv(a**t). call stdlib${ii}$_${ri}$sytrs( uplo, n, 1_${ik}$, af, ldaf, ipiv, work( n+1 ), n,info ) do i = 1, n work( n+i ) = work( i )*work( n+i ) end do else if( kase==2_${ik}$ ) then ! multiply by inv(a)*diag(w). do i = 1, n work( n+i ) = work( i )*work( n+i ) end do call stdlib${ii}$_${ri}$sytrs( uplo, n, 1_${ik}$, af, ldaf, ipiv, work( n+1 ), n,info ) end if go to 100 end if ! normalize error. lstres = zero do i = 1, n lstres = max( lstres, abs( x( i, j ) ) ) end do if( lstres/=zero )ferr( j ) = ferr( j ) / lstres end do loop_140 return end subroutine stdlib${ii}$_${ri}$syrfs #:endif #:endfor pure module subroutine stdlib${ii}$_csyrfs( uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb,x, ldx, ferr, & !! CSYRFS improves the computed solution to a system of linear !! equations when the coefficient matrix is symmetric indefinite, and !! provides error bounds and backward error estimates for the solution. berr, work, rwork, info ) ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, ldaf, ldb, ldx, n, nrhs ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) real(sp), intent(out) :: berr(*), ferr(*), rwork(*) complex(sp), intent(in) :: a(lda,*), af(ldaf,*), b(ldb,*) complex(sp), intent(out) :: work(*) complex(sp), intent(inout) :: x(ldx,*) ! ===================================================================== ! Parameters integer(${ik}$), parameter :: itmax = 5_${ik}$ ! Local Scalars logical(lk) :: upper integer(${ik}$) :: count, i, j, k, kase, nz real(sp) :: eps, lstres, s, safe1, safe2, safmin, xk complex(sp) :: zdum ! Local Arrays integer(${ik}$) :: isave(3_${ik}$) ! Intrinsic Functions ! Statement Functions real(sp) :: cabs1 ! Statement Function Definitions cabs1( zdum ) = abs( real( zdum,KIND=sp) ) + abs( aimag( zdum ) ) ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( nrhs<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ else if( ldaf<max( 1_${ik}$, n ) ) then info = -7_${ik}$ else if( ldb<max( 1_${ik}$, n ) ) then info = -10_${ik}$ else if( ldx<max( 1_${ik}$, n ) ) then info = -12_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'CSYRFS', -info ) return end if ! quick return if possible if( n==0_${ik}$ .or. nrhs==0_${ik}$ ) then do j = 1, nrhs ferr( j ) = zero berr( j ) = zero end do return end if ! nz = maximum number of nonzero elements in each row of a, plus 1 nz = n + 1_${ik}$ eps = stdlib${ii}$_slamch( 'EPSILON' ) safmin = stdlib${ii}$_slamch( 'SAFE MINIMUM' ) safe1 = nz*safmin safe2 = safe1 / eps ! do for each right hand side loop_140: do j = 1, nrhs count = 1_${ik}$ lstres = three 20 continue ! loop until stopping criterion is satisfied. ! compute residual r = b - a * x call stdlib${ii}$_ccopy( n, b( 1_${ik}$, j ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_csymv( uplo, n, -cone, a, lda, x( 1_${ik}$, j ), 1_${ik}$, cone, work, 1_${ik}$ ) ! compute componentwise relative backward error from formula ! max(i) ( abs(r(i)) / ( abs(a)*abs(x) + abs(b) )(i) ) ! where abs(z) is the componentwise absolute value of the matrix ! or vector z. if the i-th component of the denominator is less ! than safe2, then safe1 is added to the i-th components of the ! numerator and denominator before dividing. do i = 1, n rwork( i ) = cabs1( b( i, j ) ) end do ! compute abs(a)*abs(x) + abs(b). if( upper ) then do k = 1, n s = zero xk = cabs1( x( k, j ) ) do i = 1, k - 1 rwork( i ) = rwork( i ) + cabs1( a( i, k ) )*xk s = s + cabs1( a( i, k ) )*cabs1( x( i, j ) ) end do rwork( k ) = rwork( k ) + cabs1( a( k, k ) )*xk + s end do else do k = 1, n s = zero xk = cabs1( x( k, j ) ) rwork( k ) = rwork( k ) + cabs1( a( k, k ) )*xk do i = k + 1, n rwork( i ) = rwork( i ) + cabs1( a( i, k ) )*xk s = s + cabs1( a( i, k ) )*cabs1( x( i, j ) ) end do rwork( k ) = rwork( k ) + s end do end if s = zero do i = 1, n if( rwork( i )>safe2 ) then s = max( s, cabs1( work( i ) ) / rwork( i ) ) else s = max( s, ( cabs1( work( i ) )+safe1 ) /( rwork( i )+safe1 ) ) end if end do berr( j ) = s ! test stopping criterion. continue iterating if ! 1) the residual berr(j) is larger than machine epsilon, and ! 2) berr(j) decreased by at least a factor of 2 during the ! last iteration, and ! 3) at most itmax iterations tried. if( berr( j )>eps .and. two*berr( j )<=lstres .and.count<=itmax ) then ! update solution and try again. call stdlib${ii}$_csytrs( uplo, n, 1_${ik}$, af, ldaf, ipiv, work, n, info ) call stdlib${ii}$_caxpy( n, cone, work, 1_${ik}$, x( 1_${ik}$, j ), 1_${ik}$ ) lstres = berr( j ) count = count + 1_${ik}$ go to 20 end if ! bound error from formula ! norm(x - xtrue) / norm(x) .le. ferr = ! norm( abs(inv(a))* ! ( abs(r) + nz*eps*( abs(a)*abs(x)+abs(b) ))) / norm(x) ! where ! norm(z) is the magnitude of the largest component of z ! inv(a) is the inverse of a ! abs(z) is the componentwise absolute value of the matrix or ! vector z ! nz is the maximum number of nonzeros in any row of a, plus 1 ! eps is machine epsilon ! the i-th component of abs(r)+nz*eps*(abs(a)*abs(x)+abs(b)) ! is incremented by safe1 if the i-th component of ! abs(a)*abs(x) + abs(b) is less than safe2. ! use stdlib_clacn2 to estimate the infinity-norm of the matrix ! inv(a) * diag(w), ! where w = abs(r) + nz*eps*( abs(a)*abs(x)+abs(b) ))) do i = 1, n if( rwork( i )>safe2 ) then rwork( i ) = cabs1( work( i ) ) + nz*eps*rwork( i ) else rwork( i ) = cabs1( work( i ) ) + nz*eps*rwork( i ) +safe1 end if end do kase = 0_${ik}$ 100 continue call stdlib${ii}$_clacn2( n, work( n+1 ), work, ferr( j ), kase, isave ) if( kase/=0_${ik}$ ) then if( kase==1_${ik}$ ) then ! multiply by diag(w)*inv(a**t). call stdlib${ii}$_csytrs( uplo, n, 1_${ik}$, af, ldaf, ipiv, work, n, info ) do i = 1, n work( i ) = rwork( i )*work( i ) end do else if( kase==2_${ik}$ ) then ! multiply by inv(a)*diag(w). do i = 1, n work( i ) = rwork( i )*work( i ) end do call stdlib${ii}$_csytrs( uplo, n, 1_${ik}$, af, ldaf, ipiv, work, n, info ) end if go to 100 end if ! normalize error. lstres = zero do i = 1, n lstres = max( lstres, cabs1( x( i, j ) ) ) end do if( lstres/=zero )ferr( j ) = ferr( j ) / lstres end do loop_140 return end subroutine stdlib${ii}$_csyrfs pure module subroutine stdlib${ii}$_zsyrfs( uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb,x, ldx, ferr, & !! ZSYRFS improves the computed solution to a system of linear !! equations when the coefficient matrix is symmetric indefinite, and !! provides error bounds and backward error estimates for the solution. berr, work, rwork, info ) ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, ldaf, ldb, ldx, n, nrhs ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) real(dp), intent(out) :: berr(*), ferr(*), rwork(*) complex(dp), intent(in) :: a(lda,*), af(ldaf,*), b(ldb,*) complex(dp), intent(out) :: work(*) complex(dp), intent(inout) :: x(ldx,*) ! ===================================================================== ! Parameters integer(${ik}$), parameter :: itmax = 5_${ik}$ ! Local Scalars logical(lk) :: upper integer(${ik}$) :: count, i, j, k, kase, nz real(dp) :: eps, lstres, s, safe1, safe2, safmin, xk complex(dp) :: zdum ! Local Arrays integer(${ik}$) :: isave(3_${ik}$) ! Intrinsic Functions ! Statement Functions real(dp) :: cabs1 ! Statement Function Definitions cabs1( zdum ) = abs( real( zdum,KIND=dp) ) + abs( aimag( zdum ) ) ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( nrhs<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ else if( ldaf<max( 1_${ik}$, n ) ) then info = -7_${ik}$ else if( ldb<max( 1_${ik}$, n ) ) then info = -10_${ik}$ else if( ldx<max( 1_${ik}$, n ) ) then info = -12_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZSYRFS', -info ) return end if ! quick return if possible if( n==0_${ik}$ .or. nrhs==0_${ik}$ ) then do j = 1, nrhs ferr( j ) = zero berr( j ) = zero end do return end if ! nz = maximum number of nonzero elements in each row of a, plus 1 nz = n + 1_${ik}$ eps = stdlib${ii}$_dlamch( 'EPSILON' ) safmin = stdlib${ii}$_dlamch( 'SAFE MINIMUM' ) safe1 = nz*safmin safe2 = safe1 / eps ! do for each right hand side loop_140: do j = 1, nrhs count = 1_${ik}$ lstres = three 20 continue ! loop until stopping criterion is satisfied. ! compute residual r = b - a * x call stdlib${ii}$_zcopy( n, b( 1_${ik}$, j ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_zsymv( uplo, n, -cone, a, lda, x( 1_${ik}$, j ), 1_${ik}$, cone, work, 1_${ik}$ ) ! compute componentwise relative backward error from formula ! max(i) ( abs(r(i)) / ( abs(a)*abs(x) + abs(b) )(i) ) ! where abs(z) is the componentwise absolute value of the matrix ! or vector z. if the i-th component of the denominator is less ! than safe2, then safe1 is added to the i-th components of the ! numerator and denominator before dividing. do i = 1, n rwork( i ) = cabs1( b( i, j ) ) end do ! compute abs(a)*abs(x) + abs(b). if( upper ) then do k = 1, n s = zero xk = cabs1( x( k, j ) ) do i = 1, k - 1 rwork( i ) = rwork( i ) + cabs1( a( i, k ) )*xk s = s + cabs1( a( i, k ) )*cabs1( x( i, j ) ) end do rwork( k ) = rwork( k ) + cabs1( a( k, k ) )*xk + s end do else do k = 1, n s = zero xk = cabs1( x( k, j ) ) rwork( k ) = rwork( k ) + cabs1( a( k, k ) )*xk do i = k + 1, n rwork( i ) = rwork( i ) + cabs1( a( i, k ) )*xk s = s + cabs1( a( i, k ) )*cabs1( x( i, j ) ) end do rwork( k ) = rwork( k ) + s end do end if s = zero do i = 1, n if( rwork( i )>safe2 ) then s = max( s, cabs1( work( i ) ) / rwork( i ) ) else s = max( s, ( cabs1( work( i ) )+safe1 ) /( rwork( i )+safe1 ) ) end if end do berr( j ) = s ! test stopping criterion. continue iterating if ! 1) the residual berr(j) is larger than machine epsilon, and ! 2) berr(j) decreased by at least a factor of 2 during the ! last iteration, and ! 3) at most itmax iterations tried. if( berr( j )>eps .and. two*berr( j )<=lstres .and.count<=itmax ) then ! update solution and try again. call stdlib${ii}$_zsytrs( uplo, n, 1_${ik}$, af, ldaf, ipiv, work, n, info ) call stdlib${ii}$_zaxpy( n, cone, work, 1_${ik}$, x( 1_${ik}$, j ), 1_${ik}$ ) lstres = berr( j ) count = count + 1_${ik}$ go to 20 end if ! bound error from formula ! norm(x - xtrue) / norm(x) .le. ferr = ! norm( abs(inv(a))* ! ( abs(r) + nz*eps*( abs(a)*abs(x)+abs(b) ))) / norm(x) ! where ! norm(z) is the magnitude of the largest component of z ! inv(a) is the inverse of a ! abs(z) is the componentwise absolute value of the matrix or ! vector z ! nz is the maximum number of nonzeros in any row of a, plus 1 ! eps is machine epsilon ! the i-th component of abs(r)+nz*eps*(abs(a)*abs(x)+abs(b)) ! is incremented by safe1 if the i-th component of ! abs(a)*abs(x) + abs(b) is less than safe2. ! use stdlib_zlacn2 to estimate the infinity-norm of the matrix ! inv(a) * diag(w), ! where w = abs(r) + nz*eps*( abs(a)*abs(x)+abs(b) ))) do i = 1, n if( rwork( i )>safe2 ) then rwork( i ) = cabs1( work( i ) ) + nz*eps*rwork( i ) else rwork( i ) = cabs1( work( i ) ) + nz*eps*rwork( i ) +safe1 end if end do kase = 0_${ik}$ 100 continue call stdlib${ii}$_zlacn2( n, work( n+1 ), work, ferr( j ), kase, isave ) if( kase/=0_${ik}$ ) then if( kase==1_${ik}$ ) then ! multiply by diag(w)*inv(a**t). call stdlib${ii}$_zsytrs( uplo, n, 1_${ik}$, af, ldaf, ipiv, work, n, info ) do i = 1, n work( i ) = rwork( i )*work( i ) end do else if( kase==2_${ik}$ ) then ! multiply by inv(a)*diag(w). do i = 1, n work( i ) = rwork( i )*work( i ) end do call stdlib${ii}$_zsytrs( uplo, n, 1_${ik}$, af, ldaf, ipiv, work, n, info ) end if go to 100 end if ! normalize error. lstres = zero do i = 1, n lstres = max( lstres, cabs1( x( i, j ) ) ) end do if( lstres/=zero )ferr( j ) = ferr( j ) / lstres end do loop_140 return end subroutine stdlib${ii}$_zsyrfs #:for ck,ct,ci in CMPLX_KINDS_TYPES #:if not ck in ["sp","dp"] pure module subroutine stdlib${ii}$_${ci}$syrfs( uplo, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb,x, ldx, ferr, & !! ZSYRFS: improves the computed solution to a system of linear !! equations when the coefficient matrix is symmetric indefinite, and !! provides error bounds and backward error estimates for the solution. berr, work, rwork, info ) ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${ck}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, ldaf, ldb, ldx, n, nrhs ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) real(${ck}$), intent(out) :: berr(*), ferr(*), rwork(*) complex(${ck}$), intent(in) :: a(lda,*), af(ldaf,*), b(ldb,*) complex(${ck}$), intent(out) :: work(*) complex(${ck}$), intent(inout) :: x(ldx,*) ! ===================================================================== ! Parameters integer(${ik}$), parameter :: itmax = 5_${ik}$ ! Local Scalars logical(lk) :: upper integer(${ik}$) :: count, i, j, k, kase, nz real(${ck}$) :: eps, lstres, s, safe1, safe2, safmin, xk complex(${ck}$) :: zdum ! Local Arrays integer(${ik}$) :: isave(3_${ik}$) ! Intrinsic Functions ! Statement Functions real(${ck}$) :: cabs1 ! Statement Function Definitions cabs1( zdum ) = abs( real( zdum,KIND=${ck}$) ) + abs( aimag( zdum ) ) ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( nrhs<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ else if( ldaf<max( 1_${ik}$, n ) ) then info = -7_${ik}$ else if( ldb<max( 1_${ik}$, n ) ) then info = -10_${ik}$ else if( ldx<max( 1_${ik}$, n ) ) then info = -12_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZSYRFS', -info ) return end if ! quick return if possible if( n==0_${ik}$ .or. nrhs==0_${ik}$ ) then do j = 1, nrhs ferr( j ) = zero berr( j ) = zero end do return end if ! nz = maximum number of nonzero elements in each row of a, plus 1 nz = n + 1_${ik}$ eps = stdlib${ii}$_${c2ri(ci)}$lamch( 'EPSILON' ) safmin = stdlib${ii}$_${c2ri(ci)}$lamch( 'SAFE MINIMUM' ) safe1 = nz*safmin safe2 = safe1 / eps ! do for each right hand side loop_140: do j = 1, nrhs count = 1_${ik}$ lstres = three 20 continue ! loop until stopping criterion is satisfied. ! compute residual r = b - a * x call stdlib${ii}$_${ci}$copy( n, b( 1_${ik}$, j ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_${ci}$symv( uplo, n, -cone, a, lda, x( 1_${ik}$, j ), 1_${ik}$, cone, work, 1_${ik}$ ) ! compute componentwise relative backward error from formula ! max(i) ( abs(r(i)) / ( abs(a)*abs(x) + abs(b) )(i) ) ! where abs(z) is the componentwise absolute value of the matrix ! or vector z. if the i-th component of the denominator is less ! than safe2, then safe1 is added to the i-th components of the ! numerator and denominator before dividing. do i = 1, n rwork( i ) = cabs1( b( i, j ) ) end do ! compute abs(a)*abs(x) + abs(b). if( upper ) then do k = 1, n s = zero xk = cabs1( x( k, j ) ) do i = 1, k - 1 rwork( i ) = rwork( i ) + cabs1( a( i, k ) )*xk s = s + cabs1( a( i, k ) )*cabs1( x( i, j ) ) end do rwork( k ) = rwork( k ) + cabs1( a( k, k ) )*xk + s end do else do k = 1, n s = zero xk = cabs1( x( k, j ) ) rwork( k ) = rwork( k ) + cabs1( a( k, k ) )*xk do i = k + 1, n rwork( i ) = rwork( i ) + cabs1( a( i, k ) )*xk s = s + cabs1( a( i, k ) )*cabs1( x( i, j ) ) end do rwork( k ) = rwork( k ) + s end do end if s = zero do i = 1, n if( rwork( i )>safe2 ) then s = max( s, cabs1( work( i ) ) / rwork( i ) ) else s = max( s, ( cabs1( work( i ) )+safe1 ) /( rwork( i )+safe1 ) ) end if end do berr( j ) = s ! test stopping criterion. continue iterating if ! 1) the residual berr(j) is larger than machine epsilon, and ! 2) berr(j) decreased by at least a factor of 2 during the ! last iteration, and ! 3) at most itmax iterations tried. if( berr( j )>eps .and. two*berr( j )<=lstres .and.count<=itmax ) then ! update solution and try again. call stdlib${ii}$_${ci}$sytrs( uplo, n, 1_${ik}$, af, ldaf, ipiv, work, n, info ) call stdlib${ii}$_${ci}$axpy( n, cone, work, 1_${ik}$, x( 1_${ik}$, j ), 1_${ik}$ ) lstres = berr( j ) count = count + 1_${ik}$ go to 20 end if ! bound error from formula ! norm(x - xtrue) / norm(x) .le. ferr = ! norm( abs(inv(a))* ! ( abs(r) + nz*eps*( abs(a)*abs(x)+abs(b) ))) / norm(x) ! where ! norm(z) is the magnitude of the largest component of z ! inv(a) is the inverse of a ! abs(z) is the componentwise absolute value of the matrix or ! vector z ! nz is the maximum number of nonzeros in any row of a, plus 1 ! eps is machine epsilon ! the i-th component of abs(r)+nz*eps*(abs(a)*abs(x)+abs(b)) ! is incremented by safe1 if the i-th component of ! abs(a)*abs(x) + abs(b) is less than safe2. ! use stdlib_${ci}$lacn2 to estimate the infinity-norm of the matrix ! inv(a) * diag(w), ! where w = abs(r) + nz*eps*( abs(a)*abs(x)+abs(b) ))) do i = 1, n if( rwork( i )>safe2 ) then rwork( i ) = cabs1( work( i ) ) + nz*eps*rwork( i ) else rwork( i ) = cabs1( work( i ) ) + nz*eps*rwork( i ) +safe1 end if end do kase = 0_${ik}$ 100 continue call stdlib${ii}$_${ci}$lacn2( n, work( n+1 ), work, ferr( j ), kase, isave ) if( kase/=0_${ik}$ ) then if( kase==1_${ik}$ ) then ! multiply by diag(w)*inv(a**t). call stdlib${ii}$_${ci}$sytrs( uplo, n, 1_${ik}$, af, ldaf, ipiv, work, n, info ) do i = 1, n work( i ) = rwork( i )*work( i ) end do else if( kase==2_${ik}$ ) then ! multiply by inv(a)*diag(w). do i = 1, n work( i ) = rwork( i )*work( i ) end do call stdlib${ii}$_${ci}$sytrs( uplo, n, 1_${ik}$, af, ldaf, ipiv, work, n, info ) end if go to 100 end if ! normalize error. lstres = zero do i = 1, n lstres = max( lstres, cabs1( x( i, j ) ) ) end do if( lstres/=zero )ferr( j ) = ferr( j ) / lstres end do loop_140 return end subroutine stdlib${ii}$_${ci}$syrfs #:endif #:endfor pure module subroutine stdlib${ii}$_ssyequb( uplo, n, a, lda, s, scond, amax, work, info ) !! SSYEQUB computes row and column scalings intended to equilibrate a !! symmetric matrix A (with respect to the Euclidean norm) and reduce !! its condition number. The scale factors S are computed by the BIN !! algorithm (see references) so that the scaled matrix B with elements !! B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of !! the smallest possible condition number over all possible diagonal !! scalings. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n real(sp), intent(out) :: amax, scond character, intent(in) :: uplo ! Array Arguments real(sp), intent(in) :: a(lda,*) real(sp), intent(out) :: s(*), work(*) ! ===================================================================== ! Parameters integer(${ik}$), parameter :: max_iter = 100_${ik}$ ! Local Scalars integer(${ik}$) :: i, j, iter real(sp) :: avg, std, tol, c0, c1, c2, t, u, si, d, base, smin, smax, smlnum, bignum, & scale, sumsq logical(lk) :: up ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ if ( .not. ( stdlib_lsame( uplo, 'U' ) .or. stdlib_lsame( uplo, 'L' ) ) ) then info = -1_${ik}$ else if ( n < 0_${ik}$ ) then info = -2_${ik}$ else if ( lda < max( 1_${ik}$, n ) ) then info = -4_${ik}$ end if if ( info /= 0_${ik}$ ) then call stdlib${ii}$_xerbla( 'SSYEQUB', -info ) return end if up = stdlib_lsame( uplo, 'U' ) amax = zero ! quick return if possible. if ( n == 0_${ik}$ ) then scond = one return end if do i = 1, n s( i ) = zero end do amax = zero if ( up ) then do j = 1, n do i = 1, j-1 s( i ) = max( s( i ), abs( a( i, j ) ) ) s( j ) = max( s( j ), abs( a( i, j ) ) ) amax = max( amax, abs( a( i, j ) ) ) end do s( j ) = max( s( j ), abs( a( j, j ) ) ) amax = max( amax, abs( a( j, j ) ) ) end do else do j = 1, n s( j ) = max( s( j ), abs( a( j, j ) ) ) amax = max( amax, abs( a( j, j ) ) ) do i = j+1, n s( i ) = max( s( i ), abs( a( i, j ) ) ) s( j ) = max( s( j ), abs( a( i, j ) ) ) amax = max( amax, abs( a( i, j ) ) ) end do end do end if do j = 1, n s( j ) = one / s( j ) end do tol = one / sqrt( two * n ) do iter = 1, max_iter scale = zero sumsq = zero ! beta = |a|s do i = 1, n work( i ) = zero end do if ( up ) then do j = 1, n do i = 1, j-1 work( i ) = work( i ) + abs( a( i, j ) ) * s( j ) work( j ) = work( j ) + abs( a( i, j ) ) * s( i ) end do work( j ) = work( j ) + abs( a( j, j ) ) * s( j ) end do else do j = 1, n work( j ) = work( j ) + abs( a( j, j ) ) * s( j ) do i = j+1, n work( i ) = work( i ) + abs( a( i, j ) ) * s( j ) work( j ) = work( j ) + abs( a( i, j ) ) * s( i ) end do end do end if ! avg = s^t beta / n avg = zero do i = 1, n avg = avg + s( i )*work( i ) end do avg = avg / n std = zero do i = n+1, 2*n work( i ) = s( i-n ) * work( i-n ) - avg end do call stdlib${ii}$_slassq( n, work( n+1 ), 1_${ik}$, scale, sumsq ) std = scale * sqrt( sumsq / n ) if ( std < tol * avg ) goto 999 do i = 1, n t = abs( a( i, i ) ) si = s( i ) c2 = ( n-1 ) * t c1 = ( n-2 ) * ( work( i ) - t*si ) c0 = -(t*si)*si + 2_${ik}$*work( i )*si - n*avg d = c1*c1 - 4_${ik}$*c0*c2 if ( d <= 0_${ik}$ ) then info = -1_${ik}$ return end if si = -2_${ik}$*c0 / ( c1 + sqrt( d ) ) d = si - s( i ) u = zero if ( up ) then do j = 1, i t = abs( a( j, i ) ) u = u + s( j )*t work( j ) = work( j ) + d*t end do do j = i+1,n t = abs( a( i, j ) ) u = u + s( j )*t work( j ) = work( j ) + d*t end do else do j = 1, i t = abs( a( i, j ) ) u = u + s( j )*t work( j ) = work( j ) + d*t end do do j = i+1,n t = abs( a( j, i ) ) u = u + s( j )*t work( j ) = work( j ) + d*t end do end if avg = avg + ( u + work( i ) ) * d / n s( i ) = si end do end do 999 continue smlnum = stdlib${ii}$_slamch( 'SAFEMIN' ) bignum = one / smlnum smin = bignum smax = zero t = one / sqrt( avg ) base = stdlib${ii}$_slamch( 'B' ) u = one / log( base ) do i = 1, n s( i ) = base ** int( u * log( s( i ) * t ),KIND=${ik}$) smin = min( smin, s( i ) ) smax = max( smax, s( i ) ) end do scond = max( smin, smlnum ) / min( smax, bignum ) end subroutine stdlib${ii}$_ssyequb pure module subroutine stdlib${ii}$_dsyequb( uplo, n, a, lda, s, scond, amax, work, info ) !! DSYEQUB computes row and column scalings intended to equilibrate a !! symmetric matrix A (with respect to the Euclidean norm) and reduce !! its condition number. The scale factors S are computed by the BIN !! algorithm (see references) so that the scaled matrix B with elements !! B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of !! the smallest possible condition number over all possible diagonal !! scalings. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n real(dp), intent(out) :: amax, scond character, intent(in) :: uplo ! Array Arguments real(dp), intent(in) :: a(lda,*) real(dp), intent(out) :: s(*), work(*) ! ===================================================================== ! Parameters integer(${ik}$), parameter :: max_iter = 100_${ik}$ ! Local Scalars integer(${ik}$) :: i, j, iter real(dp) :: avg, std, tol, c0, c1, c2, t, u, si, d, base, smin, smax, smlnum, bignum, & scale, sumsq logical(lk) :: up ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ if ( .not. ( stdlib_lsame( uplo, 'U' ) .or. stdlib_lsame( uplo, 'L' ) ) ) then info = -1_${ik}$ else if ( n < 0_${ik}$ ) then info = -2_${ik}$ else if ( lda < max( 1_${ik}$, n ) ) then info = -4_${ik}$ end if if ( info /= 0_${ik}$ ) then call stdlib${ii}$_xerbla( 'DSYEQUB', -info ) return end if up = stdlib_lsame( uplo, 'U' ) amax = zero ! quick return if possible. if ( n == 0_${ik}$ ) then scond = one return end if do i = 1, n s( i ) = zero end do amax = zero if ( up ) then do j = 1, n do i = 1, j-1 s( i ) = max( s( i ), abs( a( i, j ) ) ) s( j ) = max( s( j ), abs( a( i, j ) ) ) amax = max( amax, abs( a( i, j ) ) ) end do s( j ) = max( s( j ), abs( a( j, j ) ) ) amax = max( amax, abs( a( j, j ) ) ) end do else do j = 1, n s( j ) = max( s( j ), abs( a( j, j ) ) ) amax = max( amax, abs( a( j, j ) ) ) do i = j+1, n s( i ) = max( s( i ), abs( a( i, j ) ) ) s( j ) = max( s( j ), abs( a( i, j ) ) ) amax = max( amax, abs( a( i, j ) ) ) end do end do end if do j = 1, n s( j ) = one / s( j ) end do tol = one / sqrt( two * n ) do iter = 1, max_iter scale = zero sumsq = zero ! beta = |a|s do i = 1, n work( i ) = zero end do if ( up ) then do j = 1, n do i = 1, j-1 work( i ) = work( i ) + abs( a( i, j ) ) * s( j ) work( j ) = work( j ) + abs( a( i, j ) ) * s( i ) end do work( j ) = work( j ) + abs( a( j, j ) ) * s( j ) end do else do j = 1, n work( j ) = work( j ) + abs( a( j, j ) ) * s( j ) do i = j+1, n work( i ) = work( i ) + abs( a( i, j ) ) * s( j ) work( j ) = work( j ) + abs( a( i, j ) ) * s( i ) end do end do end if ! avg = s^t beta / n avg = zero do i = 1, n avg = avg + s( i )*work( i ) end do avg = avg / n std = zero do i = n+1, 2*n work( i ) = s( i-n ) * work( i-n ) - avg end do call stdlib${ii}$_dlassq( n, work( n+1 ), 1_${ik}$, scale, sumsq ) std = scale * sqrt( sumsq / n ) if ( std < tol * avg ) goto 999 do i = 1, n t = abs( a( i, i ) ) si = s( i ) c2 = ( n-1 ) * t c1 = ( n-2 ) * ( work( i ) - t*si ) c0 = -(t*si)*si + 2_${ik}$*work( i )*si - n*avg d = c1*c1 - 4_${ik}$*c0*c2 if ( d <= 0_${ik}$ ) then info = -1_${ik}$ return end if si = -2_${ik}$*c0 / ( c1 + sqrt( d ) ) d = si - s( i ) u = zero if ( up ) then do j = 1, i t = abs( a( j, i ) ) u = u + s( j )*t work( j ) = work( j ) + d*t end do do j = i+1,n t = abs( a( i, j ) ) u = u + s( j )*t work( j ) = work( j ) + d*t end do else do j = 1, i t = abs( a( i, j ) ) u = u + s( j )*t work( j ) = work( j ) + d*t end do do j = i+1,n t = abs( a( j, i ) ) u = u + s( j )*t work( j ) = work( j ) + d*t end do end if avg = avg + ( u + work( i ) ) * d / n s( i ) = si end do end do 999 continue smlnum = stdlib${ii}$_dlamch( 'SAFEMIN' ) bignum = one / smlnum smin = bignum smax = zero t = one / sqrt( avg ) base = stdlib${ii}$_dlamch( 'B' ) u = one / log( base ) do i = 1, n s( i ) = base ** int( u * log( s( i ) * t ),KIND=${ik}$) smin = min( smin, s( i ) ) smax = max( smax, s( i ) ) end do scond = max( smin, smlnum ) / min( smax, bignum ) end subroutine stdlib${ii}$_dsyequb #:for rk,rt,ri in REAL_KINDS_TYPES #:if not rk in ["sp","dp"] pure module subroutine stdlib${ii}$_${ri}$syequb( uplo, n, a, lda, s, scond, amax, work, info ) !! DSYEQUB: computes row and column scalings intended to equilibrate a !! symmetric matrix A (with respect to the Euclidean norm) and reduce !! its condition number. The scale factors S are computed by the BIN !! algorithm (see references) so that the scaled matrix B with elements !! B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of !! the smallest possible condition number over all possible diagonal !! scalings. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${rk}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n real(${rk}$), intent(out) :: amax, scond character, intent(in) :: uplo ! Array Arguments real(${rk}$), intent(in) :: a(lda,*) real(${rk}$), intent(out) :: s(*), work(*) ! ===================================================================== ! Parameters integer(${ik}$), parameter :: max_iter = 100_${ik}$ ! Local Scalars integer(${ik}$) :: i, j, iter real(${rk}$) :: avg, std, tol, c0, c1, c2, t, u, si, d, base, smin, smax, smlnum, bignum, & scale, sumsq logical(lk) :: up ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ if ( .not. ( stdlib_lsame( uplo, 'U' ) .or. stdlib_lsame( uplo, 'L' ) ) ) then info = -1_${ik}$ else if ( n < 0_${ik}$ ) then info = -2_${ik}$ else if ( lda < max( 1_${ik}$, n ) ) then info = -4_${ik}$ end if if ( info /= 0_${ik}$ ) then call stdlib${ii}$_xerbla( 'DSYEQUB', -info ) return end if up = stdlib_lsame( uplo, 'U' ) amax = zero ! quick return if possible. if ( n == 0_${ik}$ ) then scond = one return end if do i = 1, n s( i ) = zero end do amax = zero if ( up ) then do j = 1, n do i = 1, j-1 s( i ) = max( s( i ), abs( a( i, j ) ) ) s( j ) = max( s( j ), abs( a( i, j ) ) ) amax = max( amax, abs( a( i, j ) ) ) end do s( j ) = max( s( j ), abs( a( j, j ) ) ) amax = max( amax, abs( a( j, j ) ) ) end do else do j = 1, n s( j ) = max( s( j ), abs( a( j, j ) ) ) amax = max( amax, abs( a( j, j ) ) ) do i = j+1, n s( i ) = max( s( i ), abs( a( i, j ) ) ) s( j ) = max( s( j ), abs( a( i, j ) ) ) amax = max( amax, abs( a( i, j ) ) ) end do end do end if do j = 1, n s( j ) = one / s( j ) end do tol = one / sqrt( two * n ) do iter = 1, max_iter scale = zero sumsq = zero ! beta = |a|s do i = 1, n work( i ) = zero end do if ( up ) then do j = 1, n do i = 1, j-1 work( i ) = work( i ) + abs( a( i, j ) ) * s( j ) work( j ) = work( j ) + abs( a( i, j ) ) * s( i ) end do work( j ) = work( j ) + abs( a( j, j ) ) * s( j ) end do else do j = 1, n work( j ) = work( j ) + abs( a( j, j ) ) * s( j ) do i = j+1, n work( i ) = work( i ) + abs( a( i, j ) ) * s( j ) work( j ) = work( j ) + abs( a( i, j ) ) * s( i ) end do end do end if ! avg = s^t beta / n avg = zero do i = 1, n avg = avg + s( i )*work( i ) end do avg = avg / n std = zero do i = n+1, 2*n work( i ) = s( i-n ) * work( i-n ) - avg end do call stdlib${ii}$_${ri}$lassq( n, work( n+1 ), 1_${ik}$, scale, sumsq ) std = scale * sqrt( sumsq / n ) if ( std < tol * avg ) goto 999 do i = 1, n t = abs( a( i, i ) ) si = s( i ) c2 = ( n-1 ) * t c1 = ( n-2 ) * ( work( i ) - t*si ) c0 = -(t*si)*si + 2_${ik}$*work( i )*si - n*avg d = c1*c1 - 4_${ik}$*c0*c2 if ( d <= 0_${ik}$ ) then info = -1_${ik}$ return end if si = -2_${ik}$*c0 / ( c1 + sqrt( d ) ) d = si - s( i ) u = zero if ( up ) then do j = 1, i t = abs( a( j, i ) ) u = u + s( j )*t work( j ) = work( j ) + d*t end do do j = i+1,n t = abs( a( i, j ) ) u = u + s( j )*t work( j ) = work( j ) + d*t end do else do j = 1, i t = abs( a( i, j ) ) u = u + s( j )*t work( j ) = work( j ) + d*t end do do j = i+1,n t = abs( a( j, i ) ) u = u + s( j )*t work( j ) = work( j ) + d*t end do end if avg = avg + ( u + work( i ) ) * d / n s( i ) = si end do end do 999 continue smlnum = stdlib${ii}$_${ri}$lamch( 'SAFEMIN' ) bignum = one / smlnum smin = bignum smax = zero t = one / sqrt( avg ) base = stdlib${ii}$_${ri}$lamch( 'B' ) u = one / log( base ) do i = 1, n s( i ) = base ** int( u * log( s( i ) * t ),KIND=${ik}$) smin = min( smin, s( i ) ) smax = max( smax, s( i ) ) end do scond = max( smin, smlnum ) / min( smax, bignum ) end subroutine stdlib${ii}$_${ri}$syequb #:endif #:endfor pure module subroutine stdlib${ii}$_csyequb( uplo, n, a, lda, s, scond, amax, work, info ) !! CSYEQUB computes row and column scalings intended to equilibrate a !! symmetric matrix A (with respect to the Euclidean norm) and reduce !! its condition number. The scale factors S are computed by the BIN !! algorithm (see references) so that the scaled matrix B with elements !! B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of !! the smallest possible condition number over all possible diagonal !! scalings. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n real(sp), intent(out) :: amax, scond character, intent(in) :: uplo ! Array Arguments complex(sp), intent(in) :: a(lda,*) complex(sp), intent(out) :: work(*) real(sp), intent(out) :: s(*) ! ===================================================================== ! Parameters integer(${ik}$), parameter :: max_iter = 100_${ik}$ ! Local Scalars integer(${ik}$) :: i, j, iter real(sp) :: avg, std, tol, c0, c1, c2, t, u, si, d, base, smin, smax, smlnum, bignum, & scale, sumsq logical(lk) :: up complex(sp) :: zdum ! Intrinsic Functions ! Statement Functions real(sp) :: cabs1 ! Statement Function Definitions cabs1( zdum ) = abs( real( zdum,KIND=sp) ) + abs( aimag( zdum ) ) ! Executable Statements ! test the input parameters. info = 0_${ik}$ if ( .not. ( stdlib_lsame( uplo, 'U' ) .or. stdlib_lsame( uplo, 'L' ) ) ) then info = -1_${ik}$ else if ( n < 0_${ik}$ ) then info = -2_${ik}$ else if ( lda < max( 1_${ik}$, n ) ) then info = -4_${ik}$ end if if ( info /= 0_${ik}$ ) then call stdlib${ii}$_xerbla( 'CSYEQUB', -info ) return end if up = stdlib_lsame( uplo, 'U' ) amax = zero ! quick return if possible. if ( n == 0_${ik}$ ) then scond = one return end if do i = 1, n s( i ) = zero end do amax = zero if ( up ) then do j = 1, n do i = 1, j-1 s( i ) = max( s( i ), cabs1( a( i, j ) ) ) s( j ) = max( s( j ), cabs1( a( i, j ) ) ) amax = max( amax, cabs1( a( i, j ) ) ) end do s( j ) = max( s( j ), cabs1( a( j, j ) ) ) amax = max( amax, cabs1( a( j, j ) ) ) end do else do j = 1, n s( j ) = max( s( j ), cabs1( a( j, j ) ) ) amax = max( amax, cabs1( a( j, j ) ) ) do i = j+1, n s( i ) = max( s( i ), cabs1( a( i, j ) ) ) s( j ) = max( s( j ), cabs1( a( i, j ) ) ) amax = max( amax, cabs1( a( i, j ) ) ) end do end do end if do j = 1, n s( j ) = one / s( j ) end do tol = one / sqrt( two * n ) do iter = 1, max_iter scale = zero sumsq = zero ! beta = |a|s do i = 1, n work( i ) = zero end do if ( up ) then do j = 1, n do i = 1, j-1 work( i ) = work( i ) + cabs1( a( i, j ) ) * s( j ) work( j ) = work( j ) + cabs1( a( i, j ) ) * s( i ) end do work( j ) = work( j ) + cabs1( a( j, j ) ) * s( j ) end do else do j = 1, n work( j ) = work( j ) + cabs1( a( j, j ) ) * s( j ) do i = j+1, n work( i ) = work( i ) + cabs1( a( i, j ) ) * s( j ) work( j ) = work( j ) + cabs1( a( i, j ) ) * s( i ) end do end do end if ! avg = s^t beta / n avg = zero do i = 1, n avg = avg + real( s( i )*work( i ),KIND=sp) end do avg = avg / n std = zero do i = n+1, 2*n work( i ) = s( i-n ) * work( i-n ) - avg end do call stdlib${ii}$_classq( n, work( n+1 ), 1_${ik}$, scale, sumsq ) std = scale * sqrt( sumsq / n ) if ( std < tol * avg ) goto 999 do i = 1, n t = cabs1( a( i, i ) ) si = s( i ) c2 = ( n-1 ) * t c1 = real( n-2,KIND=sp) * ( real( work( i ),KIND=sp) - t*si ) c0 = -(t*si)*si + 2_${ik}$ * real( work( i ),KIND=sp) * si - n*avg d = c1*c1 - 4_${ik}$*c0*c2 if ( d <= 0_${ik}$ ) then info = -1_${ik}$ return end if si = -2_${ik}$*c0 / ( c1 + sqrt( d ) ) d = si - s( i ) u = zero if ( up ) then do j = 1, i t = cabs1( a( j, i ) ) u = u + s( j )*t work( j ) = work( j ) + d*t end do do j = i+1,n t = cabs1( a( i, j ) ) u = u + s( j )*t work( j ) = work( j ) + d*t end do else do j = 1, i t = cabs1( a( i, j ) ) u = u + s( j )*t work( j ) = work( j ) + d*t end do do j = i+1,n t = cabs1( a( j, i ) ) u = u + s( j )*t work( j ) = work( j ) + d*t end do end if avg = avg + ( u + real( work( i ),KIND=sp) ) * d / n s( i ) = si end do end do 999 continue smlnum = stdlib${ii}$_slamch( 'SAFEMIN' ) bignum = one / smlnum smin = bignum smax = zero t = one / sqrt( avg ) base = stdlib${ii}$_slamch( 'B' ) u = one / log( base ) do i = 1, n s( i ) = base ** int( u * log( s( i ) * t ),KIND=${ik}$) smin = min( smin, s( i ) ) smax = max( smax, s( i ) ) end do scond = max( smin, smlnum ) / min( smax, bignum ) end subroutine stdlib${ii}$_csyequb pure module subroutine stdlib${ii}$_zsyequb( uplo, n, a, lda, s, scond, amax, work, info ) !! ZSYEQUB computes row and column scalings intended to equilibrate a !! symmetric matrix A (with respect to the Euclidean norm) and reduce !! its condition number. The scale factors S are computed by the BIN !! algorithm (see references) so that the scaled matrix B with elements !! B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of !! the smallest possible condition number over all possible diagonal !! scalings. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n real(dp), intent(out) :: amax, scond character, intent(in) :: uplo ! Array Arguments complex(dp), intent(in) :: a(lda,*) complex(dp), intent(out) :: work(*) real(dp), intent(out) :: s(*) ! ===================================================================== ! Parameters integer(${ik}$), parameter :: max_iter = 100_${ik}$ ! Local Scalars integer(${ik}$) :: i, j, iter real(dp) :: avg, std, tol, c0, c1, c2, t, u, si, d, base, smin, smax, smlnum, bignum, & scale, sumsq logical(lk) :: up complex(dp) :: zdum ! Intrinsic Functions ! Statement Functions real(dp) :: cabs1 ! Statement Function Definitions cabs1( zdum ) = abs( real( zdum,KIND=dp) ) + abs( aimag( zdum ) ) ! Executable Statements ! test the input parameters. info = 0_${ik}$ if ( .not. ( stdlib_lsame( uplo, 'U' ) .or. stdlib_lsame( uplo, 'L' ) ) ) then info = -1_${ik}$ else if ( n < 0_${ik}$ ) then info = -2_${ik}$ else if ( lda < max( 1_${ik}$, n ) ) then info = -4_${ik}$ end if if ( info /= 0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZSYEQUB', -info ) return end if up = stdlib_lsame( uplo, 'U' ) amax = zero ! quick return if possible. if ( n == 0_${ik}$ ) then scond = one return end if do i = 1, n s( i ) = zero end do amax = zero if ( up ) then do j = 1, n do i = 1, j-1 s( i ) = max( s( i ), cabs1( a( i, j ) ) ) s( j ) = max( s( j ), cabs1( a( i, j ) ) ) amax = max( amax, cabs1( a( i, j ) ) ) end do s( j ) = max( s( j ), cabs1( a( j, j ) ) ) amax = max( amax, cabs1( a( j, j ) ) ) end do else do j = 1, n s( j ) = max( s( j ), cabs1( a( j, j ) ) ) amax = max( amax, cabs1( a( j, j ) ) ) do i = j+1, n s( i ) = max( s( i ), cabs1( a( i, j ) ) ) s( j ) = max( s( j ), cabs1( a( i, j ) ) ) amax = max( amax, cabs1( a( i, j ) ) ) end do end do end if do j = 1, n s( j ) = one / s( j ) end do tol = one / sqrt( two * n ) do iter = 1, max_iter scale = zero sumsq = zero ! beta = |a|s do i = 1, n work( i ) = zero end do if ( up ) then do j = 1, n do i = 1, j-1 work( i ) = work( i ) + cabs1( a( i, j ) ) * s( j ) work( j ) = work( j ) + cabs1( a( i, j ) ) * s( i ) end do work( j ) = work( j ) + cabs1( a( j, j ) ) * s( j ) end do else do j = 1, n work( j ) = work( j ) + cabs1( a( j, j ) ) * s( j ) do i = j+1, n work( i ) = work( i ) + cabs1( a( i, j ) ) * s( j ) work( j ) = work( j ) + cabs1( a( i, j ) ) * s( i ) end do end do end if ! avg = s^t beta / n avg = zero do i = 1, n avg = avg + s( i ) * real( work( i ),KIND=dp) end do avg = avg / n std = zero do i = n+1, 2*n work( i ) = s( i-n ) * work( i-n ) - avg end do call stdlib${ii}$_zlassq( n, work( n+1 ), 1_${ik}$, scale, sumsq ) std = scale * sqrt( sumsq / n ) if ( std < tol * avg ) goto 999 do i = 1, n t = cabs1( a( i, i ) ) si = s( i ) c2 = ( n-1 ) * t c1 = ( n-2 ) * ( real( work( i ),KIND=dp) - t*si ) c0 = -(t*si)*si + 2_${ik}$ * real( work( i ),KIND=dp) * si - n*avg d = c1*c1 - 4_${ik}$*c0*c2 if ( d <= 0_${ik}$ ) then info = -1_${ik}$ return end if si = -2_${ik}$*c0 / ( c1 + sqrt( d ) ) d = si - s( i ) u = zero if ( up ) then do j = 1, i t = cabs1( a( j, i ) ) u = u + s( j )*t work( j ) = work( j ) + d*t end do do j = i+1,n t = cabs1( a( i, j ) ) u = u + s( j )*t work( j ) = work( j ) + d*t end do else do j = 1, i t = cabs1( a( i, j ) ) u = u + s( j )*t work( j ) = work( j ) + d*t end do do j = i+1,n t = cabs1( a( j, i ) ) u = u + s( j )*t work( j ) = work( j ) + d*t end do end if avg = avg + ( u + real( work( i ),KIND=dp) ) * d / n s( i ) = si end do end do 999 continue smlnum = stdlib${ii}$_dlamch( 'SAFEMIN' ) bignum = one / smlnum smin = bignum smax = zero t = one / sqrt( avg ) base = stdlib${ii}$_dlamch( 'B' ) u = one / log( base ) do i = 1, n s( i ) = base ** int( u * log( s( i ) * t ),KIND=${ik}$) smin = min( smin, s( i ) ) smax = max( smax, s( i ) ) end do scond = max( smin, smlnum ) / min( smax, bignum ) end subroutine stdlib${ii}$_zsyequb #:for ck,ct,ci in CMPLX_KINDS_TYPES #:if not ck in ["sp","dp"] pure module subroutine stdlib${ii}$_${ci}$syequb( uplo, n, a, lda, s, scond, amax, work, info ) !! ZSYEQUB: computes row and column scalings intended to equilibrate a !! symmetric matrix A (with respect to the Euclidean norm) and reduce !! its condition number. The scale factors S are computed by the BIN !! algorithm (see references) so that the scaled matrix B with elements !! B(i,j) = S(i)*A(i,j)*S(j) has a condition number within a factor N of !! the smallest possible condition number over all possible diagonal !! scalings. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${ck}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n real(${ck}$), intent(out) :: amax, scond character, intent(in) :: uplo ! Array Arguments complex(${ck}$), intent(in) :: a(lda,*) complex(${ck}$), intent(out) :: work(*) real(${ck}$), intent(out) :: s(*) ! ===================================================================== ! Parameters integer(${ik}$), parameter :: max_iter = 100_${ik}$ ! Local Scalars integer(${ik}$) :: i, j, iter real(${ck}$) :: avg, std, tol, c0, c1, c2, t, u, si, d, base, smin, smax, smlnum, bignum, & scale, sumsq logical(lk) :: up complex(${ck}$) :: zdum ! Intrinsic Functions ! Statement Functions real(${ck}$) :: cabs1 ! Statement Function Definitions cabs1( zdum ) = abs( real( zdum,KIND=${ck}$) ) + abs( aimag( zdum ) ) ! Executable Statements ! test the input parameters. info = 0_${ik}$ if ( .not. ( stdlib_lsame( uplo, 'U' ) .or. stdlib_lsame( uplo, 'L' ) ) ) then info = -1_${ik}$ else if ( n < 0_${ik}$ ) then info = -2_${ik}$ else if ( lda < max( 1_${ik}$, n ) ) then info = -4_${ik}$ end if if ( info /= 0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZSYEQUB', -info ) return end if up = stdlib_lsame( uplo, 'U' ) amax = zero ! quick return if possible. if ( n == 0_${ik}$ ) then scond = one return end if do i = 1, n s( i ) = zero end do amax = zero if ( up ) then do j = 1, n do i = 1, j-1 s( i ) = max( s( i ), cabs1( a( i, j ) ) ) s( j ) = max( s( j ), cabs1( a( i, j ) ) ) amax = max( amax, cabs1( a( i, j ) ) ) end do s( j ) = max( s( j ), cabs1( a( j, j ) ) ) amax = max( amax, cabs1( a( j, j ) ) ) end do else do j = 1, n s( j ) = max( s( j ), cabs1( a( j, j ) ) ) amax = max( amax, cabs1( a( j, j ) ) ) do i = j+1, n s( i ) = max( s( i ), cabs1( a( i, j ) ) ) s( j ) = max( s( j ), cabs1( a( i, j ) ) ) amax = max( amax, cabs1( a( i, j ) ) ) end do end do end if do j = 1, n s( j ) = one / s( j ) end do tol = one / sqrt( two * n ) do iter = 1, max_iter scale = zero sumsq = zero ! beta = |a|s do i = 1, n work( i ) = zero end do if ( up ) then do j = 1, n do i = 1, j-1 work( i ) = work( i ) + cabs1( a( i, j ) ) * s( j ) work( j ) = work( j ) + cabs1( a( i, j ) ) * s( i ) end do work( j ) = work( j ) + cabs1( a( j, j ) ) * s( j ) end do else do j = 1, n work( j ) = work( j ) + cabs1( a( j, j ) ) * s( j ) do i = j+1, n work( i ) = work( i ) + cabs1( a( i, j ) ) * s( j ) work( j ) = work( j ) + cabs1( a( i, j ) ) * s( i ) end do end do end if ! avg = s^t beta / n avg = zero do i = 1, n avg = avg + s( i ) * real( work( i ),KIND=${ck}$) end do avg = avg / n std = zero do i = n+1, 2*n work( i ) = s( i-n ) * work( i-n ) - avg end do call stdlib${ii}$_${ci}$lassq( n, work( n+1 ), 1_${ik}$, scale, sumsq ) std = scale * sqrt( sumsq / n ) if ( std < tol * avg ) goto 999 do i = 1, n t = cabs1( a( i, i ) ) si = s( i ) c2 = ( n-1 ) * t c1 = ( n-2 ) * ( real( work( i ),KIND=${ck}$) - t*si ) c0 = -(t*si)*si + 2_${ik}$ * real( work( i ),KIND=${ck}$) * si - n*avg d = c1*c1 - 4_${ik}$*c0*c2 if ( d <= 0_${ik}$ ) then info = -1_${ik}$ return end if si = -2_${ik}$*c0 / ( c1 + sqrt( d ) ) d = si - s( i ) u = zero if ( up ) then do j = 1, i t = cabs1( a( j, i ) ) u = u + s( j )*t work( j ) = work( j ) + d*t end do do j = i+1,n t = cabs1( a( i, j ) ) u = u + s( j )*t work( j ) = work( j ) + d*t end do else do j = 1, i t = cabs1( a( i, j ) ) u = u + s( j )*t work( j ) = work( j ) + d*t end do do j = i+1,n t = cabs1( a( j, i ) ) u = u + s( j )*t work( j ) = work( j ) + d*t end do end if avg = avg + ( u + real( work( i ),KIND=${ck}$) ) * d / n s( i ) = si end do end do 999 continue smlnum = stdlib${ii}$_${c2ri(ci)}$lamch( 'SAFEMIN' ) bignum = one / smlnum smin = bignum smax = zero t = one / sqrt( avg ) base = stdlib${ii}$_${c2ri(ci)}$lamch( 'B' ) u = one / log( base ) do i = 1, n s( i ) = base ** int( u * log( s( i ) * t ),KIND=${ik}$) smin = min( smin, s( i ) ) smax = max( smax, s( i ) ) end do scond = max( smin, smlnum ) / min( smax, bignum ) end subroutine stdlib${ii}$_${ci}$syequb #:endif #:endfor pure module subroutine stdlib${ii}$_ssyconv( uplo, way, n, a, lda, ipiv, e, info ) !! SSYCONV convert A given by TRF into L and D and vice-versa. !! Get Non-diag elements of D (returned in workspace) and !! apply or reverse permutation done in TRF. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo, way integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) real(sp), intent(inout) :: a(lda,*) real(sp), intent(out) :: e(*) ! ===================================================================== ! External Subroutines logical(lk) :: upper, convert integer(${ik}$) :: i, ip, j real(sp) :: temp ! Executable Statements info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) convert = stdlib_lsame( way, 'C' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( .not.convert .and. .not.stdlib_lsame( way, 'R' ) ) then info = -2_${ik}$ else if( n<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'SSYCONV', -info ) return end if ! quick return if possible if( n==0 )return if( upper ) then ! a is upper ! convert a (a is upper) ! convert value if ( convert ) then i=n e(1_${ik}$)=zero do while ( i > 1 ) if( ipiv(i) < 0_${ik}$ ) then e(i)=a(i-1,i) e(i-1)=zero a(i-1,i)=zero i=i-1 else e(i)=zero endif i=i-1 end do ! convert permutations i=n do while ( i >= 1 ) if( ipiv(i) > 0_${ik}$) then ip=ipiv(i) if( i < n) then do j= i+1,n temp=a(ip,j) a(ip,j)=a(i,j) a(i,j)=temp end do endif else ip=-ipiv(i) if( i < n) then do j= i+1,n temp=a(ip,j) a(ip,j)=a(i-1,j) a(i-1,j)=temp end do endif i=i-1 endif i=i-1 end do else ! revert a (a is upper) ! revert permutations i=1_${ik}$ do while ( i <= n ) if( ipiv(i) > 0_${ik}$ ) then ip=ipiv(i) if( i < n) then do j= i+1,n temp=a(ip,j) a(ip,j)=a(i,j) a(i,j)=temp end do endif else ip=-ipiv(i) i=i+1 if( i < n) then do j= i+1,n temp=a(ip,j) a(ip,j)=a(i-1,j) a(i-1,j)=temp end do endif endif i=i+1 end do ! revert value i=n do while ( i > 1 ) if( ipiv(i) < 0_${ik}$ ) then a(i-1,i)=e(i) i=i-1 endif i=i-1 end do end if else ! a is lower if ( convert ) then ! convert a (a is lower) ! convert value i=1_${ik}$ e(n)=zero do while ( i <= n ) if( i<n .and. ipiv(i) < 0_${ik}$ ) then e(i)=a(i+1,i) e(i+1)=zero a(i+1,i)=zero i=i+1 else e(i)=zero endif i=i+1 end do ! convert permutations i=1_${ik}$ do while ( i <= n ) if( ipiv(i) > 0_${ik}$ ) then ip=ipiv(i) if (i > 1_${ik}$) then do j= 1,i-1 temp=a(ip,j) a(ip,j)=a(i,j) a(i,j)=temp end do endif else ip=-ipiv(i) if (i > 1_${ik}$) then do j= 1,i-1 temp=a(ip,j) a(ip,j)=a(i+1,j) a(i+1,j)=temp end do endif i=i+1 endif i=i+1 end do else ! revert a (a is lower) ! revert permutations i=n do while ( i >= 1 ) if( ipiv(i) > 0_${ik}$ ) then ip=ipiv(i) if (i > 1_${ik}$) then do j= 1,i-1 temp=a(i,j) a(i,j)=a(ip,j) a(ip,j)=temp end do endif else ip=-ipiv(i) i=i-1 if (i > 1_${ik}$) then do j= 1,i-1 temp=a(i+1,j) a(i+1,j)=a(ip,j) a(ip,j)=temp end do endif endif i=i-1 end do ! revert value i=1_${ik}$ do while ( i <= n-1 ) if( ipiv(i) < 0_${ik}$ ) then a(i+1,i)=e(i) i=i+1 endif i=i+1 end do end if end if return end subroutine stdlib${ii}$_ssyconv pure module subroutine stdlib${ii}$_dsyconv( uplo, way, n, a, lda, ipiv, e, info ) !! DSYCONV convert A given by TRF into L and D and vice-versa. !! Get Non-diag elements of D (returned in workspace) and !! apply or reverse permutation done in TRF. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo, way integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) real(dp), intent(inout) :: a(lda,*) real(dp), intent(out) :: e(*) ! ===================================================================== ! External Subroutines logical(lk) :: upper, convert integer(${ik}$) :: i, ip, j real(dp) :: temp ! Executable Statements info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) convert = stdlib_lsame( way, 'C' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( .not.convert .and. .not.stdlib_lsame( way, 'R' ) ) then info = -2_${ik}$ else if( n<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'DSYCONV', -info ) return end if ! quick return if possible if( n==0 )return if( upper ) then ! a is upper ! convert a (a is upper) ! convert value if ( convert ) then i=n e(1_${ik}$)=zero do while ( i > 1 ) if( ipiv(i) < 0_${ik}$ ) then e(i)=a(i-1,i) e(i-1)=zero a(i-1,i)=zero i=i-1 else e(i)=zero endif i=i-1 end do ! convert permutations i=n do while ( i >= 1 ) if( ipiv(i) > 0_${ik}$) then ip=ipiv(i) if( i < n) then do j= i+1,n temp=a(ip,j) a(ip,j)=a(i,j) a(i,j)=temp end do endif else ip=-ipiv(i) if( i < n) then do j= i+1,n temp=a(ip,j) a(ip,j)=a(i-1,j) a(i-1,j)=temp end do endif i=i-1 endif i=i-1 end do else ! revert a (a is upper) ! revert permutations i=1_${ik}$ do while ( i <= n ) if( ipiv(i) > 0_${ik}$ ) then ip=ipiv(i) if( i < n) then do j= i+1,n temp=a(ip,j) a(ip,j)=a(i,j) a(i,j)=temp end do endif else ip=-ipiv(i) i=i+1 if( i < n) then do j= i+1,n temp=a(ip,j) a(ip,j)=a(i-1,j) a(i-1,j)=temp end do endif endif i=i+1 end do ! revert value i=n do while ( i > 1 ) if( ipiv(i) < 0_${ik}$ ) then a(i-1,i)=e(i) i=i-1 endif i=i-1 end do end if else ! a is lower if ( convert ) then ! convert a (a is lower) ! convert value i=1_${ik}$ e(n)=zero do while ( i <= n ) if( i<n .and. ipiv(i) < 0_${ik}$ ) then e(i)=a(i+1,i) e(i+1)=zero a(i+1,i)=zero i=i+1 else e(i)=zero endif i=i+1 end do ! convert permutations i=1_${ik}$ do while ( i <= n ) if( ipiv(i) > 0_${ik}$ ) then ip=ipiv(i) if (i > 1_${ik}$) then do j= 1,i-1 temp=a(ip,j) a(ip,j)=a(i,j) a(i,j)=temp end do endif else ip=-ipiv(i) if (i > 1_${ik}$) then do j= 1,i-1 temp=a(ip,j) a(ip,j)=a(i+1,j) a(i+1,j)=temp end do endif i=i+1 endif i=i+1 end do else ! revert a (a is lower) ! revert permutations i=n do while ( i >= 1 ) if( ipiv(i) > 0_${ik}$ ) then ip=ipiv(i) if (i > 1_${ik}$) then do j= 1,i-1 temp=a(i,j) a(i,j)=a(ip,j) a(ip,j)=temp end do endif else ip=-ipiv(i) i=i-1 if (i > 1_${ik}$) then do j= 1,i-1 temp=a(i+1,j) a(i+1,j)=a(ip,j) a(ip,j)=temp end do endif endif i=i-1 end do ! revert value i=1_${ik}$ do while ( i <= n-1 ) if( ipiv(i) < 0_${ik}$ ) then a(i+1,i)=e(i) i=i+1 endif i=i+1 end do end if end if return end subroutine stdlib${ii}$_dsyconv #:for rk,rt,ri in REAL_KINDS_TYPES #:if not rk in ["sp","dp"] pure module subroutine stdlib${ii}$_${ri}$syconv( uplo, way, n, a, lda, ipiv, e, info ) !! DSYCONV: convert A given by TRF into L and D and vice-versa. !! Get Non-diag elements of D (returned in workspace) and !! apply or reverse permutation done in TRF. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${rk}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo, way integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) real(${rk}$), intent(inout) :: a(lda,*) real(${rk}$), intent(out) :: e(*) ! ===================================================================== ! External Subroutines logical(lk) :: upper, convert integer(${ik}$) :: i, ip, j real(${rk}$) :: temp ! Executable Statements info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) convert = stdlib_lsame( way, 'C' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( .not.convert .and. .not.stdlib_lsame( way, 'R' ) ) then info = -2_${ik}$ else if( n<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'DSYCONV', -info ) return end if ! quick return if possible if( n==0 )return if( upper ) then ! a is upper ! convert a (a is upper) ! convert value if ( convert ) then i=n e(1_${ik}$)=zero do while ( i > 1 ) if( ipiv(i) < 0_${ik}$ ) then e(i)=a(i-1,i) e(i-1)=zero a(i-1,i)=zero i=i-1 else e(i)=zero endif i=i-1 end do ! convert permutations i=n do while ( i >= 1 ) if( ipiv(i) > 0_${ik}$) then ip=ipiv(i) if( i < n) then do j= i+1,n temp=a(ip,j) a(ip,j)=a(i,j) a(i,j)=temp end do endif else ip=-ipiv(i) if( i < n) then do j= i+1,n temp=a(ip,j) a(ip,j)=a(i-1,j) a(i-1,j)=temp end do endif i=i-1 endif i=i-1 end do else ! revert a (a is upper) ! revert permutations i=1_${ik}$ do while ( i <= n ) if( ipiv(i) > 0_${ik}$ ) then ip=ipiv(i) if( i < n) then do j= i+1,n temp=a(ip,j) a(ip,j)=a(i,j) a(i,j)=temp end do endif else ip=-ipiv(i) i=i+1 if( i < n) then do j= i+1,n temp=a(ip,j) a(ip,j)=a(i-1,j) a(i-1,j)=temp end do endif endif i=i+1 end do ! revert value i=n do while ( i > 1 ) if( ipiv(i) < 0_${ik}$ ) then a(i-1,i)=e(i) i=i-1 endif i=i-1 end do end if else ! a is lower if ( convert ) then ! convert a (a is lower) ! convert value i=1_${ik}$ e(n)=zero do while ( i <= n ) if( i<n .and. ipiv(i) < 0_${ik}$ ) then e(i)=a(i+1,i) e(i+1)=zero a(i+1,i)=zero i=i+1 else e(i)=zero endif i=i+1 end do ! convert permutations i=1_${ik}$ do while ( i <= n ) if( ipiv(i) > 0_${ik}$ ) then ip=ipiv(i) if (i > 1_${ik}$) then do j= 1,i-1 temp=a(ip,j) a(ip,j)=a(i,j) a(i,j)=temp end do endif else ip=-ipiv(i) if (i > 1_${ik}$) then do j= 1,i-1 temp=a(ip,j) a(ip,j)=a(i+1,j) a(i+1,j)=temp end do endif i=i+1 endif i=i+1 end do else ! revert a (a is lower) ! revert permutations i=n do while ( i >= 1 ) if( ipiv(i) > 0_${ik}$ ) then ip=ipiv(i) if (i > 1_${ik}$) then do j= 1,i-1 temp=a(i,j) a(i,j)=a(ip,j) a(ip,j)=temp end do endif else ip=-ipiv(i) i=i-1 if (i > 1_${ik}$) then do j= 1,i-1 temp=a(i+1,j) a(i+1,j)=a(ip,j) a(ip,j)=temp end do endif endif i=i-1 end do ! revert value i=1_${ik}$ do while ( i <= n-1 ) if( ipiv(i) < 0_${ik}$ ) then a(i+1,i)=e(i) i=i+1 endif i=i+1 end do end if end if return end subroutine stdlib${ii}$_${ri}$syconv #:endif #:endfor pure module subroutine stdlib${ii}$_csyconv( uplo, way, n, a, lda, ipiv, e, info ) !! CSYCONV convert A given by TRF into L and D and vice-versa. !! Get Non-diag elements of D (returned in workspace) and !! apply or reverse permutation done in TRF. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo, way integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) complex(sp), intent(inout) :: a(lda,*) complex(sp), intent(out) :: e(*) ! ===================================================================== ! External Subroutines logical(lk) :: upper, convert integer(${ik}$) :: i, ip, j complex(sp) :: temp ! Executable Statements info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) convert = stdlib_lsame( way, 'C' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( .not.convert .and. .not.stdlib_lsame( way, 'R' ) ) then info = -2_${ik}$ else if( n<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'CSYCONV', -info ) return end if ! quick return if possible if( n==0 )return if( upper ) then ! a is upper ! convert a (a is upper) ! convert value if ( convert ) then i=n e(1_${ik}$)=czero do while ( i > 1 ) if( ipiv(i) < 0_${ik}$ ) then e(i)=a(i-1,i) e(i-1)=czero a(i-1,i)=czero i=i-1 else e(i)=czero endif i=i-1 end do ! convert permutations i=n do while ( i >= 1 ) if( ipiv(i) > 0_${ik}$) then ip=ipiv(i) if( i < n) then do j= i+1,n temp=a(ip,j) a(ip,j)=a(i,j) a(i,j)=temp end do endif else ip=-ipiv(i) if( i < n) then do j= i+1,n temp=a(ip,j) a(ip,j)=a(i-1,j) a(i-1,j)=temp end do endif i=i-1 endif i=i-1 end do else ! revert a (a is upper) ! revert permutations i=1_${ik}$ do while ( i <= n ) if( ipiv(i) > 0_${ik}$ ) then ip=ipiv(i) if( i < n) then do j= i+1,n temp=a(ip,j) a(ip,j)=a(i,j) a(i,j)=temp end do endif else ip=-ipiv(i) i=i+1 if( i < n) then do j= i+1,n temp=a(ip,j) a(ip,j)=a(i-1,j) a(i-1,j)=temp end do endif endif i=i+1 end do ! revert value i=n do while ( i > 1 ) if( ipiv(i) < 0_${ik}$ ) then a(i-1,i)=e(i) i=i-1 endif i=i-1 end do end if else ! a is lower if ( convert ) then ! convert a (a is lower) ! convert value i=1_${ik}$ e(n)=czero do while ( i <= n ) if( i<n .and. ipiv(i) < 0_${ik}$ ) then e(i)=a(i+1,i) e(i+1)=czero a(i+1,i)=czero i=i+1 else e(i)=czero endif i=i+1 end do ! convert permutations i=1_${ik}$ do while ( i <= n ) if( ipiv(i) > 0_${ik}$ ) then ip=ipiv(i) if (i > 1_${ik}$) then do j= 1,i-1 temp=a(ip,j) a(ip,j)=a(i,j) a(i,j)=temp end do endif else ip=-ipiv(i) if (i > 1_${ik}$) then do j= 1,i-1 temp=a(ip,j) a(ip,j)=a(i+1,j) a(i+1,j)=temp end do endif i=i+1 endif i=i+1 end do else ! revert a (a is lower) ! revert permutations i=n do while ( i >= 1 ) if( ipiv(i) > 0_${ik}$ ) then ip=ipiv(i) if (i > 1_${ik}$) then do j= 1,i-1 temp=a(i,j) a(i,j)=a(ip,j) a(ip,j)=temp end do endif else ip=-ipiv(i) i=i-1 if (i > 1_${ik}$) then do j= 1,i-1 temp=a(i+1,j) a(i+1,j)=a(ip,j) a(ip,j)=temp end do endif endif i=i-1 end do ! revert value i=1_${ik}$ do while ( i <= n-1 ) if( ipiv(i) < 0_${ik}$ ) then a(i+1,i)=e(i) i=i+1 endif i=i+1 end do end if end if return end subroutine stdlib${ii}$_csyconv pure module subroutine stdlib${ii}$_zsyconv( uplo, way, n, a, lda, ipiv, e, info ) !! ZSYCONV converts A given by ZHETRF into L and D or vice-versa. !! Get nondiagonal elements of D (returned in workspace) and !! apply or reverse permutation done in TRF. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo, way integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) complex(dp), intent(inout) :: a(lda,*) complex(dp), intent(out) :: e(*) ! ===================================================================== ! External Subroutines logical(lk) :: upper, convert integer(${ik}$) :: i, ip, j complex(dp) :: temp ! Executable Statements info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) convert = stdlib_lsame( way, 'C' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( .not.convert .and. .not.stdlib_lsame( way, 'R' ) ) then info = -2_${ik}$ else if( n<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZSYCONV', -info ) return end if ! quick return if possible if( n==0 )return if( upper ) then ! a is upper if ( convert ) then ! convert a (a is upper) ! convert value i=n e(1_${ik}$)=czero do while ( i > 1 ) if( ipiv(i) < 0_${ik}$ ) then e(i)=a(i-1,i) e(i-1)=czero a(i-1,i)=czero i=i-1 else e(i)=czero endif i=i-1 end do ! convert permutations i=n do while ( i >= 1 ) if( ipiv(i) > 0_${ik}$) then ip=ipiv(i) if( i < n) then do j= i+1,n temp=a(ip,j) a(ip,j)=a(i,j) a(i,j)=temp end do endif else ip=-ipiv(i) if( i < n) then do j= i+1,n temp=a(ip,j) a(ip,j)=a(i-1,j) a(i-1,j)=temp end do endif i=i-1 endif i=i-1 end do else ! revert a (a is upper) ! revert permutations i=1_${ik}$ do while ( i <= n ) if( ipiv(i) > 0_${ik}$ ) then ip=ipiv(i) if( i < n) then do j= i+1,n temp=a(ip,j) a(ip,j)=a(i,j) a(i,j)=temp end do endif else ip=-ipiv(i) i=i+1 if( i < n) then do j= i+1,n temp=a(ip,j) a(ip,j)=a(i-1,j) a(i-1,j)=temp end do endif endif i=i+1 end do ! revert value i=n do while ( i > 1 ) if( ipiv(i) < 0_${ik}$ ) then a(i-1,i)=e(i) i=i-1 endif i=i-1 end do end if else ! a is lower if ( convert ) then ! convert a (a is lower) ! convert value i=1_${ik}$ e(n)=czero do while ( i <= n ) if( i<n .and. ipiv(i) < 0_${ik}$ ) then e(i)=a(i+1,i) e(i+1)=czero a(i+1,i)=czero i=i+1 else e(i)=czero endif i=i+1 end do ! convert permutations i=1_${ik}$ do while ( i <= n ) if( ipiv(i) > 0_${ik}$ ) then ip=ipiv(i) if (i > 1_${ik}$) then do j= 1,i-1 temp=a(ip,j) a(ip,j)=a(i,j) a(i,j)=temp end do endif else ip=-ipiv(i) if (i > 1_${ik}$) then do j= 1,i-1 temp=a(ip,j) a(ip,j)=a(i+1,j) a(i+1,j)=temp end do endif i=i+1 endif i=i+1 end do else ! revert a (a is lower) ! revert permutations i=n do while ( i >= 1 ) if( ipiv(i) > 0_${ik}$ ) then ip=ipiv(i) if (i > 1_${ik}$) then do j= 1,i-1 temp=a(i,j) a(i,j)=a(ip,j) a(ip,j)=temp end do endif else ip=-ipiv(i) i=i-1 if (i > 1_${ik}$) then do j= 1,i-1 temp=a(i+1,j) a(i+1,j)=a(ip,j) a(ip,j)=temp end do endif endif i=i-1 end do ! revert value i=1_${ik}$ do while ( i <= n-1 ) if( ipiv(i) < 0_${ik}$ ) then a(i+1,i)=e(i) i=i+1 endif i=i+1 end do end if end if return end subroutine stdlib${ii}$_zsyconv #:for ck,ct,ci in CMPLX_KINDS_TYPES #:if not ck in ["sp","dp"] pure module subroutine stdlib${ii}$_${ci}$syconv( uplo, way, n, a, lda, ipiv, e, info ) !! ZSYCONV: converts A given by ZHETRF into L and D or vice-versa. !! Get nondiagonal elements of D (returned in workspace) and !! apply or reverse permutation done in TRF. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${ck}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo, way integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) complex(${ck}$), intent(inout) :: a(lda,*) complex(${ck}$), intent(out) :: e(*) ! ===================================================================== ! External Subroutines logical(lk) :: upper, convert integer(${ik}$) :: i, ip, j complex(${ck}$) :: temp ! Executable Statements info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) convert = stdlib_lsame( way, 'C' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( .not.convert .and. .not.stdlib_lsame( way, 'R' ) ) then info = -2_${ik}$ else if( n<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZSYCONV', -info ) return end if ! quick return if possible if( n==0 )return if( upper ) then ! a is upper if ( convert ) then ! convert a (a is upper) ! convert value i=n e(1_${ik}$)=czero do while ( i > 1 ) if( ipiv(i) < 0_${ik}$ ) then e(i)=a(i-1,i) e(i-1)=czero a(i-1,i)=czero i=i-1 else e(i)=czero endif i=i-1 end do ! convert permutations i=n do while ( i >= 1 ) if( ipiv(i) > 0_${ik}$) then ip=ipiv(i) if( i < n) then do j= i+1,n temp=a(ip,j) a(ip,j)=a(i,j) a(i,j)=temp end do endif else ip=-ipiv(i) if( i < n) then do j= i+1,n temp=a(ip,j) a(ip,j)=a(i-1,j) a(i-1,j)=temp end do endif i=i-1 endif i=i-1 end do else ! revert a (a is upper) ! revert permutations i=1_${ik}$ do while ( i <= n ) if( ipiv(i) > 0_${ik}$ ) then ip=ipiv(i) if( i < n) then do j= i+1,n temp=a(ip,j) a(ip,j)=a(i,j) a(i,j)=temp end do endif else ip=-ipiv(i) i=i+1 if( i < n) then do j= i+1,n temp=a(ip,j) a(ip,j)=a(i-1,j) a(i-1,j)=temp end do endif endif i=i+1 end do ! revert value i=n do while ( i > 1 ) if( ipiv(i) < 0_${ik}$ ) then a(i-1,i)=e(i) i=i-1 endif i=i-1 end do end if else ! a is lower if ( convert ) then ! convert a (a is lower) ! convert value i=1_${ik}$ e(n)=czero do while ( i <= n ) if( i<n .and. ipiv(i) < 0_${ik}$ ) then e(i)=a(i+1,i) e(i+1)=czero a(i+1,i)=czero i=i+1 else e(i)=czero endif i=i+1 end do ! convert permutations i=1_${ik}$ do while ( i <= n ) if( ipiv(i) > 0_${ik}$ ) then ip=ipiv(i) if (i > 1_${ik}$) then do j= 1,i-1 temp=a(ip,j) a(ip,j)=a(i,j) a(i,j)=temp end do endif else ip=-ipiv(i) if (i > 1_${ik}$) then do j= 1,i-1 temp=a(ip,j) a(ip,j)=a(i+1,j) a(i+1,j)=temp end do endif i=i+1 endif i=i+1 end do else ! revert a (a is lower) ! revert permutations i=n do while ( i >= 1 ) if( ipiv(i) > 0_${ik}$ ) then ip=ipiv(i) if (i > 1_${ik}$) then do j= 1,i-1 temp=a(i,j) a(i,j)=a(ip,j) a(ip,j)=temp end do endif else ip=-ipiv(i) i=i-1 if (i > 1_${ik}$) then do j= 1,i-1 temp=a(i+1,j) a(i+1,j)=a(ip,j) a(ip,j)=temp end do endif endif i=i-1 end do ! revert value i=1_${ik}$ do while ( i <= n-1 ) if( ipiv(i) < 0_${ik}$ ) then a(i+1,i)=e(i) i=i+1 endif i=i+1 end do end if end if return end subroutine stdlib${ii}$_${ci}$syconv #:endif #:endfor pure module subroutine stdlib${ii}$_ssytrs2( uplo, n, nrhs, a, lda, ipiv, b, ldb,work, info ) !! SSYTRS2 solves a system of linear equations A*X = B with a real !! symmetric matrix A using the factorization A = U*D*U**T or !! A = L*D*L**T computed by SSYTRF and converted by SSYCONV. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, ldb, n, nrhs ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) real(sp), intent(inout) :: a(lda,*), b(ldb,*) real(sp), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, iinfo, j, k, kp real(sp) :: ak, akm1, akm1k, bk, bkm1, denom ! Intrinsic Functions ! Executable Statements info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( nrhs<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ else if( ldb<max( 1_${ik}$, n ) ) then info = -8_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'SSYTRS2', -info ) return end if ! quick return if possible if( n==0 .or. nrhs==0 )return ! convert a call stdlib${ii}$_ssyconv( uplo, 'C', n, a, lda, ipiv, work, iinfo ) if( upper ) then ! solve a*x = b, where a = u*d*u**t. ! p**t * b k=n do while ( k >= 1 ) if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_sswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k-1 else ! 2 x 2 diagonal block ! interchange rows k-1 and -ipiv(k). kp = -ipiv( k ) if( kp==-ipiv( k-1 ) )call stdlib${ii}$_sswap( nrhs, b( k-1, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb & ) k=k-2 end if end do ! compute (u \p**t * b) -> b [ (u \p**t * b) ] call stdlib${ii}$_strsm('L','U','N','U',n,nrhs,one,a,lda,b,ldb) ! compute d \ b -> b [ d \ (u \p**t * b) ] i=n do while ( i >= 1 ) if( ipiv(i) > 0_${ik}$ ) then call stdlib${ii}$_sscal( nrhs, one / a( i, i ), b( i, 1_${ik}$ ), ldb ) elseif ( i > 1_${ik}$) then if ( ipiv(i-1) == ipiv(i) ) then akm1k = work(i) akm1 = a( i-1, i-1 ) / akm1k ak = a( i, i ) / akm1k denom = akm1*ak - one do j = 1, nrhs bkm1 = b( i-1, j ) / akm1k bk = b( i, j ) / akm1k b( i-1, j ) = ( ak*bkm1-bk ) / denom b( i, j ) = ( akm1*bk-bkm1 ) / denom end do i = i - 1_${ik}$ endif endif i = i - 1_${ik}$ end do ! compute (u**t \ b) -> b [ u**t \ (d \ (u \p**t * b) ) ] call stdlib${ii}$_strsm('L','U','T','U',n,nrhs,one,a,lda,b,ldb) ! p * b [ p * (u**t \ (d \ (u \p**t * b) )) ] k=1_${ik}$ do while ( k <= n ) if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_sswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k+1 else ! 2 x 2 diagonal block ! interchange rows k-1 and -ipiv(k). kp = -ipiv( k ) if( k < n .and. kp==-ipiv( k+1 ) )call stdlib${ii}$_sswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp,& 1_${ik}$ ), ldb ) k=k+2 endif end do else ! solve a*x = b, where a = l*d*l**t. ! p**t * b k=1_${ik}$ do while ( k <= n ) if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_sswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k+1 else ! 2 x 2 diagonal block ! interchange rows k and -ipiv(k+1). kp = -ipiv( k+1 ) if( kp==-ipiv( k ) )call stdlib${ii}$_sswap( nrhs, b( k+1, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k+2 endif end do ! compute (l \p**t * b) -> b [ (l \p**t * b) ] call stdlib${ii}$_strsm('L','L','N','U',n,nrhs,one,a,lda,b,ldb) ! compute d \ b -> b [ d \ (l \p**t * b) ] i=1_${ik}$ do while ( i <= n ) if( ipiv(i) > 0_${ik}$ ) then call stdlib${ii}$_sscal( nrhs, one / a( i, i ), b( i, 1_${ik}$ ), ldb ) else akm1k = work(i) akm1 = a( i, i ) / akm1k ak = a( i+1, i+1 ) / akm1k denom = akm1*ak - one do j = 1, nrhs bkm1 = b( i, j ) / akm1k bk = b( i+1, j ) / akm1k b( i, j ) = ( ak*bkm1-bk ) / denom b( i+1, j ) = ( akm1*bk-bkm1 ) / denom end do i = i + 1_${ik}$ endif i = i + 1_${ik}$ end do ! compute (l**t \ b) -> b [ l**t \ (d \ (l \p**t * b) ) ] call stdlib${ii}$_strsm('L','L','T','U',n,nrhs,one,a,lda,b,ldb) ! p * b [ p * (l**t \ (d \ (l \p**t * b) )) ] k=n do while ( k >= 1 ) if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_sswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k-1 else ! 2 x 2 diagonal block ! interchange rows k-1 and -ipiv(k). kp = -ipiv( k ) if( k>1_${ik}$ .and. kp==-ipiv( k-1 ) )call stdlib${ii}$_sswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, & 1_${ik}$ ), ldb ) k=k-2 endif end do end if ! revert a call stdlib${ii}$_ssyconv( uplo, 'R', n, a, lda, ipiv, work, iinfo ) return end subroutine stdlib${ii}$_ssytrs2 pure module subroutine stdlib${ii}$_dsytrs2( uplo, n, nrhs, a, lda, ipiv, b, ldb,work, info ) !! DSYTRS2 solves a system of linear equations A*X = B with a real !! symmetric matrix A using the factorization A = U*D*U**T or !! A = L*D*L**T computed by DSYTRF and converted by DSYCONV. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, ldb, n, nrhs ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) real(dp), intent(inout) :: a(lda,*), b(ldb,*) real(dp), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, iinfo, j, k, kp real(dp) :: ak, akm1, akm1k, bk, bkm1, denom ! Intrinsic Functions ! Executable Statements info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( nrhs<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ else if( ldb<max( 1_${ik}$, n ) ) then info = -8_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'DSYTRS2', -info ) return end if ! quick return if possible if( n==0 .or. nrhs==0 )return ! convert a call stdlib${ii}$_dsyconv( uplo, 'C', n, a, lda, ipiv, work, iinfo ) if( upper ) then ! solve a*x = b, where a = u*d*u**t. ! p**t * b k=n do while ( k >= 1 ) if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_dswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k-1 else ! 2 x 2 diagonal block ! interchange rows k-1 and -ipiv(k). kp = -ipiv( k ) if( kp==-ipiv( k-1 ) )call stdlib${ii}$_dswap( nrhs, b( k-1, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb & ) k=k-2 end if end do ! compute (u \p**t * b) -> b [ (u \p**t * b) ] call stdlib${ii}$_dtrsm('L','U','N','U',n,nrhs,one,a,lda,b,ldb) ! compute d \ b -> b [ d \ (u \p**t * b) ] i=n do while ( i >= 1 ) if( ipiv(i) > 0_${ik}$ ) then call stdlib${ii}$_dscal( nrhs, one / a( i, i ), b( i, 1_${ik}$ ), ldb ) elseif ( i > 1_${ik}$) then if ( ipiv(i-1) == ipiv(i) ) then akm1k = work(i) akm1 = a( i-1, i-1 ) / akm1k ak = a( i, i ) / akm1k denom = akm1*ak - one do j = 1, nrhs bkm1 = b( i-1, j ) / akm1k bk = b( i, j ) / akm1k b( i-1, j ) = ( ak*bkm1-bk ) / denom b( i, j ) = ( akm1*bk-bkm1 ) / denom end do i = i - 1_${ik}$ endif endif i = i - 1_${ik}$ end do ! compute (u**t \ b) -> b [ u**t \ (d \ (u \p**t * b) ) ] call stdlib${ii}$_dtrsm('L','U','T','U',n,nrhs,one,a,lda,b,ldb) ! p * b [ p * (u**t \ (d \ (u \p**t * b) )) ] k=1_${ik}$ do while ( k <= n ) if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_dswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k+1 else ! 2 x 2 diagonal block ! interchange rows k-1 and -ipiv(k). kp = -ipiv( k ) if( k < n .and. kp==-ipiv( k+1 ) )call stdlib${ii}$_dswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp,& 1_${ik}$ ), ldb ) k=k+2 endif end do else ! solve a*x = b, where a = l*d*l**t. ! p**t * b k=1_${ik}$ do while ( k <= n ) if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_dswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k+1 else ! 2 x 2 diagonal block ! interchange rows k and -ipiv(k+1). kp = -ipiv( k+1 ) if( kp==-ipiv( k ) )call stdlib${ii}$_dswap( nrhs, b( k+1, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k+2 endif end do ! compute (l \p**t * b) -> b [ (l \p**t * b) ] call stdlib${ii}$_dtrsm('L','L','N','U',n,nrhs,one,a,lda,b,ldb) ! compute d \ b -> b [ d \ (l \p**t * b) ] i=1_${ik}$ do while ( i <= n ) if( ipiv(i) > 0_${ik}$ ) then call stdlib${ii}$_dscal( nrhs, one / a( i, i ), b( i, 1_${ik}$ ), ldb ) else akm1k = work(i) akm1 = a( i, i ) / akm1k ak = a( i+1, i+1 ) / akm1k denom = akm1*ak - one do j = 1, nrhs bkm1 = b( i, j ) / akm1k bk = b( i+1, j ) / akm1k b( i, j ) = ( ak*bkm1-bk ) / denom b( i+1, j ) = ( akm1*bk-bkm1 ) / denom end do i = i + 1_${ik}$ endif i = i + 1_${ik}$ end do ! compute (l**t \ b) -> b [ l**t \ (d \ (l \p**t * b) ) ] call stdlib${ii}$_dtrsm('L','L','T','U',n,nrhs,one,a,lda,b,ldb) ! p * b [ p * (l**t \ (d \ (l \p**t * b) )) ] k=n do while ( k >= 1 ) if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_dswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k-1 else ! 2 x 2 diagonal block ! interchange rows k-1 and -ipiv(k). kp = -ipiv( k ) if( k>1_${ik}$ .and. kp==-ipiv( k-1 ) )call stdlib${ii}$_dswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, & 1_${ik}$ ), ldb ) k=k-2 endif end do end if ! revert a call stdlib${ii}$_dsyconv( uplo, 'R', n, a, lda, ipiv, work, iinfo ) return end subroutine stdlib${ii}$_dsytrs2 #:for rk,rt,ri in REAL_KINDS_TYPES #:if not rk in ["sp","dp"] pure module subroutine stdlib${ii}$_${ri}$sytrs2( uplo, n, nrhs, a, lda, ipiv, b, ldb,work, info ) !! DSYTRS2: solves a system of linear equations A*X = B with a real !! symmetric matrix A using the factorization A = U*D*U**T or !! A = L*D*L**T computed by DSYTRF and converted by DSYCONV. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${rk}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, ldb, n, nrhs ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) real(${rk}$), intent(inout) :: a(lda,*), b(ldb,*) real(${rk}$), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, iinfo, j, k, kp real(${rk}$) :: ak, akm1, akm1k, bk, bkm1, denom ! Intrinsic Functions ! Executable Statements info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( nrhs<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ else if( ldb<max( 1_${ik}$, n ) ) then info = -8_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'DSYTRS2', -info ) return end if ! quick return if possible if( n==0 .or. nrhs==0 )return ! convert a call stdlib${ii}$_${ri}$syconv( uplo, 'C', n, a, lda, ipiv, work, iinfo ) if( upper ) then ! solve a*x = b, where a = u*d*u**t. ! p**t * b k=n do while ( k >= 1 ) if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_${ri}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k-1 else ! 2 x 2 diagonal block ! interchange rows k-1 and -ipiv(k). kp = -ipiv( k ) if( kp==-ipiv( k-1 ) )call stdlib${ii}$_${ri}$swap( nrhs, b( k-1, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb & ) k=k-2 end if end do ! compute (u \p**t * b) -> b [ (u \p**t * b) ] call stdlib${ii}$_${ri}$trsm('L','U','N','U',n,nrhs,one,a,lda,b,ldb) ! compute d \ b -> b [ d \ (u \p**t * b) ] i=n do while ( i >= 1 ) if( ipiv(i) > 0_${ik}$ ) then call stdlib${ii}$_${ri}$scal( nrhs, one / a( i, i ), b( i, 1_${ik}$ ), ldb ) elseif ( i > 1_${ik}$) then if ( ipiv(i-1) == ipiv(i) ) then akm1k = work(i) akm1 = a( i-1, i-1 ) / akm1k ak = a( i, i ) / akm1k denom = akm1*ak - one do j = 1, nrhs bkm1 = b( i-1, j ) / akm1k bk = b( i, j ) / akm1k b( i-1, j ) = ( ak*bkm1-bk ) / denom b( i, j ) = ( akm1*bk-bkm1 ) / denom end do i = i - 1_${ik}$ endif endif i = i - 1_${ik}$ end do ! compute (u**t \ b) -> b [ u**t \ (d \ (u \p**t * b) ) ] call stdlib${ii}$_${ri}$trsm('L','U','T','U',n,nrhs,one,a,lda,b,ldb) ! p * b [ p * (u**t \ (d \ (u \p**t * b) )) ] k=1_${ik}$ do while ( k <= n ) if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_${ri}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k+1 else ! 2 x 2 diagonal block ! interchange rows k-1 and -ipiv(k). kp = -ipiv( k ) if( k < n .and. kp==-ipiv( k+1 ) )call stdlib${ii}$_${ri}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp,& 1_${ik}$ ), ldb ) k=k+2 endif end do else ! solve a*x = b, where a = l*d*l**t. ! p**t * b k=1_${ik}$ do while ( k <= n ) if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_${ri}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k+1 else ! 2 x 2 diagonal block ! interchange rows k and -ipiv(k+1). kp = -ipiv( k+1 ) if( kp==-ipiv( k ) )call stdlib${ii}$_${ri}$swap( nrhs, b( k+1, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k+2 endif end do ! compute (l \p**t * b) -> b [ (l \p**t * b) ] call stdlib${ii}$_${ri}$trsm('L','L','N','U',n,nrhs,one,a,lda,b,ldb) ! compute d \ b -> b [ d \ (l \p**t * b) ] i=1_${ik}$ do while ( i <= n ) if( ipiv(i) > 0_${ik}$ ) then call stdlib${ii}$_${ri}$scal( nrhs, one / a( i, i ), b( i, 1_${ik}$ ), ldb ) else akm1k = work(i) akm1 = a( i, i ) / akm1k ak = a( i+1, i+1 ) / akm1k denom = akm1*ak - one do j = 1, nrhs bkm1 = b( i, j ) / akm1k bk = b( i+1, j ) / akm1k b( i, j ) = ( ak*bkm1-bk ) / denom b( i+1, j ) = ( akm1*bk-bkm1 ) / denom end do i = i + 1_${ik}$ endif i = i + 1_${ik}$ end do ! compute (l**t \ b) -> b [ l**t \ (d \ (l \p**t * b) ) ] call stdlib${ii}$_${ri}$trsm('L','L','T','U',n,nrhs,one,a,lda,b,ldb) ! p * b [ p * (l**t \ (d \ (l \p**t * b) )) ] k=n do while ( k >= 1 ) if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_${ri}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k-1 else ! 2 x 2 diagonal block ! interchange rows k-1 and -ipiv(k). kp = -ipiv( k ) if( k>1_${ik}$ .and. kp==-ipiv( k-1 ) )call stdlib${ii}$_${ri}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, & 1_${ik}$ ), ldb ) k=k-2 endif end do end if ! revert a call stdlib${ii}$_${ri}$syconv( uplo, 'R', n, a, lda, ipiv, work, iinfo ) return end subroutine stdlib${ii}$_${ri}$sytrs2 #:endif #:endfor pure module subroutine stdlib${ii}$_csytrs2( uplo, n, nrhs, a, lda, ipiv, b, ldb,work, info ) !! CSYTRS2 solves a system of linear equations A*X = B with a complex !! symmetric matrix A using the factorization A = U*D*U**T or !! A = L*D*L**T computed by CSYTRF and converted by CSYCONV. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, ldb, n, nrhs ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) complex(sp), intent(inout) :: a(lda,*), b(ldb,*) complex(sp), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, iinfo, j, k, kp complex(sp) :: ak, akm1, akm1k, bk, bkm1, denom ! Intrinsic Functions ! Executable Statements info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( nrhs<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ else if( ldb<max( 1_${ik}$, n ) ) then info = -8_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'CSYTRS2', -info ) return end if ! quick return if possible if( n==0 .or. nrhs==0 )return ! convert a call stdlib${ii}$_csyconv( uplo, 'C', n, a, lda, ipiv, work, iinfo ) if( upper ) then ! solve a*x = b, where a = u*d*u**t. ! p**t * b k=n do while ( k >= 1 ) if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_cswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k-1 else ! 2 x 2 diagonal block ! interchange rows k-1 and -ipiv(k). kp = -ipiv( k ) if( kp==-ipiv( k-1 ) )call stdlib${ii}$_cswap( nrhs, b( k-1, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb & ) k=k-2 end if end do ! compute (u \p**t * b) -> b [ (u \p**t * b) ] call stdlib${ii}$_ctrsm('L','U','N','U',n,nrhs,cone,a,lda,b,ldb) ! compute d \ b -> b [ d \ (u \p**t * b) ] i=n do while ( i >= 1 ) if( ipiv(i) > 0_${ik}$ ) then call stdlib${ii}$_cscal( nrhs, cone / a( i, i ), b( i, 1_${ik}$ ), ldb ) elseif ( i > 1_${ik}$) then if ( ipiv(i-1) == ipiv(i) ) then akm1k = work(i) akm1 = a( i-1, i-1 ) / akm1k ak = a( i, i ) / akm1k denom = akm1*ak - cone do j = 1, nrhs bkm1 = b( i-1, j ) / akm1k bk = b( i, j ) / akm1k b( i-1, j ) = ( ak*bkm1-bk ) / denom b( i, j ) = ( akm1*bk-bkm1 ) / denom end do i = i - 1_${ik}$ endif endif i = i - 1_${ik}$ end do ! compute (u**t \ b) -> b [ u**t \ (d \ (u \p**t * b) ) ] call stdlib${ii}$_ctrsm('L','U','T','U',n,nrhs,cone,a,lda,b,ldb) ! p * b [ p * (u**t \ (d \ (u \p**t * b) )) ] k=1_${ik}$ do while ( k <= n ) if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_cswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k+1 else ! 2 x 2 diagonal block ! interchange rows k-1 and -ipiv(k). kp = -ipiv( k ) if( k < n .and. kp==-ipiv( k+1 ) )call stdlib${ii}$_cswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp,& 1_${ik}$ ), ldb ) k=k+2 endif end do else ! solve a*x = b, where a = l*d*l**t. ! p**t * b k=1_${ik}$ do while ( k <= n ) if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_cswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k+1 else ! 2 x 2 diagonal block ! interchange rows k and -ipiv(k+1). kp = -ipiv( k+1 ) if( kp==-ipiv( k ) )call stdlib${ii}$_cswap( nrhs, b( k+1, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k+2 endif end do ! compute (l \p**t * b) -> b [ (l \p**t * b) ] call stdlib${ii}$_ctrsm('L','L','N','U',n,nrhs,cone,a,lda,b,ldb) ! compute d \ b -> b [ d \ (l \p**t * b) ] i=1_${ik}$ do while ( i <= n ) if( ipiv(i) > 0_${ik}$ ) then call stdlib${ii}$_cscal( nrhs, cone / a( i, i ), b( i, 1_${ik}$ ), ldb ) else akm1k = work(i) akm1 = a( i, i ) / akm1k ak = a( i+1, i+1 ) / akm1k denom = akm1*ak - cone do j = 1, nrhs bkm1 = b( i, j ) / akm1k bk = b( i+1, j ) / akm1k b( i, j ) = ( ak*bkm1-bk ) / denom b( i+1, j ) = ( akm1*bk-bkm1 ) / denom end do i = i + 1_${ik}$ endif i = i + 1_${ik}$ end do ! compute (l**t \ b) -> b [ l**t \ (d \ (l \p**t * b) ) ] call stdlib${ii}$_ctrsm('L','L','T','U',n,nrhs,cone,a,lda,b,ldb) ! p * b [ p * (l**t \ (d \ (l \p**t * b) )) ] k=n do while ( k >= 1 ) if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_cswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k-1 else ! 2 x 2 diagonal block ! interchange rows k-1 and -ipiv(k). kp = -ipiv( k ) if( k>1_${ik}$ .and. kp==-ipiv( k-1 ) )call stdlib${ii}$_cswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, & 1_${ik}$ ), ldb ) k=k-2 endif end do end if ! revert a call stdlib${ii}$_csyconv( uplo, 'R', n, a, lda, ipiv, work, iinfo ) return end subroutine stdlib${ii}$_csytrs2 pure module subroutine stdlib${ii}$_zsytrs2( uplo, n, nrhs, a, lda, ipiv, b, ldb,work, info ) !! ZSYTRS2 solves a system of linear equations A*X = B with a complex !! symmetric matrix A using the factorization A = U*D*U**T or !! A = L*D*L**T computed by ZSYTRF and converted by ZSYCONV. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, ldb, n, nrhs ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) complex(dp), intent(inout) :: a(lda,*), b(ldb,*) complex(dp), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, iinfo, j, k, kp complex(dp) :: ak, akm1, akm1k, bk, bkm1, denom ! Intrinsic Functions ! Executable Statements info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( nrhs<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ else if( ldb<max( 1_${ik}$, n ) ) then info = -8_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZSYTRS2', -info ) return end if ! quick return if possible if( n==0 .or. nrhs==0 )return ! convert a call stdlib${ii}$_zsyconv( uplo, 'C', n, a, lda, ipiv, work, iinfo ) if( upper ) then ! solve a*x = b, where a = u*d*u**t. ! p**t * b k=n do while ( k >= 1 ) if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_zswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k-1 else ! 2 x 2 diagonal block ! interchange rows k-1 and -ipiv(k). kp = -ipiv( k ) if( kp==-ipiv( k-1 ) )call stdlib${ii}$_zswap( nrhs, b( k-1, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb & ) k=k-2 end if end do ! compute (u \p**t * b) -> b [ (u \p**t * b) ] call stdlib${ii}$_ztrsm('L','U','N','U',n,nrhs,cone,a,lda,b,ldb) ! compute d \ b -> b [ d \ (u \p**t * b) ] i=n do while ( i >= 1 ) if( ipiv(i) > 0_${ik}$ ) then call stdlib${ii}$_zscal( nrhs, cone / a( i, i ), b( i, 1_${ik}$ ), ldb ) elseif ( i > 1_${ik}$) then if ( ipiv(i-1) == ipiv(i) ) then akm1k = work(i) akm1 = a( i-1, i-1 ) / akm1k ak = a( i, i ) / akm1k denom = akm1*ak - cone do j = 1, nrhs bkm1 = b( i-1, j ) / akm1k bk = b( i, j ) / akm1k b( i-1, j ) = ( ak*bkm1-bk ) / denom b( i, j ) = ( akm1*bk-bkm1 ) / denom end do i = i - 1_${ik}$ endif endif i = i - 1_${ik}$ end do ! compute (u**t \ b) -> b [ u**t \ (d \ (u \p**t * b) ) ] call stdlib${ii}$_ztrsm('L','U','T','U',n,nrhs,cone,a,lda,b,ldb) ! p * b [ p * (u**t \ (d \ (u \p**t * b) )) ] k=1_${ik}$ do while ( k <= n ) if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_zswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k+1 else ! 2 x 2 diagonal block ! interchange rows k-1 and -ipiv(k). kp = -ipiv( k ) if( k < n .and. kp==-ipiv( k+1 ) )call stdlib${ii}$_zswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp,& 1_${ik}$ ), ldb ) k=k+2 endif end do else ! solve a*x = b, where a = l*d*l**t. ! p**t * b k=1_${ik}$ do while ( k <= n ) if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_zswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k+1 else ! 2 x 2 diagonal block ! interchange rows k and -ipiv(k+1). kp = -ipiv( k+1 ) if( kp==-ipiv( k ) )call stdlib${ii}$_zswap( nrhs, b( k+1, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k+2 endif end do ! compute (l \p**t * b) -> b [ (l \p**t * b) ] call stdlib${ii}$_ztrsm('L','L','N','U',n,nrhs,cone,a,lda,b,ldb) ! compute d \ b -> b [ d \ (l \p**t * b) ] i=1_${ik}$ do while ( i <= n ) if( ipiv(i) > 0_${ik}$ ) then call stdlib${ii}$_zscal( nrhs, cone / a( i, i ), b( i, 1_${ik}$ ), ldb ) else akm1k = work(i) akm1 = a( i, i ) / akm1k ak = a( i+1, i+1 ) / akm1k denom = akm1*ak - cone do j = 1, nrhs bkm1 = b( i, j ) / akm1k bk = b( i+1, j ) / akm1k b( i, j ) = ( ak*bkm1-bk ) / denom b( i+1, j ) = ( akm1*bk-bkm1 ) / denom end do i = i + 1_${ik}$ endif i = i + 1_${ik}$ end do ! compute (l**t \ b) -> b [ l**t \ (d \ (l \p**t * b) ) ] call stdlib${ii}$_ztrsm('L','L','T','U',n,nrhs,cone,a,lda,b,ldb) ! p * b [ p * (l**t \ (d \ (l \p**t * b) )) ] k=n do while ( k >= 1 ) if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_zswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k-1 else ! 2 x 2 diagonal block ! interchange rows k-1 and -ipiv(k). kp = -ipiv( k ) if( k>1_${ik}$ .and. kp==-ipiv( k-1 ) )call stdlib${ii}$_zswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, & 1_${ik}$ ), ldb ) k=k-2 endif end do end if ! revert a call stdlib${ii}$_zsyconv( uplo, 'R', n, a, lda, ipiv, work, iinfo ) return end subroutine stdlib${ii}$_zsytrs2 #:for ck,ct,ci in CMPLX_KINDS_TYPES #:if not ck in ["sp","dp"] pure module subroutine stdlib${ii}$_${ci}$sytrs2( uplo, n, nrhs, a, lda, ipiv, b, ldb,work, info ) !! ZSYTRS2: solves a system of linear equations A*X = B with a complex !! symmetric matrix A using the factorization A = U*D*U**T or !! A = L*D*L**T computed by ZSYTRF and converted by ZSYCONV. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${ck}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, ldb, n, nrhs ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) complex(${ck}$), intent(inout) :: a(lda,*), b(ldb,*) complex(${ck}$), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, iinfo, j, k, kp complex(${ck}$) :: ak, akm1, akm1k, bk, bkm1, denom ! Intrinsic Functions ! Executable Statements info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( nrhs<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ else if( ldb<max( 1_${ik}$, n ) ) then info = -8_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZSYTRS2', -info ) return end if ! quick return if possible if( n==0 .or. nrhs==0 )return ! convert a call stdlib${ii}$_${ci}$syconv( uplo, 'C', n, a, lda, ipiv, work, iinfo ) if( upper ) then ! solve a*x = b, where a = u*d*u**t. ! p**t * b k=n do while ( k >= 1 ) if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_${ci}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k-1 else ! 2 x 2 diagonal block ! interchange rows k-1 and -ipiv(k). kp = -ipiv( k ) if( kp==-ipiv( k-1 ) )call stdlib${ii}$_${ci}$swap( nrhs, b( k-1, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb & ) k=k-2 end if end do ! compute (u \p**t * b) -> b [ (u \p**t * b) ] call stdlib${ii}$_${ci}$trsm('L','U','N','U',n,nrhs,cone,a,lda,b,ldb) ! compute d \ b -> b [ d \ (u \p**t * b) ] i=n do while ( i >= 1 ) if( ipiv(i) > 0_${ik}$ ) then call stdlib${ii}$_${ci}$scal( nrhs, cone / a( i, i ), b( i, 1_${ik}$ ), ldb ) elseif ( i > 1_${ik}$) then if ( ipiv(i-1) == ipiv(i) ) then akm1k = work(i) akm1 = a( i-1, i-1 ) / akm1k ak = a( i, i ) / akm1k denom = akm1*ak - cone do j = 1, nrhs bkm1 = b( i-1, j ) / akm1k bk = b( i, j ) / akm1k b( i-1, j ) = ( ak*bkm1-bk ) / denom b( i, j ) = ( akm1*bk-bkm1 ) / denom end do i = i - 1_${ik}$ endif endif i = i - 1_${ik}$ end do ! compute (u**t \ b) -> b [ u**t \ (d \ (u \p**t * b) ) ] call stdlib${ii}$_${ci}$trsm('L','U','T','U',n,nrhs,cone,a,lda,b,ldb) ! p * b [ p * (u**t \ (d \ (u \p**t * b) )) ] k=1_${ik}$ do while ( k <= n ) if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_${ci}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k+1 else ! 2 x 2 diagonal block ! interchange rows k-1 and -ipiv(k). kp = -ipiv( k ) if( k < n .and. kp==-ipiv( k+1 ) )call stdlib${ii}$_${ci}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp,& 1_${ik}$ ), ldb ) k=k+2 endif end do else ! solve a*x = b, where a = l*d*l**t. ! p**t * b k=1_${ik}$ do while ( k <= n ) if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_${ci}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k+1 else ! 2 x 2 diagonal block ! interchange rows k and -ipiv(k+1). kp = -ipiv( k+1 ) if( kp==-ipiv( k ) )call stdlib${ii}$_${ci}$swap( nrhs, b( k+1, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k+2 endif end do ! compute (l \p**t * b) -> b [ (l \p**t * b) ] call stdlib${ii}$_${ci}$trsm('L','L','N','U',n,nrhs,cone,a,lda,b,ldb) ! compute d \ b -> b [ d \ (l \p**t * b) ] i=1_${ik}$ do while ( i <= n ) if( ipiv(i) > 0_${ik}$ ) then call stdlib${ii}$_${ci}$scal( nrhs, cone / a( i, i ), b( i, 1_${ik}$ ), ldb ) else akm1k = work(i) akm1 = a( i, i ) / akm1k ak = a( i+1, i+1 ) / akm1k denom = akm1*ak - cone do j = 1, nrhs bkm1 = b( i, j ) / akm1k bk = b( i+1, j ) / akm1k b( i, j ) = ( ak*bkm1-bk ) / denom b( i+1, j ) = ( akm1*bk-bkm1 ) / denom end do i = i + 1_${ik}$ endif i = i + 1_${ik}$ end do ! compute (l**t \ b) -> b [ l**t \ (d \ (l \p**t * b) ) ] call stdlib${ii}$_${ci}$trsm('L','L','T','U',n,nrhs,cone,a,lda,b,ldb) ! p * b [ p * (l**t \ (d \ (l \p**t * b) )) ] k=n do while ( k >= 1 ) if( ipiv( k )>0_${ik}$ ) then ! 1 x 1 diagonal block ! interchange rows k and ipiv(k). kp = ipiv( k ) if( kp/=k )call stdlib${ii}$_${ci}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) k=k-1 else ! 2 x 2 diagonal block ! interchange rows k-1 and -ipiv(k). kp = -ipiv( k ) if( k>1_${ik}$ .and. kp==-ipiv( k-1 ) )call stdlib${ii}$_${ci}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, & 1_${ik}$ ), ldb ) k=k-2 endif end do end if ! revert a call stdlib${ii}$_${ci}$syconv( uplo, 'R', n, a, lda, ipiv, work, iinfo ) return end subroutine stdlib${ii}$_${ci}$sytrs2 #:endif #:endfor pure module subroutine stdlib${ii}$_ssytrs_3( uplo, n, nrhs, a, lda, e, ipiv, b, ldb,info ) !! SSYTRS_3 solves a system of linear equations A * X = B with a real !! symmetric matrix A using the factorization computed !! by SSYTRF_RK or SSYTRF_BK: !! A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T), !! where U (or L) is unit upper (or lower) triangular matrix, !! U**T (or L**T) is the transpose of U (or L), P is a permutation !! matrix, P**T is the transpose of P, and D is symmetric and block !! diagonal with 1-by-1 and 2-by-2 diagonal blocks. !! This algorithm is using Level 3 BLAS. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, ldb, n, nrhs ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) real(sp), intent(in) :: a(lda,*), e(*) real(sp), intent(inout) :: b(ldb,*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, j, k, kp real(sp) :: ak, akm1, akm1k, bk, bkm1, denom ! Intrinsic Functions ! Executable Statements info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( nrhs<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ else if( ldb<max( 1_${ik}$, n ) ) then info = -9_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'SSYTRS_3', -info ) return end if ! quick return if possible if( n==0 .or. nrhs==0 )return if( upper ) then ! begin upper ! solve a*x = b, where a = u*d*u**t. ! p**t * b ! interchange rows k and ipiv(k) of matrix b in the same order ! that the formation order of ipiv(i) vector for upper case. ! (we can do the simple loop over ipiv with decrement -1, ! since the abs value of ipiv(i) represents the row index ! of the interchange with row i in both 1x1 and 2x2 pivot cases) do k = n, 1, -1 kp = abs( ipiv( k ) ) if( kp/=k ) then call stdlib${ii}$_sswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) end if end do ! compute (u \p**t * b) -> b [ (u \p**t * b) ] call stdlib${ii}$_strsm( 'L', 'U', 'N', 'U', n, nrhs, one, a, lda, b, ldb ) ! compute d \ b -> b [ d \ (u \p**t * b) ] i = n do while ( i>=1 ) if( ipiv( i )>0_${ik}$ ) then call stdlib${ii}$_sscal( nrhs, one / a( i, i ), b( i, 1_${ik}$ ), ldb ) else if ( i>1_${ik}$ ) then akm1k = e( i ) akm1 = a( i-1, i-1 ) / akm1k ak = a( i, i ) / akm1k denom = akm1*ak - one do j = 1, nrhs bkm1 = b( i-1, j ) / akm1k bk = b( i, j ) / akm1k b( i-1, j ) = ( ak*bkm1-bk ) / denom b( i, j ) = ( akm1*bk-bkm1 ) / denom end do i = i - 1_${ik}$ end if i = i - 1_${ik}$ end do ! compute (u**t \ b) -> b [ u**t \ (d \ (u \p**t * b) ) ] call stdlib${ii}$_strsm( 'L', 'U', 'T', 'U', n, nrhs, one, a, lda, b, ldb ) ! p * b [ p * (u**t \ (d \ (u \p**t * b) )) ] ! interchange rows k and ipiv(k) of matrix b in reverse order ! from the formation order of ipiv(i) vector for upper case. ! (we can do the simple loop over ipiv with increment 1, ! since the abs value of ipiv(i) represents the row index ! of the interchange with row i in both 1x1 and 2x2 pivot cases) do k = 1, n, 1 kp = abs( ipiv( k ) ) if( kp/=k ) then call stdlib${ii}$_sswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) end if end do else ! begin lower ! solve a*x = b, where a = l*d*l**t. ! p**t * b ! interchange rows k and ipiv(k) of matrix b in the same order ! that the formation order of ipiv(i) vector for lower case. ! (we can do the simple loop over ipiv with increment 1, ! since the abs value of ipiv(i) represents the row index ! of the interchange with row i in both 1x1 and 2x2 pivot cases) do k = 1, n, 1 kp = abs( ipiv( k ) ) if( kp/=k ) then call stdlib${ii}$_sswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) end if end do ! compute (l \p**t * b) -> b [ (l \p**t * b) ] call stdlib${ii}$_strsm( 'L', 'L', 'N', 'U', n, nrhs, one, a, lda, b, ldb ) ! compute d \ b -> b [ d \ (l \p**t * b) ] i = 1_${ik}$ do while ( i<=n ) if( ipiv( i )>0_${ik}$ ) then call stdlib${ii}$_sscal( nrhs, one / a( i, i ), b( i, 1_${ik}$ ), ldb ) else if( i<n ) then akm1k = e( i ) akm1 = a( i, i ) / akm1k ak = a( i+1, i+1 ) / akm1k denom = akm1*ak - one do j = 1, nrhs bkm1 = b( i, j ) / akm1k bk = b( i+1, j ) / akm1k b( i, j ) = ( ak*bkm1-bk ) / denom b( i+1, j ) = ( akm1*bk-bkm1 ) / denom end do i = i + 1_${ik}$ end if i = i + 1_${ik}$ end do ! compute (l**t \ b) -> b [ l**t \ (d \ (l \p**t * b) ) ] call stdlib${ii}$_strsm('L', 'L', 'T', 'U', n, nrhs, one, a, lda, b, ldb ) ! p * b [ p * (l**t \ (d \ (l \p**t * b) )) ] ! interchange rows k and ipiv(k) of matrix b in reverse order ! from the formation order of ipiv(i) vector for lower case. ! (we can do the simple loop over ipiv with decrement -1, ! since the abs value of ipiv(i) represents the row index ! of the interchange with row i in both 1x1 and 2x2 pivot cases) do k = n, 1, -1 kp = abs( ipiv( k ) ) if( kp/=k ) then call stdlib${ii}$_sswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) end if end do ! end lower end if return end subroutine stdlib${ii}$_ssytrs_3 pure module subroutine stdlib${ii}$_dsytrs_3( uplo, n, nrhs, a, lda, e, ipiv, b, ldb,info ) !! DSYTRS_3 solves a system of linear equations A * X = B with a real !! symmetric matrix A using the factorization computed !! by DSYTRF_RK or DSYTRF_BK: !! A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T), !! where U (or L) is unit upper (or lower) triangular matrix, !! U**T (or L**T) is the transpose of U (or L), P is a permutation !! matrix, P**T is the transpose of P, and D is symmetric and block !! diagonal with 1-by-1 and 2-by-2 diagonal blocks. !! This algorithm is using Level 3 BLAS. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, ldb, n, nrhs ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) real(dp), intent(in) :: a(lda,*), e(*) real(dp), intent(inout) :: b(ldb,*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, j, k, kp real(dp) :: ak, akm1, akm1k, bk, bkm1, denom ! Intrinsic Functions ! Executable Statements info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( nrhs<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ else if( ldb<max( 1_${ik}$, n ) ) then info = -9_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'DSYTRS_3', -info ) return end if ! quick return if possible if( n==0 .or. nrhs==0 )return if( upper ) then ! begin upper ! solve a*x = b, where a = u*d*u**t. ! p**t * b ! interchange rows k and ipiv(k) of matrix b in the same order ! that the formation order of ipiv(i) vector for upper case. ! (we can do the simple loop over ipiv with decrement -1, ! since the abs value of ipiv( i ) represents the row index ! of the interchange with row i in both 1x1 and 2x2 pivot cases) do k = n, 1, -1 kp = abs( ipiv( k ) ) if( kp/=k ) then call stdlib${ii}$_dswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) end if end do ! compute (u \p**t * b) -> b [ (u \p**t * b) ] call stdlib${ii}$_dtrsm( 'L', 'U', 'N', 'U', n, nrhs, one, a, lda, b, ldb ) ! compute d \ b -> b [ d \ (u \p**t * b) ] i = n do while ( i>=1 ) if( ipiv( i )>0_${ik}$ ) then call stdlib${ii}$_dscal( nrhs, one / a( i, i ), b( i, 1_${ik}$ ), ldb ) else if ( i>1_${ik}$ ) then akm1k = e( i ) akm1 = a( i-1, i-1 ) / akm1k ak = a( i, i ) / akm1k denom = akm1*ak - one do j = 1, nrhs bkm1 = b( i-1, j ) / akm1k bk = b( i, j ) / akm1k b( i-1, j ) = ( ak*bkm1-bk ) / denom b( i, j ) = ( akm1*bk-bkm1 ) / denom end do i = i - 1_${ik}$ end if i = i - 1_${ik}$ end do ! compute (u**t \ b) -> b [ u**t \ (d \ (u \p**t * b) ) ] call stdlib${ii}$_dtrsm( 'L', 'U', 'T', 'U', n, nrhs, one, a, lda, b, ldb ) ! p * b [ p * (u**t \ (d \ (u \p**t * b) )) ] ! interchange rows k and ipiv(k) of matrix b in reverse order ! from the formation order of ipiv(i) vector for upper case. ! (we can do the simple loop over ipiv with increment 1, ! since the abs value of ipiv(i) represents the row index ! of the interchange with row i in both 1x1 and 2x2 pivot cases) do k = 1, n kp = abs( ipiv( k ) ) if( kp/=k ) then call stdlib${ii}$_dswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) end if end do else ! begin lower ! solve a*x = b, where a = l*d*l**t. ! p**t * b ! interchange rows k and ipiv(k) of matrix b in the same order ! that the formation order of ipiv(i) vector for lower case. ! (we can do the simple loop over ipiv with increment 1, ! since the abs value of ipiv(i) represents the row index ! of the interchange with row i in both 1x1 and 2x2 pivot cases) do k = 1, n kp = abs( ipiv( k ) ) if( kp/=k ) then call stdlib${ii}$_dswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) end if end do ! compute (l \p**t * b) -> b [ (l \p**t * b) ] call stdlib${ii}$_dtrsm( 'L', 'L', 'N', 'U', n, nrhs, one, a, lda, b, ldb ) ! compute d \ b -> b [ d \ (l \p**t * b) ] i = 1_${ik}$ do while ( i<=n ) if( ipiv( i )>0_${ik}$ ) then call stdlib${ii}$_dscal( nrhs, one / a( i, i ), b( i, 1_${ik}$ ), ldb ) else if( i<n ) then akm1k = e( i ) akm1 = a( i, i ) / akm1k ak = a( i+1, i+1 ) / akm1k denom = akm1*ak - one do j = 1, nrhs bkm1 = b( i, j ) / akm1k bk = b( i+1, j ) / akm1k b( i, j ) = ( ak*bkm1-bk ) / denom b( i+1, j ) = ( akm1*bk-bkm1 ) / denom end do i = i + 1_${ik}$ end if i = i + 1_${ik}$ end do ! compute (l**t \ b) -> b [ l**t \ (d \ (l \p**t * b) ) ] call stdlib${ii}$_dtrsm('L', 'L', 'T', 'U', n, nrhs, one, a, lda, b, ldb ) ! p * b [ p * (l**t \ (d \ (l \p**t * b) )) ] ! interchange rows k and ipiv(k) of matrix b in reverse order ! from the formation order of ipiv(i) vector for lower case. ! (we can do the simple loop over ipiv with decrement -1, ! since the abs value of ipiv(i) represents the row index ! of the interchange with row i in both 1x1 and 2x2 pivot cases) do k = n, 1, -1 kp = abs( ipiv( k ) ) if( kp/=k ) then call stdlib${ii}$_dswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) end if end do ! end lower end if return end subroutine stdlib${ii}$_dsytrs_3 #:for rk,rt,ri in REAL_KINDS_TYPES #:if not rk in ["sp","dp"] pure module subroutine stdlib${ii}$_${ri}$sytrs_3( uplo, n, nrhs, a, lda, e, ipiv, b, ldb,info ) !! DSYTRS_3: solves a system of linear equations A * X = B with a real !! symmetric matrix A using the factorization computed !! by DSYTRF_RK or DSYTRF_BK: !! A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T), !! where U (or L) is unit upper (or lower) triangular matrix, !! U**T (or L**T) is the transpose of U (or L), P is a permutation !! matrix, P**T is the transpose of P, and D is symmetric and block !! diagonal with 1-by-1 and 2-by-2 diagonal blocks. !! This algorithm is using Level 3 BLAS. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${rk}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, ldb, n, nrhs ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) real(${rk}$), intent(in) :: a(lda,*), e(*) real(${rk}$), intent(inout) :: b(ldb,*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, j, k, kp real(${rk}$) :: ak, akm1, akm1k, bk, bkm1, denom ! Intrinsic Functions ! Executable Statements info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( nrhs<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ else if( ldb<max( 1_${ik}$, n ) ) then info = -9_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'DSYTRS_3', -info ) return end if ! quick return if possible if( n==0 .or. nrhs==0 )return if( upper ) then ! begin upper ! solve a*x = b, where a = u*d*u**t. ! p**t * b ! interchange rows k and ipiv(k) of matrix b in the same order ! that the formation order of ipiv(i) vector for upper case. ! (we can do the simple loop over ipiv with decrement -1, ! since the abs value of ipiv( i ) represents the row index ! of the interchange with row i in both 1x1 and 2x2 pivot cases) do k = n, 1, -1 kp = abs( ipiv( k ) ) if( kp/=k ) then call stdlib${ii}$_${ri}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) end if end do ! compute (u \p**t * b) -> b [ (u \p**t * b) ] call stdlib${ii}$_${ri}$trsm( 'L', 'U', 'N', 'U', n, nrhs, one, a, lda, b, ldb ) ! compute d \ b -> b [ d \ (u \p**t * b) ] i = n do while ( i>=1 ) if( ipiv( i )>0_${ik}$ ) then call stdlib${ii}$_${ri}$scal( nrhs, one / a( i, i ), b( i, 1_${ik}$ ), ldb ) else if ( i>1_${ik}$ ) then akm1k = e( i ) akm1 = a( i-1, i-1 ) / akm1k ak = a( i, i ) / akm1k denom = akm1*ak - one do j = 1, nrhs bkm1 = b( i-1, j ) / akm1k bk = b( i, j ) / akm1k b( i-1, j ) = ( ak*bkm1-bk ) / denom b( i, j ) = ( akm1*bk-bkm1 ) / denom end do i = i - 1_${ik}$ end if i = i - 1_${ik}$ end do ! compute (u**t \ b) -> b [ u**t \ (d \ (u \p**t * b) ) ] call stdlib${ii}$_${ri}$trsm( 'L', 'U', 'T', 'U', n, nrhs, one, a, lda, b, ldb ) ! p * b [ p * (u**t \ (d \ (u \p**t * b) )) ] ! interchange rows k and ipiv(k) of matrix b in reverse order ! from the formation order of ipiv(i) vector for upper case. ! (we can do the simple loop over ipiv with increment 1, ! since the abs value of ipiv(i) represents the row index ! of the interchange with row i in both 1x1 and 2x2 pivot cases) do k = 1, n kp = abs( ipiv( k ) ) if( kp/=k ) then call stdlib${ii}$_${ri}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) end if end do else ! begin lower ! solve a*x = b, where a = l*d*l**t. ! p**t * b ! interchange rows k and ipiv(k) of matrix b in the same order ! that the formation order of ipiv(i) vector for lower case. ! (we can do the simple loop over ipiv with increment 1, ! since the abs value of ipiv(i) represents the row index ! of the interchange with row i in both 1x1 and 2x2 pivot cases) do k = 1, n kp = abs( ipiv( k ) ) if( kp/=k ) then call stdlib${ii}$_${ri}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) end if end do ! compute (l \p**t * b) -> b [ (l \p**t * b) ] call stdlib${ii}$_${ri}$trsm( 'L', 'L', 'N', 'U', n, nrhs, one, a, lda, b, ldb ) ! compute d \ b -> b [ d \ (l \p**t * b) ] i = 1_${ik}$ do while ( i<=n ) if( ipiv( i )>0_${ik}$ ) then call stdlib${ii}$_${ri}$scal( nrhs, one / a( i, i ), b( i, 1_${ik}$ ), ldb ) else if( i<n ) then akm1k = e( i ) akm1 = a( i, i ) / akm1k ak = a( i+1, i+1 ) / akm1k denom = akm1*ak - one do j = 1, nrhs bkm1 = b( i, j ) / akm1k bk = b( i+1, j ) / akm1k b( i, j ) = ( ak*bkm1-bk ) / denom b( i+1, j ) = ( akm1*bk-bkm1 ) / denom end do i = i + 1_${ik}$ end if i = i + 1_${ik}$ end do ! compute (l**t \ b) -> b [ l**t \ (d \ (l \p**t * b) ) ] call stdlib${ii}$_${ri}$trsm('L', 'L', 'T', 'U', n, nrhs, one, a, lda, b, ldb ) ! p * b [ p * (l**t \ (d \ (l \p**t * b) )) ] ! interchange rows k and ipiv(k) of matrix b in reverse order ! from the formation order of ipiv(i) vector for lower case. ! (we can do the simple loop over ipiv with decrement -1, ! since the abs value of ipiv(i) represents the row index ! of the interchange with row i in both 1x1 and 2x2 pivot cases) do k = n, 1, -1 kp = abs( ipiv( k ) ) if( kp/=k ) then call stdlib${ii}$_${ri}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) end if end do ! end lower end if return end subroutine stdlib${ii}$_${ri}$sytrs_3 #:endif #:endfor pure module subroutine stdlib${ii}$_csytrs_3( uplo, n, nrhs, a, lda, e, ipiv, b, ldb,info ) !! CSYTRS_3 solves a system of linear equations A * X = B with a complex !! symmetric matrix A using the factorization computed !! by CSYTRF_RK or CSYTRF_BK: !! A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T), !! where U (or L) is unit upper (or lower) triangular matrix, !! U**T (or L**T) is the transpose of U (or L), P is a permutation !! matrix, P**T is the transpose of P, and D is symmetric and block !! diagonal with 1-by-1 and 2-by-2 diagonal blocks. !! This algorithm is using Level 3 BLAS. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, ldb, n, nrhs ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) complex(sp), intent(in) :: a(lda,*), e(*) complex(sp), intent(inout) :: b(ldb,*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, j, k, kp complex(sp) :: ak, akm1, akm1k, bk, bkm1, denom ! Intrinsic Functions ! Executable Statements info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( nrhs<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ else if( ldb<max( 1_${ik}$, n ) ) then info = -9_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'CSYTRS_3', -info ) return end if ! quick return if possible if( n==0 .or. nrhs==0 )return if( upper ) then ! begin upper ! solve a*x = b, where a = u*d*u**t. ! p**t * b ! interchange rows k and ipiv(k) of matrix b in the same order ! that the formation order of ipiv(i) vector for upper case. ! (we can do the simple loop over ipiv with decrement -1, ! since the abs value of ipiv(i) represents the row index ! of the interchange with row i in both 1x1 and 2x2 pivot cases) do k = n, 1, -1 kp = abs( ipiv( k ) ) if( kp/=k ) then call stdlib${ii}$_cswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) end if end do ! compute (u \p**t * b) -> b [ (u \p**t * b) ] call stdlib${ii}$_ctrsm( 'L', 'U', 'N', 'U', n, nrhs, cone, a, lda, b, ldb ) ! compute d \ b -> b [ d \ (u \p**t * b) ] i = n do while ( i>=1 ) if( ipiv( i )>0_${ik}$ ) then call stdlib${ii}$_cscal( nrhs, cone / a( i, i ), b( i, 1_${ik}$ ), ldb ) else if ( i>1_${ik}$ ) then akm1k = e( i ) akm1 = a( i-1, i-1 ) / akm1k ak = a( i, i ) / akm1k denom = akm1*ak - cone do j = 1, nrhs bkm1 = b( i-1, j ) / akm1k bk = b( i, j ) / akm1k b( i-1, j ) = ( ak*bkm1-bk ) / denom b( i, j ) = ( akm1*bk-bkm1 ) / denom end do i = i - 1_${ik}$ end if i = i - 1_${ik}$ end do ! compute (u**t \ b) -> b [ u**t \ (d \ (u \p**t * b) ) ] call stdlib${ii}$_ctrsm( 'L', 'U', 'T', 'U', n, nrhs, cone, a, lda, b, ldb ) ! p * b [ p * (u**t \ (d \ (u \p**t * b) )) ] ! interchange rows k and ipiv(k) of matrix b in reverse order ! from the formation order of ipiv(i) vector for upper case. ! (we can do the simple loop over ipiv with increment 1, ! since the abs value of ipiv( i ) represents the row index ! of the interchange with row i in both 1x1 and 2x2 pivot cases) do k = 1, n, 1 kp = abs( ipiv( k ) ) if( kp/=k ) then call stdlib${ii}$_cswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) end if end do else ! begin lower ! solve a*x = b, where a = l*d*l**t. ! p**t * b ! interchange rows k and ipiv(k) of matrix b in the same order ! that the formation order of ipiv(i) vector for lower case. ! (we can do the simple loop over ipiv with increment 1, ! since the abs value of ipiv(i) represents the row index ! of the interchange with row i in both 1x1 and 2x2 pivot cases) do k = 1, n, 1 kp = abs( ipiv( k ) ) if( kp/=k ) then call stdlib${ii}$_cswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) end if end do ! compute (l \p**t * b) -> b [ (l \p**t * b) ] call stdlib${ii}$_ctrsm( 'L', 'L', 'N', 'U', n, nrhs, cone, a, lda, b, ldb ) ! compute d \ b -> b [ d \ (l \p**t * b) ] i = 1_${ik}$ do while ( i<=n ) if( ipiv( i )>0_${ik}$ ) then call stdlib${ii}$_cscal( nrhs, cone / a( i, i ), b( i, 1_${ik}$ ), ldb ) else if( i<n ) then akm1k = e( i ) akm1 = a( i, i ) / akm1k ak = a( i+1, i+1 ) / akm1k denom = akm1*ak - cone do j = 1, nrhs bkm1 = b( i, j ) / akm1k bk = b( i+1, j ) / akm1k b( i, j ) = ( ak*bkm1-bk ) / denom b( i+1, j ) = ( akm1*bk-bkm1 ) / denom end do i = i + 1_${ik}$ end if i = i + 1_${ik}$ end do ! compute (l**t \ b) -> b [ l**t \ (d \ (l \p**t * b) ) ] call stdlib${ii}$_ctrsm('L', 'L', 'T', 'U', n, nrhs, cone, a, lda, b, ldb ) ! p * b [ p * (l**t \ (d \ (l \p**t * b) )) ] ! interchange rows k and ipiv(k) of matrix b in reverse order ! from the formation order of ipiv(i) vector for lower case. ! (we can do the simple loop over ipiv with decrement -1, ! since the abs value of ipiv(i) represents the row index ! of the interchange with row i in both 1x1 and 2x2 pivot cases) do k = n, 1, -1 kp = abs( ipiv( k ) ) if( kp/=k ) then call stdlib${ii}$_cswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) end if end do ! end lower end if return end subroutine stdlib${ii}$_csytrs_3 pure module subroutine stdlib${ii}$_zsytrs_3( uplo, n, nrhs, a, lda, e, ipiv, b, ldb,info ) !! ZSYTRS_3 solves a system of linear equations A * X = B with a complex !! symmetric matrix A using the factorization computed !! by ZSYTRF_RK or ZSYTRF_BK: !! A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T), !! where U (or L) is unit upper (or lower) triangular matrix, !! U**T (or L**T) is the transpose of U (or L), P is a permutation !! matrix, P**T is the transpose of P, and D is symmetric and block !! diagonal with 1-by-1 and 2-by-2 diagonal blocks. !! This algorithm is using Level 3 BLAS. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, ldb, n, nrhs ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) complex(dp), intent(in) :: a(lda,*), e(*) complex(dp), intent(inout) :: b(ldb,*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, j, k, kp complex(dp) :: ak, akm1, akm1k, bk, bkm1, denom ! Intrinsic Functions ! Executable Statements info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( nrhs<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ else if( ldb<max( 1_${ik}$, n ) ) then info = -9_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZSYTRS_3', -info ) return end if ! quick return if possible if( n==0 .or. nrhs==0 )return if( upper ) then ! begin upper ! solve a*x = b, where a = u*d*u**t. ! p**t * b ! interchange rows k and ipiv(k) of matrix b in the same order ! that the formation order of ipiv(i) vector for upper case. ! (we can do the simple loop over ipiv with decrement -1, ! since the abs value of ipiv(i) represents the row index ! of the interchange with row i in both 1x1 and 2x2 pivot cases) do k = n, 1, -1 kp = abs( ipiv( k ) ) if( kp/=k ) then call stdlib${ii}$_zswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) end if end do ! compute (u \p**t * b) -> b [ (u \p**t * b) ] call stdlib${ii}$_ztrsm( 'L', 'U', 'N', 'U', n, nrhs, cone, a, lda, b, ldb ) ! compute d \ b -> b [ d \ (u \p**t * b) ] i = n do while ( i>=1 ) if( ipiv( i )>0_${ik}$ ) then call stdlib${ii}$_zscal( nrhs, cone / a( i, i ), b( i, 1_${ik}$ ), ldb ) else if ( i>1_${ik}$ ) then akm1k = e( i ) akm1 = a( i-1, i-1 ) / akm1k ak = a( i, i ) / akm1k denom = akm1*ak - cone do j = 1, nrhs bkm1 = b( i-1, j ) / akm1k bk = b( i, j ) / akm1k b( i-1, j ) = ( ak*bkm1-bk ) / denom b( i, j ) = ( akm1*bk-bkm1 ) / denom end do i = i - 1_${ik}$ end if i = i - 1_${ik}$ end do ! compute (u**t \ b) -> b [ u**t \ (d \ (u \p**t * b) ) ] call stdlib${ii}$_ztrsm( 'L', 'U', 'T', 'U', n, nrhs, cone, a, lda, b, ldb ) ! p * b [ p * (u**t \ (d \ (u \p**t * b) )) ] ! interchange rows k and ipiv(k) of matrix b in reverse order ! from the formation order of ipiv(i) vector for upper case. ! (we can do the simple loop over ipiv with increment 1, ! since the abs value of ipiv(i) represents the row index ! of the interchange with row i in both 1x1 and 2x2 pivot cases) do k = 1, n, 1 kp = abs( ipiv( k ) ) if( kp/=k ) then call stdlib${ii}$_zswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) end if end do else ! begin lower ! solve a*x = b, where a = l*d*l**t. ! p**t * b ! interchange rows k and ipiv(k) of matrix b in the same order ! that the formation order of ipiv(i) vector for lower case. ! (we can do the simple loop over ipiv with increment 1, ! since the abs value of ipiv(i) represents the row index ! of the interchange with row i in both 1x1 and 2x2 pivot cases) do k = 1, n, 1 kp = abs( ipiv( k ) ) if( kp/=k ) then call stdlib${ii}$_zswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) end if end do ! compute (l \p**t * b) -> b [ (l \p**t * b) ] call stdlib${ii}$_ztrsm( 'L', 'L', 'N', 'U', n, nrhs, cone, a, lda, b, ldb ) ! compute d \ b -> b [ d \ (l \p**t * b) ] i = 1_${ik}$ do while ( i<=n ) if( ipiv( i )>0_${ik}$ ) then call stdlib${ii}$_zscal( nrhs, cone / a( i, i ), b( i, 1_${ik}$ ), ldb ) else if( i<n ) then akm1k = e( i ) akm1 = a( i, i ) / akm1k ak = a( i+1, i+1 ) / akm1k denom = akm1*ak - cone do j = 1, nrhs bkm1 = b( i, j ) / akm1k bk = b( i+1, j ) / akm1k b( i, j ) = ( ak*bkm1-bk ) / denom b( i+1, j ) = ( akm1*bk-bkm1 ) / denom end do i = i + 1_${ik}$ end if i = i + 1_${ik}$ end do ! compute (l**t \ b) -> b [ l**t \ (d \ (l \p**t * b) ) ] call stdlib${ii}$_ztrsm('L', 'L', 'T', 'U', n, nrhs, cone, a, lda, b, ldb ) ! p * b [ p * (l**t \ (d \ (l \p**t * b) )) ] ! interchange rows k and ipiv(k) of matrix b in reverse order ! from the formation order of ipiv(i) vector for lower case. ! (we can do the simple loop over ipiv with decrement -1, ! since the abs value of ipiv(i) represents the row index ! of the interchange with row i in both 1x1 and 2x2 pivot cases) do k = n, 1, -1 kp = abs( ipiv( k ) ) if( kp/=k ) then call stdlib${ii}$_zswap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) end if end do ! end lower end if return end subroutine stdlib${ii}$_zsytrs_3 #:for ck,ct,ci in CMPLX_KINDS_TYPES #:if not ck in ["sp","dp"] pure module subroutine stdlib${ii}$_${ci}$sytrs_3( uplo, n, nrhs, a, lda, e, ipiv, b, ldb,info ) !! ZSYTRS_3: solves a system of linear equations A * X = B with a complex !! symmetric matrix A using the factorization computed !! by ZSYTRF_RK or ZSYTRF_BK: !! A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T), !! where U (or L) is unit upper (or lower) triangular matrix, !! U**T (or L**T) is the transpose of U (or L), P is a permutation !! matrix, P**T is the transpose of P, and D is symmetric and block !! diagonal with 1-by-1 and 2-by-2 diagonal blocks. !! This algorithm is using Level 3 BLAS. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${ck}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, ldb, n, nrhs ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) complex(${ck}$), intent(in) :: a(lda,*), e(*) complex(${ck}$), intent(inout) :: b(ldb,*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, j, k, kp complex(${ck}$) :: ak, akm1, akm1k, bk, bkm1, denom ! Intrinsic Functions ! Executable Statements info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( nrhs<0_${ik}$ ) then info = -3_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -5_${ik}$ else if( ldb<max( 1_${ik}$, n ) ) then info = -9_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZSYTRS_3', -info ) return end if ! quick return if possible if( n==0 .or. nrhs==0 )return if( upper ) then ! begin upper ! solve a*x = b, where a = u*d*u**t. ! p**t * b ! interchange rows k and ipiv(k) of matrix b in the same order ! that the formation order of ipiv(i) vector for upper case. ! (we can do the simple loop over ipiv with decrement -1, ! since the abs value of ipiv(i) represents the row index ! of the interchange with row i in both 1x1 and 2x2 pivot cases) do k = n, 1, -1 kp = abs( ipiv( k ) ) if( kp/=k ) then call stdlib${ii}$_${ci}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) end if end do ! compute (u \p**t * b) -> b [ (u \p**t * b) ] call stdlib${ii}$_${ci}$trsm( 'L', 'U', 'N', 'U', n, nrhs, cone, a, lda, b, ldb ) ! compute d \ b -> b [ d \ (u \p**t * b) ] i = n do while ( i>=1 ) if( ipiv( i )>0_${ik}$ ) then call stdlib${ii}$_${ci}$scal( nrhs, cone / a( i, i ), b( i, 1_${ik}$ ), ldb ) else if ( i>1_${ik}$ ) then akm1k = e( i ) akm1 = a( i-1, i-1 ) / akm1k ak = a( i, i ) / akm1k denom = akm1*ak - cone do j = 1, nrhs bkm1 = b( i-1, j ) / akm1k bk = b( i, j ) / akm1k b( i-1, j ) = ( ak*bkm1-bk ) / denom b( i, j ) = ( akm1*bk-bkm1 ) / denom end do i = i - 1_${ik}$ end if i = i - 1_${ik}$ end do ! compute (u**t \ b) -> b [ u**t \ (d \ (u \p**t * b) ) ] call stdlib${ii}$_${ci}$trsm( 'L', 'U', 'T', 'U', n, nrhs, cone, a, lda, b, ldb ) ! p * b [ p * (u**t \ (d \ (u \p**t * b) )) ] ! interchange rows k and ipiv(k) of matrix b in reverse order ! from the formation order of ipiv(i) vector for upper case. ! (we can do the simple loop over ipiv with increment 1, ! since the abs value of ipiv(i) represents the row index ! of the interchange with row i in both 1x1 and 2x2 pivot cases) do k = 1, n, 1 kp = abs( ipiv( k ) ) if( kp/=k ) then call stdlib${ii}$_${ci}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) end if end do else ! begin lower ! solve a*x = b, where a = l*d*l**t. ! p**t * b ! interchange rows k and ipiv(k) of matrix b in the same order ! that the formation order of ipiv(i) vector for lower case. ! (we can do the simple loop over ipiv with increment 1, ! since the abs value of ipiv(i) represents the row index ! of the interchange with row i in both 1x1 and 2x2 pivot cases) do k = 1, n, 1 kp = abs( ipiv( k ) ) if( kp/=k ) then call stdlib${ii}$_${ci}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) end if end do ! compute (l \p**t * b) -> b [ (l \p**t * b) ] call stdlib${ii}$_${ci}$trsm( 'L', 'L', 'N', 'U', n, nrhs, cone, a, lda, b, ldb ) ! compute d \ b -> b [ d \ (l \p**t * b) ] i = 1_${ik}$ do while ( i<=n ) if( ipiv( i )>0_${ik}$ ) then call stdlib${ii}$_${ci}$scal( nrhs, cone / a( i, i ), b( i, 1_${ik}$ ), ldb ) else if( i<n ) then akm1k = e( i ) akm1 = a( i, i ) / akm1k ak = a( i+1, i+1 ) / akm1k denom = akm1*ak - cone do j = 1, nrhs bkm1 = b( i, j ) / akm1k bk = b( i+1, j ) / akm1k b( i, j ) = ( ak*bkm1-bk ) / denom b( i+1, j ) = ( akm1*bk-bkm1 ) / denom end do i = i + 1_${ik}$ end if i = i + 1_${ik}$ end do ! compute (l**t \ b) -> b [ l**t \ (d \ (l \p**t * b) ) ] call stdlib${ii}$_${ci}$trsm('L', 'L', 'T', 'U', n, nrhs, cone, a, lda, b, ldb ) ! p * b [ p * (l**t \ (d \ (l \p**t * b) )) ] ! interchange rows k and ipiv(k) of matrix b in reverse order ! from the formation order of ipiv(i) vector for lower case. ! (we can do the simple loop over ipiv with decrement -1, ! since the abs value of ipiv(i) represents the row index ! of the interchange with row i in both 1x1 and 2x2 pivot cases) do k = n, 1, -1 kp = abs( ipiv( k ) ) if( kp/=k ) then call stdlib${ii}$_${ci}$swap( nrhs, b( k, 1_${ik}$ ), ldb, b( kp, 1_${ik}$ ), ldb ) end if end do ! end lower end if return end subroutine stdlib${ii}$_${ci}$sytrs_3 #:endif #:endfor pure module subroutine stdlib${ii}$_ssyswapr( uplo, n, a, lda, i1, i2) !! SSYSWAPR applies an elementary permutation on the rows and the columns of !! a symmetric matrix. ! -- lapack auxiliary routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(in) :: i1, i2, lda, n ! Array Arguments real(sp), intent(inout) :: a(lda,n) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i real(sp) :: tmp ! Executable Statements upper = stdlib_lsame( uplo, 'U' ) if (upper) then ! upper ! first swap ! - swap column i1 and i2 from i1 to i1-1 call stdlib${ii}$_sswap( i1-1, a(1_${ik}$,i1), 1_${ik}$, a(1_${ik}$,i2), 1_${ik}$ ) ! second swap : ! - swap a(i1,i1) and a(i2,i2) ! - swap row i1 from i1+1 to i2-1 with col i2 from i1+1 to i2-1 tmp=a(i1,i1) a(i1,i1)=a(i2,i2) a(i2,i2)=tmp do i=1,i2-i1-1 tmp=a(i1,i1+i) a(i1,i1+i)=a(i1+i,i2) a(i1+i,i2)=tmp end do ! third swap ! - swap row i1 and i2 from i2+1 to n do i=i2+1,n tmp=a(i1,i) a(i1,i)=a(i2,i) a(i2,i)=tmp end do else ! lower ! first swap ! - swap row i1 and i2 from i1 to i1-1 call stdlib${ii}$_sswap( i1-1, a(i1,1_${ik}$), lda, a(i2,1_${ik}$), lda ) ! second swap : ! - swap a(i1,i1) and a(i2,i2) ! - swap col i1 from i1+1 to i2-1 with row i2 from i1+1 to i2-1 tmp=a(i1,i1) a(i1,i1)=a(i2,i2) a(i2,i2)=tmp do i=1,i2-i1-1 tmp=a(i1+i,i1) a(i1+i,i1)=a(i2,i1+i) a(i2,i1+i)=tmp end do ! third swap ! - swap col i1 and i2 from i2+1 to n do i=i2+1,n tmp=a(i,i1) a(i,i1)=a(i,i2) a(i,i2)=tmp end do endif end subroutine stdlib${ii}$_ssyswapr pure module subroutine stdlib${ii}$_dsyswapr( uplo, n, a, lda, i1, i2) !! DSYSWAPR applies an elementary permutation on the rows and the columns of !! a symmetric matrix. ! -- lapack auxiliary routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(in) :: i1, i2, lda, n ! Array Arguments real(dp), intent(inout) :: a(lda,n) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i real(dp) :: tmp ! Executable Statements upper = stdlib_lsame( uplo, 'U' ) if (upper) then ! upper ! first swap ! - swap column i1 and i2 from i1 to i1-1 call stdlib${ii}$_dswap( i1-1, a(1_${ik}$,i1), 1_${ik}$, a(1_${ik}$,i2), 1_${ik}$ ) ! second swap : ! - swap a(i1,i1) and a(i2,i2) ! - swap row i1 from i1+1 to i2-1 with col i2 from i1+1 to i2-1 tmp=a(i1,i1) a(i1,i1)=a(i2,i2) a(i2,i2)=tmp do i=1,i2-i1-1 tmp=a(i1,i1+i) a(i1,i1+i)=a(i1+i,i2) a(i1+i,i2)=tmp end do ! third swap ! - swap row i1 and i2 from i2+1 to n do i=i2+1,n tmp=a(i1,i) a(i1,i)=a(i2,i) a(i2,i)=tmp end do else ! lower ! first swap ! - swap row i1 and i2 from i1 to i1-1 call stdlib${ii}$_dswap( i1-1, a(i1,1_${ik}$), lda, a(i2,1_${ik}$), lda ) ! second swap : ! - swap a(i1,i1) and a(i2,i2) ! - swap col i1 from i1+1 to i2-1 with row i2 from i1+1 to i2-1 tmp=a(i1,i1) a(i1,i1)=a(i2,i2) a(i2,i2)=tmp do i=1,i2-i1-1 tmp=a(i1+i,i1) a(i1+i,i1)=a(i2,i1+i) a(i2,i1+i)=tmp end do ! third swap ! - swap col i1 and i2 from i2+1 to n do i=i2+1,n tmp=a(i,i1) a(i,i1)=a(i,i2) a(i,i2)=tmp end do endif end subroutine stdlib${ii}$_dsyswapr #:for rk,rt,ri in REAL_KINDS_TYPES #:if not rk in ["sp","dp"] pure module subroutine stdlib${ii}$_${ri}$syswapr( uplo, n, a, lda, i1, i2) !! DSYSWAPR: applies an elementary permutation on the rows and the columns of !! a symmetric matrix. ! -- lapack auxiliary routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${rk}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(in) :: i1, i2, lda, n ! Array Arguments real(${rk}$), intent(inout) :: a(lda,n) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i real(${rk}$) :: tmp ! Executable Statements upper = stdlib_lsame( uplo, 'U' ) if (upper) then ! upper ! first swap ! - swap column i1 and i2 from i1 to i1-1 call stdlib${ii}$_${ri}$swap( i1-1, a(1_${ik}$,i1), 1_${ik}$, a(1_${ik}$,i2), 1_${ik}$ ) ! second swap : ! - swap a(i1,i1) and a(i2,i2) ! - swap row i1 from i1+1 to i2-1 with col i2 from i1+1 to i2-1 tmp=a(i1,i1) a(i1,i1)=a(i2,i2) a(i2,i2)=tmp do i=1,i2-i1-1 tmp=a(i1,i1+i) a(i1,i1+i)=a(i1+i,i2) a(i1+i,i2)=tmp end do ! third swap ! - swap row i1 and i2 from i2+1 to n do i=i2+1,n tmp=a(i1,i) a(i1,i)=a(i2,i) a(i2,i)=tmp end do else ! lower ! first swap ! - swap row i1 and i2 from i1 to i1-1 call stdlib${ii}$_${ri}$swap( i1-1, a(i1,1_${ik}$), lda, a(i2,1_${ik}$), lda ) ! second swap : ! - swap a(i1,i1) and a(i2,i2) ! - swap col i1 from i1+1 to i2-1 with row i2 from i1+1 to i2-1 tmp=a(i1,i1) a(i1,i1)=a(i2,i2) a(i2,i2)=tmp do i=1,i2-i1-1 tmp=a(i1+i,i1) a(i1+i,i1)=a(i2,i1+i) a(i2,i1+i)=tmp end do ! third swap ! - swap col i1 and i2 from i2+1 to n do i=i2+1,n tmp=a(i,i1) a(i,i1)=a(i,i2) a(i,i2)=tmp end do endif end subroutine stdlib${ii}$_${ri}$syswapr #:endif #:endfor pure module subroutine stdlib${ii}$_csyswapr( uplo, n, a, lda, i1, i2) !! CSYSWAPR applies an elementary permutation on the rows and the columns of !! a symmetric matrix. ! -- lapack auxiliary routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(in) :: i1, i2, lda, n ! Array Arguments complex(sp), intent(inout) :: a(lda,n) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i complex(sp) :: tmp ! Executable Statements upper = stdlib_lsame( uplo, 'U' ) if (upper) then ! upper ! first swap ! - swap column i1 and i2 from i1 to i1-1 call stdlib${ii}$_cswap( i1-1, a(1_${ik}$,i1), 1_${ik}$, a(1_${ik}$,i2), 1_${ik}$ ) ! second swap : ! - swap a(i1,i1) and a(i2,i2) ! - swap row i1 from i1+1 to i2-1 with col i2 from i1+1 to i2-1 tmp=a(i1,i1) a(i1,i1)=a(i2,i2) a(i2,i2)=tmp do i=1,i2-i1-1 tmp=a(i1,i1+i) a(i1,i1+i)=a(i1+i,i2) a(i1+i,i2)=tmp end do ! third swap ! - swap row i1 and i2 from i2+1 to n do i=i2+1,n tmp=a(i1,i) a(i1,i)=a(i2,i) a(i2,i)=tmp end do else ! lower ! first swap ! - swap row i1 and i2 from i1 to i1-1 call stdlib${ii}$_cswap ( i1-1, a(i1,1_${ik}$), lda, a(i2,1_${ik}$), lda ) ! second swap : ! - swap a(i1,i1) and a(i2,i2) ! - swap col i1 from i1+1 to i2-1 with row i2 from i1+1 to i2-1 tmp=a(i1,i1) a(i1,i1)=a(i2,i2) a(i2,i2)=tmp do i=1,i2-i1-1 tmp=a(i1+i,i1) a(i1+i,i1)=a(i2,i1+i) a(i2,i1+i)=tmp end do ! third swap ! - swap col i1 and i2 from i2+1 to n do i=i2+1,n tmp=a(i,i1) a(i,i1)=a(i,i2) a(i,i2)=tmp end do endif end subroutine stdlib${ii}$_csyswapr pure module subroutine stdlib${ii}$_zsyswapr( uplo, n, a, lda, i1, i2) !! ZSYSWAPR applies an elementary permutation on the rows and the columns of !! a symmetric matrix. ! -- lapack auxiliary routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(in) :: i1, i2, lda, n ! Array Arguments complex(dp), intent(inout) :: a(lda,n) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i complex(dp) :: tmp ! Executable Statements upper = stdlib_lsame( uplo, 'U' ) if (upper) then ! upper ! first swap ! - swap column i1 and i2 from i1 to i1-1 call stdlib${ii}$_zswap( i1-1, a(1_${ik}$,i1), 1_${ik}$, a(1_${ik}$,i2), 1_${ik}$ ) ! second swap : ! - swap a(i1,i1) and a(i2,i2) ! - swap row i1 from i1+1 to i2-1 with col i2 from i1+1 to i2-1 tmp=a(i1,i1) a(i1,i1)=a(i2,i2) a(i2,i2)=tmp do i=1,i2-i1-1 tmp=a(i1,i1+i) a(i1,i1+i)=a(i1+i,i2) a(i1+i,i2)=tmp end do ! third swap ! - swap row i1 and i2 from i2+1 to n do i=i2+1,n tmp=a(i1,i) a(i1,i)=a(i2,i) a(i2,i)=tmp end do else ! lower ! first swap ! - swap row i1 and i2 from i1 to i1-1 call stdlib${ii}$_zswap( i1-1, a(i1,1_${ik}$), lda, a(i2,1_${ik}$), lda ) ! second swap : ! - swap a(i1,i1) and a(i2,i2) ! - swap col i1 from i1+1 to i2-1 with row i2 from i1+1 to i2-1 tmp=a(i1,i1) a(i1,i1)=a(i2,i2) a(i2,i2)=tmp do i=1,i2-i1-1 tmp=a(i1+i,i1) a(i1+i,i1)=a(i2,i1+i) a(i2,i1+i)=tmp end do ! third swap ! - swap col i1 and i2 from i2+1 to n do i=i2+1,n tmp=a(i,i1) a(i,i1)=a(i,i2) a(i,i2)=tmp end do endif end subroutine stdlib${ii}$_zsyswapr #:for ck,ct,ci in CMPLX_KINDS_TYPES #:if not ck in ["sp","dp"] pure module subroutine stdlib${ii}$_${ci}$syswapr( uplo, n, a, lda, i1, i2) !! ZSYSWAPR: applies an elementary permutation on the rows and the columns of !! a symmetric matrix. ! -- lapack auxiliary routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${ck}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(in) :: i1, i2, lda, n ! Array Arguments complex(${ck}$), intent(inout) :: a(lda,n) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i complex(${ck}$) :: tmp ! Executable Statements upper = stdlib_lsame( uplo, 'U' ) if (upper) then ! upper ! first swap ! - swap column i1 and i2 from i1 to i1-1 call stdlib${ii}$_${ci}$swap( i1-1, a(1_${ik}$,i1), 1_${ik}$, a(1_${ik}$,i2), 1_${ik}$ ) ! second swap : ! - swap a(i1,i1) and a(i2,i2) ! - swap row i1 from i1+1 to i2-1 with col i2 from i1+1 to i2-1 tmp=a(i1,i1) a(i1,i1)=a(i2,i2) a(i2,i2)=tmp do i=1,i2-i1-1 tmp=a(i1,i1+i) a(i1,i1+i)=a(i1+i,i2) a(i1+i,i2)=tmp end do ! third swap ! - swap row i1 and i2 from i2+1 to n do i=i2+1,n tmp=a(i1,i) a(i1,i)=a(i2,i) a(i2,i)=tmp end do else ! lower ! first swap ! - swap row i1 and i2 from i1 to i1-1 call stdlib${ii}$_${ci}$swap( i1-1, a(i1,1_${ik}$), lda, a(i2,1_${ik}$), lda ) ! second swap : ! - swap a(i1,i1) and a(i2,i2) ! - swap col i1 from i1+1 to i2-1 with row i2 from i1+1 to i2-1 tmp=a(i1,i1) a(i1,i1)=a(i2,i2) a(i2,i2)=tmp do i=1,i2-i1-1 tmp=a(i1+i,i1) a(i1+i,i1)=a(i2,i1+i) a(i2,i1+i)=tmp end do ! third swap ! - swap col i1 and i2 from i2+1 to n do i=i2+1,n tmp=a(i,i1) a(i,i1)=a(i,i2) a(i,i2)=tmp end do endif end subroutine stdlib${ii}$_${ci}$syswapr #:endif #:endfor real(sp) module function stdlib${ii}$_cla_herpvgrw( uplo, n, info, a, lda, af, ldaf, ipiv,work ) !! CLA_HERPVGRW computes the reciprocal pivot growth factor !! norm(A)/norm(U). The "max absolute element" norm is used. If this is !! much less than 1, the stability of the LU factorization of the !! (equilibrated) matrix A could be poor. This also means that the !! solution X, estimated condition numbers, and error bounds could be !! unreliable. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(in) :: n, info, lda, ldaf ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) complex(sp), intent(in) :: a(lda,*), af(ldaf,*) real(sp), intent(out) :: work(*) ! ===================================================================== ! Local Scalars integer(${ik}$) :: ncols, i, j, k, kp real(sp) :: amax, umax, rpvgrw, tmp logical(lk) :: upper complex(sp) :: zdum ! Intrinsic Functions ! Statement Functions real(sp) :: cabs1 ! Statement Function Definitions cabs1( zdum ) = abs( real( zdum,KIND=sp) ) + abs( aimag ( zdum ) ) ! Executable Statements upper = stdlib_lsame( 'UPPER', uplo ) if ( info==0_${ik}$ ) then if (upper) then ncols = 1_${ik}$ else ncols = n end if else ncols = info end if rpvgrw = one do i = 1, 2*n work( i ) = zero end do ! find the max magnitude entry of each column of a. compute the max ! for all n columns so we can apply the pivot permutation while ! looping below. assume a full factorization is the common case. if ( upper ) then do j = 1, n do i = 1, j work( n+i ) = max( cabs1( a( i,j ) ), work( n+i ) ) work( n+j ) = max( cabs1( a( i,j ) ), work( n+j ) ) end do end do else do j = 1, n do i = j, n work( n+i ) = max( cabs1( a( i, j ) ), work( n+i ) ) work( n+j ) = max( cabs1( a( i, j ) ), work( n+j ) ) end do end do end if ! now find the max magnitude entry of each column of u or l. also ! permute the magnitudes of a above so they're in the same order as ! the factor. ! the iteration orders and permutations were copied from stdlib${ii}$_csytrs. ! calls to stdlib${ii}$_sswap would be severe overkill. if ( upper ) then k = n do while ( k < ncols .and. k>0 ) if ( ipiv( k )>0_${ik}$ ) then ! 1x1 pivot kp = ipiv( k ) if ( kp /= k ) then tmp = work( n+k ) work( n+k ) = work( n+kp ) work( n+kp ) = tmp end if do i = 1, k work( k ) = max( cabs1( af( i, k ) ), work( k ) ) end do k = k - 1_${ik}$ else ! 2x2 pivot kp = -ipiv( k ) tmp = work( n+k-1 ) work( n+k-1 ) = work( n+kp ) work( n+kp ) = tmp do i = 1, k-1 work( k ) = max( cabs1( af( i, k ) ), work( k ) ) work( k-1 ) =max( cabs1( af( i, k-1 ) ), work( k-1 ) ) end do work( k ) = max( cabs1( af( k, k ) ), work( k ) ) k = k - 2_${ik}$ end if end do k = ncols do while ( k <= n ) if ( ipiv( k )>0_${ik}$ ) then kp = ipiv( k ) if ( kp /= k ) then tmp = work( n+k ) work( n+k ) = work( n+kp ) work( n+kp ) = tmp end if k = k + 1_${ik}$ else kp = -ipiv( k ) tmp = work( n+k ) work( n+k ) = work( n+kp ) work( n+kp ) = tmp k = k + 2_${ik}$ end if end do else k = 1_${ik}$ do while ( k <= ncols ) if ( ipiv( k )>0_${ik}$ ) then ! 1x1 pivot kp = ipiv( k ) if ( kp /= k ) then tmp = work( n+k ) work( n+k ) = work( n+kp ) work( n+kp ) = tmp end if do i = k, n work( k ) = max( cabs1( af( i, k ) ), work( k ) ) end do k = k + 1_${ik}$ else ! 2x2 pivot kp = -ipiv( k ) tmp = work( n+k+1 ) work( n+k+1 ) = work( n+kp ) work( n+kp ) = tmp do i = k+1, n work( k ) = max( cabs1( af( i, k ) ), work( k ) ) work( k+1 ) =max( cabs1( af( i, k+1 ) ) , work( k+1 ) ) end do work(k) = max( cabs1( af( k, k ) ), work( k ) ) k = k + 2_${ik}$ end if end do k = ncols do while ( k >= 1 ) if ( ipiv( k )>0_${ik}$ ) then kp = ipiv( k ) if ( kp /= k ) then tmp = work( n+k ) work( n+k ) = work( n+kp ) work( n+kp ) = tmp end if k = k - 1_${ik}$ else kp = -ipiv( k ) tmp = work( n+k ) work( n+k ) = work( n+kp ) work( n+kp ) = tmp k = k - 2_${ik}$ endif end do end if ! compute the *inverse* of the max element growth factor. dividing ! by zero would imply the largest entry of the factor's column is ! zero. than can happen when either the column of a is zero or ! massive pivots made the factor underflow to zero. neither counts ! as growth in itself, so simply ignore terms with zero ! denominators. if ( upper ) then do i = ncols, n umax = work( i ) amax = work( n+i ) if ( umax /= 0.0_sp ) then rpvgrw = min( amax / umax, rpvgrw ) end if end do else do i = 1, ncols umax = work( i ) amax = work( n+i ) if ( umax /= 0.0_sp ) then rpvgrw = min( amax / umax, rpvgrw ) end if end do end if stdlib${ii}$_cla_herpvgrw = rpvgrw end function stdlib${ii}$_cla_herpvgrw real(dp) module function stdlib${ii}$_zla_herpvgrw( uplo, n, info, a, lda, af,ldaf, ipiv, work ) !! ZLA_HERPVGRW computes the reciprocal pivot growth factor !! norm(A)/norm(U). The "max absolute element" norm is used. If this is !! much less than 1, the stability of the LU factorization of the !! (equilibrated) matrix A could be poor. This also means that the !! solution X, estimated condition numbers, and error bounds could be !! unreliable. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(in) :: n, info, lda, ldaf ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) complex(dp), intent(in) :: a(lda,*), af(ldaf,*) real(dp), intent(out) :: work(*) ! ===================================================================== ! Local Scalars integer(${ik}$) :: ncols, i, j, k, kp real(dp) :: amax, umax, rpvgrw, tmp logical(lk) :: upper complex(dp) :: zdum ! Intrinsic Functions ! Statement Functions real(dp) :: cabs1 ! Statement Function Definitions cabs1( zdum ) = abs( real( zdum,KIND=dp) ) + abs( aimag ( zdum ) ) ! Executable Statements upper = stdlib_lsame( 'UPPER', uplo ) if ( info==0_${ik}$ ) then if (upper) then ncols = 1_${ik}$ else ncols = n end if else ncols = info end if rpvgrw = one do i = 1, 2*n work( i ) = zero end do ! find the max magnitude entry of each column of a. compute the max ! for all n columns so we can apply the pivot permutation while ! looping below. assume a full factorization is the common case. if ( upper ) then do j = 1, n do i = 1, j work( n+i ) = max( cabs1( a( i,j ) ), work( n+i ) ) work( n+j ) = max( cabs1( a( i,j ) ), work( n+j ) ) end do end do else do j = 1, n do i = j, n work( n+i ) = max( cabs1( a( i, j ) ), work( n+i ) ) work( n+j ) = max( cabs1( a( i, j ) ), work( n+j ) ) end do end do end if ! now find the max magnitude entry of each column of u or l. also ! permute the magnitudes of a above so they're in the same order as ! the factor. ! the iteration orders and permutations were copied from stdlib${ii}$_zsytrs. ! calls to stdlib${ii}$_sswap would be severe overkill. if ( upper ) then k = n do while ( k < ncols .and. k>0 ) if ( ipiv( k )>0_${ik}$ ) then ! 1x1 pivot kp = ipiv( k ) if ( kp /= k ) then tmp = work( n+k ) work( n+k ) = work( n+kp ) work( n+kp ) = tmp end if do i = 1, k work( k ) = max( cabs1( af( i, k ) ), work( k ) ) end do k = k - 1_${ik}$ else ! 2x2 pivot kp = -ipiv( k ) tmp = work( n+k-1 ) work( n+k-1 ) = work( n+kp ) work( n+kp ) = tmp do i = 1, k-1 work( k ) = max( cabs1( af( i, k ) ), work( k ) ) work( k-1 ) =max( cabs1( af( i, k-1 ) ), work( k-1 ) ) end do work( k ) = max( cabs1( af( k, k ) ), work( k ) ) k = k - 2_${ik}$ end if end do k = ncols do while ( k <= n ) if ( ipiv( k )>0_${ik}$ ) then kp = ipiv( k ) if ( kp /= k ) then tmp = work( n+k ) work( n+k ) = work( n+kp ) work( n+kp ) = tmp end if k = k + 1_${ik}$ else kp = -ipiv( k ) tmp = work( n+k ) work( n+k ) = work( n+kp ) work( n+kp ) = tmp k = k + 2_${ik}$ end if end do else k = 1_${ik}$ do while ( k <= ncols ) if ( ipiv( k )>0_${ik}$ ) then ! 1x1 pivot kp = ipiv( k ) if ( kp /= k ) then tmp = work( n+k ) work( n+k ) = work( n+kp ) work( n+kp ) = tmp end if do i = k, n work( k ) = max( cabs1( af( i, k ) ), work( k ) ) end do k = k + 1_${ik}$ else ! 2x2 pivot kp = -ipiv( k ) tmp = work( n+k+1 ) work( n+k+1 ) = work( n+kp ) work( n+kp ) = tmp do i = k+1, n work( k ) = max( cabs1( af( i, k ) ), work( k ) ) work( k+1 ) =max( cabs1( af( i, k+1 ) ) , work( k+1 ) ) end do work(k) = max( cabs1( af( k, k ) ), work( k ) ) k = k + 2_${ik}$ end if end do k = ncols do while ( k >= 1 ) if ( ipiv( k )>0_${ik}$ ) then kp = ipiv( k ) if ( kp /= k ) then tmp = work( n+k ) work( n+k ) = work( n+kp ) work( n+kp ) = tmp end if k = k - 1_${ik}$ else kp = -ipiv( k ) tmp = work( n+k ) work( n+k ) = work( n+kp ) work( n+kp ) = tmp k = k - 2_${ik}$ endif end do end if ! compute the *inverse* of the max element growth factor. dividing ! by zero would imply the largest entry of the factor's column is ! zero. than can happen when either the column of a is zero or ! massive pivots made the factor underflow to zero. neither counts ! as growth in itself, so simply ignore terms with zero ! denominators. if ( upper ) then do i = ncols, n umax = work( i ) amax = work( n+i ) if ( umax /= zero ) then rpvgrw = min( amax / umax, rpvgrw ) end if end do else do i = 1, ncols umax = work( i ) amax = work( n+i ) if ( umax /= zero ) then rpvgrw = min( amax / umax, rpvgrw ) end if end do end if stdlib${ii}$_zla_herpvgrw = rpvgrw end function stdlib${ii}$_zla_herpvgrw #:for ck,ct,ci in CMPLX_KINDS_TYPES #:if not ck in ["sp","dp"] real(${ck}$) module function stdlib${ii}$_${ci}$la_herpvgrw( uplo, n, info, a, lda, af,ldaf, ipiv, work ) !! ZLA_HERPVGRW: computes the reciprocal pivot growth factor !! norm(A)/norm(U). The "max absolute element" norm is used. If this is !! much less than 1, the stability of the LU factorization of the !! (equilibrated) matrix A could be poor. This also means that the !! solution X, estimated condition numbers, and error bounds could be !! unreliable. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${ck}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(in) :: n, info, lda, ldaf ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) complex(${ck}$), intent(in) :: a(lda,*), af(ldaf,*) real(${ck}$), intent(out) :: work(*) ! ===================================================================== ! Local Scalars integer(${ik}$) :: ncols, i, j, k, kp real(${ck}$) :: amax, umax, rpvgrw, tmp logical(lk) :: upper complex(${ck}$) :: zdum ! Intrinsic Functions ! Statement Functions real(${ck}$) :: cabs1 ! Statement Function Definitions cabs1( zdum ) = abs( real( zdum,KIND=${ck}$) ) + abs( aimag ( zdum ) ) ! Executable Statements upper = stdlib_lsame( 'UPPER', uplo ) if ( info==0_${ik}$ ) then if (upper) then ncols = 1_${ik}$ else ncols = n end if else ncols = info end if rpvgrw = one do i = 1, 2*n work( i ) = zero end do ! find the max magnitude entry of each column of a. compute the max ! for all n columns so we can apply the pivot permutation while ! looping below. assume a full factorization is the common case. if ( upper ) then do j = 1, n do i = 1, j work( n+i ) = max( cabs1( a( i,j ) ), work( n+i ) ) work( n+j ) = max( cabs1( a( i,j ) ), work( n+j ) ) end do end do else do j = 1, n do i = j, n work( n+i ) = max( cabs1( a( i, j ) ), work( n+i ) ) work( n+j ) = max( cabs1( a( i, j ) ), work( n+j ) ) end do end do end if ! now find the max magnitude entry of each column of u or l. also ! permute the magnitudes of a above so they're in the same order as ! the factor. ! the iteration orders and permutations were copied from stdlib${ii}$_${ci}$sytrs. ! calls to stdlib${ii}$_dswap would be severe overkill. if ( upper ) then k = n do while ( k < ncols .and. k>0 ) if ( ipiv( k )>0_${ik}$ ) then ! 1x1 pivot kp = ipiv( k ) if ( kp /= k ) then tmp = work( n+k ) work( n+k ) = work( n+kp ) work( n+kp ) = tmp end if do i = 1, k work( k ) = max( cabs1( af( i, k ) ), work( k ) ) end do k = k - 1_${ik}$ else ! 2x2 pivot kp = -ipiv( k ) tmp = work( n+k-1 ) work( n+k-1 ) = work( n+kp ) work( n+kp ) = tmp do i = 1, k-1 work( k ) = max( cabs1( af( i, k ) ), work( k ) ) work( k-1 ) =max( cabs1( af( i, k-1 ) ), work( k-1 ) ) end do work( k ) = max( cabs1( af( k, k ) ), work( k ) ) k = k - 2_${ik}$ end if end do k = ncols do while ( k <= n ) if ( ipiv( k )>0_${ik}$ ) then kp = ipiv( k ) if ( kp /= k ) then tmp = work( n+k ) work( n+k ) = work( n+kp ) work( n+kp ) = tmp end if k = k + 1_${ik}$ else kp = -ipiv( k ) tmp = work( n+k ) work( n+k ) = work( n+kp ) work( n+kp ) = tmp k = k + 2_${ik}$ end if end do else k = 1_${ik}$ do while ( k <= ncols ) if ( ipiv( k )>0_${ik}$ ) then ! 1x1 pivot kp = ipiv( k ) if ( kp /= k ) then tmp = work( n+k ) work( n+k ) = work( n+kp ) work( n+kp ) = tmp end if do i = k, n work( k ) = max( cabs1( af( i, k ) ), work( k ) ) end do k = k + 1_${ik}$ else ! 2x2 pivot kp = -ipiv( k ) tmp = work( n+k+1 ) work( n+k+1 ) = work( n+kp ) work( n+kp ) = tmp do i = k+1, n work( k ) = max( cabs1( af( i, k ) ), work( k ) ) work( k+1 ) =max( cabs1( af( i, k+1 ) ) , work( k+1 ) ) end do work(k) = max( cabs1( af( k, k ) ), work( k ) ) k = k + 2_${ik}$ end if end do k = ncols do while ( k >= 1 ) if ( ipiv( k )>0_${ik}$ ) then kp = ipiv( k ) if ( kp /= k ) then tmp = work( n+k ) work( n+k ) = work( n+kp ) work( n+kp ) = tmp end if k = k - 1_${ik}$ else kp = -ipiv( k ) tmp = work( n+k ) work( n+k ) = work( n+kp ) work( n+kp ) = tmp k = k - 2_${ik}$ endif end do end if ! compute the *inverse* of the max element growth factor. dividing ! by zero would imply the largest entry of the factor's column is ! zero. than can happen when either the column of a is zero or ! massive pivots made the factor underflow to zero. neither counts ! as growth in itself, so simply ignore terms with zero ! denominators. if ( upper ) then do i = ncols, n umax = work( i ) amax = work( n+i ) if ( umax /= zero ) then rpvgrw = min( amax / umax, rpvgrw ) end if end do else do i = 1, ncols umax = work( i ) amax = work( n+i ) if ( umax /= zero ) then rpvgrw = min( amax / umax, rpvgrw ) end if end do end if stdlib${ii}$_${ci}$la_herpvgrw = rpvgrw end function stdlib${ii}$_${ci}$la_herpvgrw #:endif #:endfor pure module subroutine stdlib${ii}$_sspcon( uplo, n, ap, ipiv, anorm, rcond, work, iwork,info ) !! SSPCON estimates the reciprocal of the condition number (in the !! 1-norm) of a real symmetric packed matrix A using the factorization !! A = U*D*U**T or A = L*D*L**T computed by SSPTRF. !! An estimate is obtained for norm(inv(A)), and the reciprocal of the !! condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: n real(sp), intent(in) :: anorm real(sp), intent(out) :: rcond ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) integer(${ik}$), intent(out) :: iwork(*) real(sp), intent(in) :: ap(*) real(sp), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, ip, kase real(sp) :: ainvnm ! Local Arrays integer(${ik}$) :: isave(3_${ik}$) ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( anorm<zero ) then info = -5_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'SSPCON', -info ) return end if ! quick return if possible rcond = zero if( n==0_${ik}$ ) then rcond = one return else if( anorm<=zero ) then return end if ! check that the diagonal matrix d is nonsingular. if( upper ) then ! upper triangular storage: examine d from bottom to top ip = n*( n+1 ) / 2_${ik}$ do i = n, 1, -1 if( ipiv( i )>0 .and. ap( ip )==zero )return ip = ip - i end do else ! lower triangular storage: examine d from top to bottom. ip = 1_${ik}$ do i = 1, n if( ipiv( i )>0 .and. ap( ip )==zero )return ip = ip + n - i + 1_${ik}$ end do end if ! estimate the 1-norm of the inverse. kase = 0_${ik}$ 30 continue call stdlib${ii}$_slacn2( n, work( n+1 ), work, iwork, ainvnm, kase, isave ) if( kase/=0_${ik}$ ) then ! multiply by inv(l*d*l**t) or inv(u*d*u**t). call stdlib${ii}$_ssptrs( uplo, n, 1_${ik}$, ap, ipiv, work, n, info ) go to 30 end if ! compute the estimate of the reciprocal condition number. if( ainvnm/=zero )rcond = ( one / ainvnm ) / anorm return end subroutine stdlib${ii}$_sspcon pure module subroutine stdlib${ii}$_dspcon( uplo, n, ap, ipiv, anorm, rcond, work, iwork,info ) !! DSPCON estimates the reciprocal of the condition number (in the !! 1-norm) of a real symmetric packed matrix A using the factorization !! A = U*D*U**T or A = L*D*L**T computed by DSPTRF. !! An estimate is obtained for norm(inv(A)), and the reciprocal of the !! condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: n real(dp), intent(in) :: anorm real(dp), intent(out) :: rcond ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) integer(${ik}$), intent(out) :: iwork(*) real(dp), intent(in) :: ap(*) real(dp), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, ip, kase real(dp) :: ainvnm ! Local Arrays integer(${ik}$) :: isave(3_${ik}$) ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( anorm<zero ) then info = -5_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'DSPCON', -info ) return end if ! quick return if possible rcond = zero if( n==0_${ik}$ ) then rcond = one return else if( anorm<=zero ) then return end if ! check that the diagonal matrix d is nonsingular. if( upper ) then ! upper triangular storage: examine d from bottom to top ip = n*( n+1 ) / 2_${ik}$ do i = n, 1, -1 if( ipiv( i )>0 .and. ap( ip )==zero )return ip = ip - i end do else ! lower triangular storage: examine d from top to bottom. ip = 1_${ik}$ do i = 1, n if( ipiv( i )>0 .and. ap( ip )==zero )return ip = ip + n - i + 1_${ik}$ end do end if ! estimate the 1-norm of the inverse. kase = 0_${ik}$ 30 continue call stdlib${ii}$_dlacn2( n, work( n+1 ), work, iwork, ainvnm, kase, isave ) if( kase/=0_${ik}$ ) then ! multiply by inv(l*d*l**t) or inv(u*d*u**t). call stdlib${ii}$_dsptrs( uplo, n, 1_${ik}$, ap, ipiv, work, n, info ) go to 30 end if ! compute the estimate of the reciprocal condition number. if( ainvnm/=zero )rcond = ( one / ainvnm ) / anorm return end subroutine stdlib${ii}$_dspcon #:for rk,rt,ri in REAL_KINDS_TYPES #:if not rk in ["sp","dp"] pure module subroutine stdlib${ii}$_${ri}$spcon( uplo, n, ap, ipiv, anorm, rcond, work, iwork,info ) !! DSPCON: estimates the reciprocal of the condition number (in the !! 1-norm) of a real symmetric packed matrix A using the factorization !! A = U*D*U**T or A = L*D*L**T computed by DSPTRF. !! An estimate is obtained for norm(inv(A)), and the reciprocal of the !! condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${rk}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: n real(${rk}$), intent(in) :: anorm real(${rk}$), intent(out) :: rcond ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) integer(${ik}$), intent(out) :: iwork(*) real(${rk}$), intent(in) :: ap(*) real(${rk}$), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, ip, kase real(${rk}$) :: ainvnm ! Local Arrays integer(${ik}$) :: isave(3_${ik}$) ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( anorm<zero ) then info = -5_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'DSPCON', -info ) return end if ! quick return if possible rcond = zero if( n==0_${ik}$ ) then rcond = one return else if( anorm<=zero ) then return end if ! check that the diagonal matrix d is nonsingular. if( upper ) then ! upper triangular storage: examine d from bottom to top ip = n*( n+1 ) / 2_${ik}$ do i = n, 1, -1 if( ipiv( i )>0 .and. ap( ip )==zero )return ip = ip - i end do else ! lower triangular storage: examine d from top to bottom. ip = 1_${ik}$ do i = 1, n if( ipiv( i )>0 .and. ap( ip )==zero )return ip = ip + n - i + 1_${ik}$ end do end if ! estimate the 1-norm of the inverse. kase = 0_${ik}$ 30 continue call stdlib${ii}$_${ri}$lacn2( n, work( n+1 ), work, iwork, ainvnm, kase, isave ) if( kase/=0_${ik}$ ) then ! multiply by inv(l*d*l**t) or inv(u*d*u**t). call stdlib${ii}$_${ri}$sptrs( uplo, n, 1_${ik}$, ap, ipiv, work, n, info ) go to 30 end if ! compute the estimate of the reciprocal condition number. if( ainvnm/=zero )rcond = ( one / ainvnm ) / anorm return end subroutine stdlib${ii}$_${ri}$spcon #:endif #:endfor pure module subroutine stdlib${ii}$_cspcon( uplo, n, ap, ipiv, anorm, rcond, work, info ) !! CSPCON estimates the reciprocal of the condition number (in the !! 1-norm) of a complex symmetric packed matrix A using the !! factorization A = U*D*U**T or A = L*D*L**T computed by CSPTRF. !! An estimate is obtained for norm(inv(A)), and the reciprocal of the !! condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: n real(sp), intent(in) :: anorm real(sp), intent(out) :: rcond ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) complex(sp), intent(in) :: ap(*) complex(sp), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, ip, kase real(sp) :: ainvnm ! Local Arrays integer(${ik}$) :: isave(3_${ik}$) ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( anorm<zero ) then info = -5_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'CSPCON', -info ) return end if ! quick return if possible rcond = zero if( n==0_${ik}$ ) then rcond = one return else if( anorm<=zero ) then return end if ! check that the diagonal matrix d is nonsingular. if( upper ) then ! upper triangular storage: examine d from bottom to top ip = n*( n+1 ) / 2_${ik}$ do i = n, 1, -1 if( ipiv( i )>0 .and. ap( ip )==zero )return ip = ip - i end do else ! lower triangular storage: examine d from top to bottom. ip = 1_${ik}$ do i = 1, n if( ipiv( i )>0 .and. ap( ip )==zero )return ip = ip + n - i + 1_${ik}$ end do end if ! estimate the 1-norm of the inverse. kase = 0_${ik}$ 30 continue call stdlib${ii}$_clacn2( n, work( n+1 ), work, ainvnm, kase, isave ) if( kase/=0_${ik}$ ) then ! multiply by inv(l*d*l**t) or inv(u*d*u**t). call stdlib${ii}$_csptrs( uplo, n, 1_${ik}$, ap, ipiv, work, n, info ) go to 30 end if ! compute the estimate of the reciprocal condition number. if( ainvnm/=zero )rcond = ( one / ainvnm ) / anorm return end subroutine stdlib${ii}$_cspcon pure module subroutine stdlib${ii}$_zspcon( uplo, n, ap, ipiv, anorm, rcond, work, info ) !! ZSPCON estimates the reciprocal of the condition number (in the !! 1-norm) of a complex symmetric packed matrix A using the !! factorization A = U*D*U**T or A = L*D*L**T computed by ZSPTRF. !! An estimate is obtained for norm(inv(A)), and the reciprocal of the !! condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: n real(dp), intent(in) :: anorm real(dp), intent(out) :: rcond ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) complex(dp), intent(in) :: ap(*) complex(dp), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, ip, kase real(dp) :: ainvnm ! Local Arrays integer(${ik}$) :: isave(3_${ik}$) ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( anorm<zero ) then info = -5_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZSPCON', -info ) return end if ! quick return if possible rcond = zero if( n==0_${ik}$ ) then rcond = one return else if( anorm<=zero ) then return end if ! check that the diagonal matrix d is nonsingular. if( upper ) then ! upper triangular storage: examine d from bottom to top ip = n*( n+1 ) / 2_${ik}$ do i = n, 1, -1 if( ipiv( i )>0 .and. ap( ip )==zero )return ip = ip - i end do else ! lower triangular storage: examine d from top to bottom. ip = 1_${ik}$ do i = 1, n if( ipiv( i )>0 .and. ap( ip )==zero )return ip = ip + n - i + 1_${ik}$ end do end if ! estimate the 1-norm of the inverse. kase = 0_${ik}$ 30 continue call stdlib${ii}$_zlacn2( n, work( n+1 ), work, ainvnm, kase, isave ) if( kase/=0_${ik}$ ) then ! multiply by inv(l*d*l**t) or inv(u*d*u**t). call stdlib${ii}$_zsptrs( uplo, n, 1_${ik}$, ap, ipiv, work, n, info ) go to 30 end if ! compute the estimate of the reciprocal condition number. if( ainvnm/=zero )rcond = ( one / ainvnm ) / anorm return end subroutine stdlib${ii}$_zspcon #:for ck,ct,ci in CMPLX_KINDS_TYPES #:if not ck in ["sp","dp"] pure module subroutine stdlib${ii}$_${ci}$spcon( uplo, n, ap, ipiv, anorm, rcond, work, info ) !! ZSPCON: estimates the reciprocal of the condition number (in the !! 1-norm) of a complex symmetric packed matrix A using the !! factorization A = U*D*U**T or A = L*D*L**T computed by ZSPTRF. !! An estimate is obtained for norm(inv(A)), and the reciprocal of the !! condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${ck}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: n real(${ck}$), intent(in) :: anorm real(${ck}$), intent(out) :: rcond ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) complex(${ck}$), intent(in) :: ap(*) complex(${ck}$), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, ip, kase real(${ck}$) :: ainvnm ! Local Arrays integer(${ik}$) :: isave(3_${ik}$) ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( anorm<zero ) then info = -5_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZSPCON', -info ) return end if ! quick return if possible rcond = zero if( n==0_${ik}$ ) then rcond = one return else if( anorm<=zero ) then return end if ! check that the diagonal matrix d is nonsingular. if( upper ) then ! upper triangular storage: examine d from bottom to top ip = n*( n+1 ) / 2_${ik}$ do i = n, 1, -1 if( ipiv( i )>0 .and. ap( ip )==zero )return ip = ip - i end do else ! lower triangular storage: examine d from top to bottom. ip = 1_${ik}$ do i = 1, n if( ipiv( i )>0 .and. ap( ip )==zero )return ip = ip + n - i + 1_${ik}$ end do end if ! estimate the 1-norm of the inverse. kase = 0_${ik}$ 30 continue call stdlib${ii}$_${ci}$lacn2( n, work( n+1 ), work, ainvnm, kase, isave ) if( kase/=0_${ik}$ ) then ! multiply by inv(l*d*l**t) or inv(u*d*u**t). call stdlib${ii}$_${ci}$sptrs( uplo, n, 1_${ik}$, ap, ipiv, work, n, info ) go to 30 end if ! compute the estimate of the reciprocal condition number. if( ainvnm/=zero )rcond = ( one / ainvnm ) / anorm return end subroutine stdlib${ii}$_${ci}$spcon #:endif #:endfor pure module subroutine stdlib${ii}$_ssptrf( uplo, n, ap, ipiv, info ) !! SSPTRF computes the factorization of a real symmetric matrix A stored !! in packed format using the Bunch-Kaufman diagonal pivoting method: !! A = U*D*U**T or A = L*D*L**T !! where U (or L) is a product of permutation and unit upper (lower) !! triangular matrices, and D is symmetric and block diagonal with !! 1-by-1 and 2-by-2 diagonal blocks. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: n ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) real(sp), intent(inout) :: ap(*) ! ===================================================================== ! Parameters real(sp), parameter :: sevten = 17.0e+0_sp ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, imax, j, jmax, k, kc, kk, knc, kp, kpc, kstep, kx, npp real(sp) :: absakk, alpha, colmax, d11, d12, d21, d22, r1, rowmax, t, wk, wkm1, & wkp1 ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'SSPTRF', -info ) return end if ! initialize alpha for use in choosing pivot block size. alpha = ( one+sqrt( sevten ) ) / eight if( upper ) then ! factorize a as u*d*u**t using the upper triangle of a ! k is the main loop index, decreasing from n to 1 in steps of ! 1 or 2 k = n kc = ( n-1 )*n / 2_${ik}$ + 1_${ik}$ 10 continue knc = kc ! if k < 1, exit from loop if( k<1 )go to 110 kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = abs( ap( kc+k-1 ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value if( k>1_${ik}$ ) then imax = stdlib${ii}$_isamax( k-1, ap( kc ), 1_${ik}$ ) colmax = abs( ap( kc+imax-1 ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero: set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else rowmax = zero jmax = imax kx = imax*( imax+1 ) / 2_${ik}$ + imax do j = imax + 1, k if( abs( ap( kx ) )>rowmax ) then rowmax = abs( ap( kx ) ) jmax = j end if kx = kx + j end do kpc = ( imax-1 )*imax / 2_${ik}$ + 1_${ik}$ if( imax>1_${ik}$ ) then jmax = stdlib${ii}$_isamax( imax-1, ap( kpc ), 1_${ik}$ ) rowmax = max( rowmax, abs( ap( kpc+jmax-1 ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( abs( ap( kpc+imax-1 ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax else ! interchange rows and columns k-1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if kk = k - kstep + 1_${ik}$ if( kstep==2_${ik}$ )knc = knc - k + 1_${ik}$ if( kp/=kk ) then ! interchange rows and columns kk and kp in the leading ! submatrix a(1:k,1:k) call stdlib${ii}$_sswap( kp-1, ap( knc ), 1_${ik}$, ap( kpc ), 1_${ik}$ ) kx = kpc + kp - 1_${ik}$ do j = kp + 1, kk - 1 kx = kx + j - 1_${ik}$ t = ap( knc+j-1 ) ap( knc+j-1 ) = ap( kx ) ap( kx ) = t end do t = ap( knc+kk-1 ) ap( knc+kk-1 ) = ap( kpc+kp-1 ) ap( kpc+kp-1 ) = t if( kstep==2_${ik}$ ) then t = ap( kc+k-2 ) ap( kc+k-2 ) = ap( kc+kp-1 ) ap( kc+kp-1 ) = t end if end if ! update the leading submatrix if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k now holds ! w(k) = u(k)*d(k) ! where u(k) is the k-th column of u ! perform a rank-1 update of a(1:k-1,1:k-1) as ! a := a - u(k)*d(k)*u(k)**t = a - w(k)*1/d(k)*w(k)**t r1 = one / ap( kc+k-1 ) call stdlib${ii}$_sspr( uplo, k-1, -r1, ap( kc ), 1_${ik}$, ap ) ! store u(k) in column k call stdlib${ii}$_sscal( k-1, r1, ap( kc ), 1_${ik}$ ) else ! 2-by-2 pivot block d(k): columns k and k-1 now hold ! ( w(k-1) w(k) ) = ( u(k-1) u(k) )*d(k) ! where u(k) and u(k-1) are the k-th and (k-1)-th columns ! of u ! perform a rank-2 update of a(1:k-2,1:k-2) as ! a := a - ( u(k-1) u(k) )*d(k)*( u(k-1) u(k) )**t ! = a - ( w(k-1) w(k) )*inv(d(k))*( w(k-1) w(k) )**t if( k>2_${ik}$ ) then d12 = ap( k-1+( k-1 )*k / 2_${ik}$ ) d22 = ap( k-1+( k-2 )*( k-1 ) / 2_${ik}$ ) / d12 d11 = ap( k+( k-1 )*k / 2_${ik}$ ) / d12 t = one / ( d11*d22-one ) d12 = t / d12 do j = k - 2, 1, -1 wkm1 = d12*( d11*ap( j+( k-2 )*( k-1 ) / 2_${ik}$ )-ap( j+( k-1 )*k / 2_${ik}$ ) ) wk = d12*( d22*ap( j+( k-1 )*k / 2_${ik}$ )-ap( j+( k-2 )*( k-1 ) / 2_${ik}$ ) ) do i = j, 1, -1 ap( i+( j-1 )*j / 2_${ik}$ ) = ap( i+( j-1 )*j / 2_${ik}$ ) -ap( i+( k-1 )*k / 2_${ik}$ )& *wk -ap( i+( k-2 )*( k-1 ) / 2_${ik}$ )*wkm1 end do ap( j+( k-1 )*k / 2_${ik}$ ) = wk ap( j+( k-2 )*( k-1 ) / 2_${ik}$ ) = wkm1 end do end if end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k-1 ) = -kp end if ! decrease k and return to the start of the main loop k = k - kstep kc = knc - k go to 10 else ! factorize a as l*d*l**t using the lower triangle of a ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2 k = 1_${ik}$ kc = 1_${ik}$ npp = n*( n+1 ) / 2_${ik}$ 60 continue knc = kc ! if k > n, exit from loop if( k>n )go to 110 kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = abs( ap( kc ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value if( k<n ) then imax = k + stdlib${ii}$_isamax( n-k, ap( kc+1 ), 1_${ik}$ ) colmax = abs( ap( kc+imax-k ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero: set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value rowmax = zero kx = kc + imax - k do j = k, imax - 1 if( abs( ap( kx ) )>rowmax ) then rowmax = abs( ap( kx ) ) jmax = j end if kx = kx + n - j end do kpc = npp - ( n-imax+1 )*( n-imax+2 ) / 2_${ik}$ + 1_${ik}$ if( imax<n ) then jmax = imax + stdlib${ii}$_isamax( n-imax, ap( kpc+1 ), 1_${ik}$ ) rowmax = max( rowmax, abs( ap( kpc+jmax-imax ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( abs( ap( kpc ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax else ! interchange rows and columns k+1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if kk = k + kstep - 1_${ik}$ if( kstep==2_${ik}$ )knc = knc + n - k + 1_${ik}$ if( kp/=kk ) then ! interchange rows and columns kk and kp in the trailing ! submatrix a(k:n,k:n) if( kp<n )call stdlib${ii}$_sswap( n-kp, ap( knc+kp-kk+1 ), 1_${ik}$, ap( kpc+1 ),1_${ik}$ ) kx = knc + kp - kk do j = kk + 1, kp - 1 kx = kx + n - j + 1_${ik}$ t = ap( knc+j-kk ) ap( knc+j-kk ) = ap( kx ) ap( kx ) = t end do t = ap( knc ) ap( knc ) = ap( kpc ) ap( kpc ) = t if( kstep==2_${ik}$ ) then t = ap( kc+1 ) ap( kc+1 ) = ap( kc+kp-k ) ap( kc+kp-k ) = t end if end if ! update the trailing submatrix if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k now holds ! w(k) = l(k)*d(k) ! where l(k) is the k-th column of l if( k<n ) then ! perform a rank-1 update of a(k+1:n,k+1:n) as ! a := a - l(k)*d(k)*l(k)**t = a - w(k)*(1/d(k))*w(k)**t r1 = one / ap( kc ) call stdlib${ii}$_sspr( uplo, n-k, -r1, ap( kc+1 ), 1_${ik}$,ap( kc+n-k+1 ) ) ! store l(k) in column k call stdlib${ii}$_sscal( n-k, r1, ap( kc+1 ), 1_${ik}$ ) end if else ! 2-by-2 pivot block d(k): columns k and k+1 now hold ! ( w(k) w(k+1) ) = ( l(k) l(k+1) )*d(k) ! where l(k) and l(k+1) are the k-th and (k+1)-th columns ! of l if( k<n-1 ) then ! perform a rank-2 update of a(k+2:n,k+2:n) as ! a := a - ( l(k) l(k+1) )*d(k)*( l(k) l(k+1) )**t ! = a - ( w(k) w(k+1) )*inv(d(k))*( w(k) w(k+1) )**t ! where l(k) and l(k+1) are the k-th and (k+1)-th ! columns of l d21 = ap( k+1+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ ) d11 = ap( k+1+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ ) / d21 d22 = ap( k+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ ) / d21 t = one / ( d11*d22-one ) d21 = t / d21 do j = k + 2, n wk = d21*( d11*ap( j+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ )-ap( j+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ ) ) wkp1 = d21*( d22*ap( j+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ )-ap( j+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ )& ) do i = j, n ap( i+( j-1 )*( 2_${ik}$*n-j ) / 2_${ik}$ ) = ap( i+( j-1 )*( 2_${ik}$*n-j ) / 2_${ik}$ ) - ap( & i+( k-1 )*( 2_${ik}$*n-k ) /2_${ik}$ )*wk - ap( i+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ )*wkp1 end do ap( j+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ ) = wk ap( j+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ ) = wkp1 end do end if end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k+1 ) = -kp end if ! increase k and return to the start of the main loop k = k + kstep kc = knc + n - k + 2_${ik}$ go to 60 end if 110 continue return end subroutine stdlib${ii}$_ssptrf pure module subroutine stdlib${ii}$_dsptrf( uplo, n, ap, ipiv, info ) !! DSPTRF computes the factorization of a real symmetric matrix A stored !! in packed format using the Bunch-Kaufman diagonal pivoting method: !! A = U*D*U**T or A = L*D*L**T !! where U (or L) is a product of permutation and unit upper (lower) !! triangular matrices, and D is symmetric and block diagonal with !! 1-by-1 and 2-by-2 diagonal blocks. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: n ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) real(dp), intent(inout) :: ap(*) ! ===================================================================== ! Parameters real(dp), parameter :: sevten = 17.0e+0_dp ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, imax, j, jmax, k, kc, kk, knc, kp, kpc, kstep, kx, npp real(dp) :: absakk, alpha, colmax, d11, d12, d21, d22, r1, rowmax, t, wk, wkm1, & wkp1 ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'DSPTRF', -info ) return end if ! initialize alpha for use in choosing pivot block size. alpha = ( one+sqrt( sevten ) ) / eight if( upper ) then ! factorize a as u*d*u**t using the upper triangle of a ! k is the main loop index, decreasing from n to 1 in steps of ! 1 or 2 k = n kc = ( n-1 )*n / 2_${ik}$ + 1_${ik}$ 10 continue knc = kc ! if k < 1, exit from loop if( k<1 )go to 110 kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = abs( ap( kc+k-1 ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value if( k>1_${ik}$ ) then imax = stdlib${ii}$_idamax( k-1, ap( kc ), 1_${ik}$ ) colmax = abs( ap( kc+imax-1 ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero: set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else rowmax = zero jmax = imax kx = imax*( imax+1 ) / 2_${ik}$ + imax do j = imax + 1, k if( abs( ap( kx ) )>rowmax ) then rowmax = abs( ap( kx ) ) jmax = j end if kx = kx + j end do kpc = ( imax-1 )*imax / 2_${ik}$ + 1_${ik}$ if( imax>1_${ik}$ ) then jmax = stdlib${ii}$_idamax( imax-1, ap( kpc ), 1_${ik}$ ) rowmax = max( rowmax, abs( ap( kpc+jmax-1 ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( abs( ap( kpc+imax-1 ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax else ! interchange rows and columns k-1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if kk = k - kstep + 1_${ik}$ if( kstep==2_${ik}$ )knc = knc - k + 1_${ik}$ if( kp/=kk ) then ! interchange rows and columns kk and kp in the leading ! submatrix a(1:k,1:k) call stdlib${ii}$_dswap( kp-1, ap( knc ), 1_${ik}$, ap( kpc ), 1_${ik}$ ) kx = kpc + kp - 1_${ik}$ do j = kp + 1, kk - 1 kx = kx + j - 1_${ik}$ t = ap( knc+j-1 ) ap( knc+j-1 ) = ap( kx ) ap( kx ) = t end do t = ap( knc+kk-1 ) ap( knc+kk-1 ) = ap( kpc+kp-1 ) ap( kpc+kp-1 ) = t if( kstep==2_${ik}$ ) then t = ap( kc+k-2 ) ap( kc+k-2 ) = ap( kc+kp-1 ) ap( kc+kp-1 ) = t end if end if ! update the leading submatrix if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k now holds ! w(k) = u(k)*d(k) ! where u(k) is the k-th column of u ! perform a rank-1 update of a(1:k-1,1:k-1) as ! a := a - u(k)*d(k)*u(k)**t = a - w(k)*1/d(k)*w(k)**t r1 = one / ap( kc+k-1 ) call stdlib${ii}$_dspr( uplo, k-1, -r1, ap( kc ), 1_${ik}$, ap ) ! store u(k) in column k call stdlib${ii}$_dscal( k-1, r1, ap( kc ), 1_${ik}$ ) else ! 2-by-2 pivot block d(k): columns k and k-1 now hold ! ( w(k-1) w(k) ) = ( u(k-1) u(k) )*d(k) ! where u(k) and u(k-1) are the k-th and (k-1)-th columns ! of u ! perform a rank-2 update of a(1:k-2,1:k-2) as ! a := a - ( u(k-1) u(k) )*d(k)*( u(k-1) u(k) )**t ! = a - ( w(k-1) w(k) )*inv(d(k))*( w(k-1) w(k) )**t if( k>2_${ik}$ ) then d12 = ap( k-1+( k-1 )*k / 2_${ik}$ ) d22 = ap( k-1+( k-2 )*( k-1 ) / 2_${ik}$ ) / d12 d11 = ap( k+( k-1 )*k / 2_${ik}$ ) / d12 t = one / ( d11*d22-one ) d12 = t / d12 do j = k - 2, 1, -1 wkm1 = d12*( d11*ap( j+( k-2 )*( k-1 ) / 2_${ik}$ )-ap( j+( k-1 )*k / 2_${ik}$ ) ) wk = d12*( d22*ap( j+( k-1 )*k / 2_${ik}$ )-ap( j+( k-2 )*( k-1 ) / 2_${ik}$ ) ) do i = j, 1, -1 ap( i+( j-1 )*j / 2_${ik}$ ) = ap( i+( j-1 )*j / 2_${ik}$ ) -ap( i+( k-1 )*k / 2_${ik}$ )& *wk -ap( i+( k-2 )*( k-1 ) / 2_${ik}$ )*wkm1 end do ap( j+( k-1 )*k / 2_${ik}$ ) = wk ap( j+( k-2 )*( k-1 ) / 2_${ik}$ ) = wkm1 end do end if end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k-1 ) = -kp end if ! decrease k and return to the start of the main loop k = k - kstep kc = knc - k go to 10 else ! factorize a as l*d*l**t using the lower triangle of a ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2 k = 1_${ik}$ kc = 1_${ik}$ npp = n*( n+1 ) / 2_${ik}$ 60 continue knc = kc ! if k > n, exit from loop if( k>n )go to 110 kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = abs( ap( kc ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value if( k<n ) then imax = k + stdlib${ii}$_idamax( n-k, ap( kc+1 ), 1_${ik}$ ) colmax = abs( ap( kc+imax-k ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero: set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value rowmax = zero kx = kc + imax - k do j = k, imax - 1 if( abs( ap( kx ) )>rowmax ) then rowmax = abs( ap( kx ) ) jmax = j end if kx = kx + n - j end do kpc = npp - ( n-imax+1 )*( n-imax+2 ) / 2_${ik}$ + 1_${ik}$ if( imax<n ) then jmax = imax + stdlib${ii}$_idamax( n-imax, ap( kpc+1 ), 1_${ik}$ ) rowmax = max( rowmax, abs( ap( kpc+jmax-imax ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( abs( ap( kpc ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax else ! interchange rows and columns k+1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if kk = k + kstep - 1_${ik}$ if( kstep==2_${ik}$ )knc = knc + n - k + 1_${ik}$ if( kp/=kk ) then ! interchange rows and columns kk and kp in the trailing ! submatrix a(k:n,k:n) if( kp<n )call stdlib${ii}$_dswap( n-kp, ap( knc+kp-kk+1 ), 1_${ik}$, ap( kpc+1 ),1_${ik}$ ) kx = knc + kp - kk do j = kk + 1, kp - 1 kx = kx + n - j + 1_${ik}$ t = ap( knc+j-kk ) ap( knc+j-kk ) = ap( kx ) ap( kx ) = t end do t = ap( knc ) ap( knc ) = ap( kpc ) ap( kpc ) = t if( kstep==2_${ik}$ ) then t = ap( kc+1 ) ap( kc+1 ) = ap( kc+kp-k ) ap( kc+kp-k ) = t end if end if ! update the trailing submatrix if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k now holds ! w(k) = l(k)*d(k) ! where l(k) is the k-th column of l if( k<n ) then ! perform a rank-1 update of a(k+1:n,k+1:n) as ! a := a - l(k)*d(k)*l(k)**t = a - w(k)*(1/d(k))*w(k)**t r1 = one / ap( kc ) call stdlib${ii}$_dspr( uplo, n-k, -r1, ap( kc+1 ), 1_${ik}$,ap( kc+n-k+1 ) ) ! store l(k) in column k call stdlib${ii}$_dscal( n-k, r1, ap( kc+1 ), 1_${ik}$ ) end if else ! 2-by-2 pivot block d(k): columns k and k+1 now hold ! ( w(k) w(k+1) ) = ( l(k) l(k+1) )*d(k) ! where l(k) and l(k+1) are the k-th and (k+1)-th columns ! of l if( k<n-1 ) then ! perform a rank-2 update of a(k+2:n,k+2:n) as ! a := a - ( l(k) l(k+1) )*d(k)*( l(k) l(k+1) )**t ! = a - ( w(k) w(k+1) )*inv(d(k))*( w(k) w(k+1) )**t ! where l(k) and l(k+1) are the k-th and (k+1)-th ! columns of l d21 = ap( k+1+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ ) d11 = ap( k+1+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ ) / d21 d22 = ap( k+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ ) / d21 t = one / ( d11*d22-one ) d21 = t / d21 do j = k + 2, n wk = d21*( d11*ap( j+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ )-ap( j+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ ) ) wkp1 = d21*( d22*ap( j+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ )-ap( j+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ )& ) do i = j, n ap( i+( j-1 )*( 2_${ik}$*n-j ) / 2_${ik}$ ) = ap( i+( j-1 )*( 2_${ik}$*n-j ) / 2_${ik}$ ) - ap( & i+( k-1 )*( 2_${ik}$*n-k ) /2_${ik}$ )*wk - ap( i+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ )*wkp1 end do ap( j+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ ) = wk ap( j+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ ) = wkp1 end do end if end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k+1 ) = -kp end if ! increase k and return to the start of the main loop k = k + kstep kc = knc + n - k + 2_${ik}$ go to 60 end if 110 continue return end subroutine stdlib${ii}$_dsptrf #:for rk,rt,ri in REAL_KINDS_TYPES #:if not rk in ["sp","dp"] pure module subroutine stdlib${ii}$_${ri}$sptrf( uplo, n, ap, ipiv, info ) !! DSPTRF: computes the factorization of a real symmetric matrix A stored !! in packed format using the Bunch-Kaufman diagonal pivoting method: !! A = U*D*U**T or A = L*D*L**T !! where U (or L) is a product of permutation and unit upper (lower) !! triangular matrices, and D is symmetric and block diagonal with !! 1-by-1 and 2-by-2 diagonal blocks. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${rk}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: n ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) real(${rk}$), intent(inout) :: ap(*) ! ===================================================================== ! Parameters real(${rk}$), parameter :: sevten = 17.0e+0_${rk}$ ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, imax, j, jmax, k, kc, kk, knc, kp, kpc, kstep, kx, npp real(${rk}$) :: absakk, alpha, colmax, d11, d12, d21, d22, r1, rowmax, t, wk, wkm1, & wkp1 ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'DSPTRF', -info ) return end if ! initialize alpha for use in choosing pivot block size. alpha = ( one+sqrt( sevten ) ) / eight if( upper ) then ! factorize a as u*d*u**t using the upper triangle of a ! k is the main loop index, decreasing from n to 1 in steps of ! 1 or 2 k = n kc = ( n-1 )*n / 2_${ik}$ + 1_${ik}$ 10 continue knc = kc ! if k < 1, exit from loop if( k<1 )go to 110 kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = abs( ap( kc+k-1 ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value if( k>1_${ik}$ ) then imax = stdlib${ii}$_i${ri}$amax( k-1, ap( kc ), 1_${ik}$ ) colmax = abs( ap( kc+imax-1 ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero: set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else rowmax = zero jmax = imax kx = imax*( imax+1 ) / 2_${ik}$ + imax do j = imax + 1, k if( abs( ap( kx ) )>rowmax ) then rowmax = abs( ap( kx ) ) jmax = j end if kx = kx + j end do kpc = ( imax-1 )*imax / 2_${ik}$ + 1_${ik}$ if( imax>1_${ik}$ ) then jmax = stdlib${ii}$_i${ri}$amax( imax-1, ap( kpc ), 1_${ik}$ ) rowmax = max( rowmax, abs( ap( kpc+jmax-1 ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( abs( ap( kpc+imax-1 ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax else ! interchange rows and columns k-1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if kk = k - kstep + 1_${ik}$ if( kstep==2_${ik}$ )knc = knc - k + 1_${ik}$ if( kp/=kk ) then ! interchange rows and columns kk and kp in the leading ! submatrix a(1:k,1:k) call stdlib${ii}$_${ri}$swap( kp-1, ap( knc ), 1_${ik}$, ap( kpc ), 1_${ik}$ ) kx = kpc + kp - 1_${ik}$ do j = kp + 1, kk - 1 kx = kx + j - 1_${ik}$ t = ap( knc+j-1 ) ap( knc+j-1 ) = ap( kx ) ap( kx ) = t end do t = ap( knc+kk-1 ) ap( knc+kk-1 ) = ap( kpc+kp-1 ) ap( kpc+kp-1 ) = t if( kstep==2_${ik}$ ) then t = ap( kc+k-2 ) ap( kc+k-2 ) = ap( kc+kp-1 ) ap( kc+kp-1 ) = t end if end if ! update the leading submatrix if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k now holds ! w(k) = u(k)*d(k) ! where u(k) is the k-th column of u ! perform a rank-1 update of a(1:k-1,1:k-1) as ! a := a - u(k)*d(k)*u(k)**t = a - w(k)*1/d(k)*w(k)**t r1 = one / ap( kc+k-1 ) call stdlib${ii}$_${ri}$spr( uplo, k-1, -r1, ap( kc ), 1_${ik}$, ap ) ! store u(k) in column k call stdlib${ii}$_${ri}$scal( k-1, r1, ap( kc ), 1_${ik}$ ) else ! 2-by-2 pivot block d(k): columns k and k-1 now hold ! ( w(k-1) w(k) ) = ( u(k-1) u(k) )*d(k) ! where u(k) and u(k-1) are the k-th and (k-1)-th columns ! of u ! perform a rank-2 update of a(1:k-2,1:k-2) as ! a := a - ( u(k-1) u(k) )*d(k)*( u(k-1) u(k) )**t ! = a - ( w(k-1) w(k) )*inv(d(k))*( w(k-1) w(k) )**t if( k>2_${ik}$ ) then d12 = ap( k-1+( k-1 )*k / 2_${ik}$ ) d22 = ap( k-1+( k-2 )*( k-1 ) / 2_${ik}$ ) / d12 d11 = ap( k+( k-1 )*k / 2_${ik}$ ) / d12 t = one / ( d11*d22-one ) d12 = t / d12 do j = k - 2, 1, -1 wkm1 = d12*( d11*ap( j+( k-2 )*( k-1 ) / 2_${ik}$ )-ap( j+( k-1 )*k / 2_${ik}$ ) ) wk = d12*( d22*ap( j+( k-1 )*k / 2_${ik}$ )-ap( j+( k-2 )*( k-1 ) / 2_${ik}$ ) ) do i = j, 1, -1 ap( i+( j-1 )*j / 2_${ik}$ ) = ap( i+( j-1 )*j / 2_${ik}$ ) -ap( i+( k-1 )*k / 2_${ik}$ )& *wk -ap( i+( k-2 )*( k-1 ) / 2_${ik}$ )*wkm1 end do ap( j+( k-1 )*k / 2_${ik}$ ) = wk ap( j+( k-2 )*( k-1 ) / 2_${ik}$ ) = wkm1 end do end if end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k-1 ) = -kp end if ! decrease k and return to the start of the main loop k = k - kstep kc = knc - k go to 10 else ! factorize a as l*d*l**t using the lower triangle of a ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2 k = 1_${ik}$ kc = 1_${ik}$ npp = n*( n+1 ) / 2_${ik}$ 60 continue knc = kc ! if k > n, exit from loop if( k>n )go to 110 kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = abs( ap( kc ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value if( k<n ) then imax = k + stdlib${ii}$_i${ri}$amax( n-k, ap( kc+1 ), 1_${ik}$ ) colmax = abs( ap( kc+imax-k ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero: set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value rowmax = zero kx = kc + imax - k do j = k, imax - 1 if( abs( ap( kx ) )>rowmax ) then rowmax = abs( ap( kx ) ) jmax = j end if kx = kx + n - j end do kpc = npp - ( n-imax+1 )*( n-imax+2 ) / 2_${ik}$ + 1_${ik}$ if( imax<n ) then jmax = imax + stdlib${ii}$_i${ri}$amax( n-imax, ap( kpc+1 ), 1_${ik}$ ) rowmax = max( rowmax, abs( ap( kpc+jmax-imax ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( abs( ap( kpc ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax else ! interchange rows and columns k+1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if kk = k + kstep - 1_${ik}$ if( kstep==2_${ik}$ )knc = knc + n - k + 1_${ik}$ if( kp/=kk ) then ! interchange rows and columns kk and kp in the trailing ! submatrix a(k:n,k:n) if( kp<n )call stdlib${ii}$_${ri}$swap( n-kp, ap( knc+kp-kk+1 ), 1_${ik}$, ap( kpc+1 ),1_${ik}$ ) kx = knc + kp - kk do j = kk + 1, kp - 1 kx = kx + n - j + 1_${ik}$ t = ap( knc+j-kk ) ap( knc+j-kk ) = ap( kx ) ap( kx ) = t end do t = ap( knc ) ap( knc ) = ap( kpc ) ap( kpc ) = t if( kstep==2_${ik}$ ) then t = ap( kc+1 ) ap( kc+1 ) = ap( kc+kp-k ) ap( kc+kp-k ) = t end if end if ! update the trailing submatrix if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k now holds ! w(k) = l(k)*d(k) ! where l(k) is the k-th column of l if( k<n ) then ! perform a rank-1 update of a(k+1:n,k+1:n) as ! a := a - l(k)*d(k)*l(k)**t = a - w(k)*(1/d(k))*w(k)**t r1 = one / ap( kc ) call stdlib${ii}$_${ri}$spr( uplo, n-k, -r1, ap( kc+1 ), 1_${ik}$,ap( kc+n-k+1 ) ) ! store l(k) in column k call stdlib${ii}$_${ri}$scal( n-k, r1, ap( kc+1 ), 1_${ik}$ ) end if else ! 2-by-2 pivot block d(k): columns k and k+1 now hold ! ( w(k) w(k+1) ) = ( l(k) l(k+1) )*d(k) ! where l(k) and l(k+1) are the k-th and (k+1)-th columns ! of l if( k<n-1 ) then ! perform a rank-2 update of a(k+2:n,k+2:n) as ! a := a - ( l(k) l(k+1) )*d(k)*( l(k) l(k+1) )**t ! = a - ( w(k) w(k+1) )*inv(d(k))*( w(k) w(k+1) )**t ! where l(k) and l(k+1) are the k-th and (k+1)-th ! columns of l d21 = ap( k+1+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ ) d11 = ap( k+1+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ ) / d21 d22 = ap( k+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ ) / d21 t = one / ( d11*d22-one ) d21 = t / d21 do j = k + 2, n wk = d21*( d11*ap( j+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ )-ap( j+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ ) ) wkp1 = d21*( d22*ap( j+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ )-ap( j+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ )& ) do i = j, n ap( i+( j-1 )*( 2_${ik}$*n-j ) / 2_${ik}$ ) = ap( i+( j-1 )*( 2_${ik}$*n-j ) / 2_${ik}$ ) - ap( & i+( k-1 )*( 2_${ik}$*n-k ) /2_${ik}$ )*wk - ap( i+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ )*wkp1 end do ap( j+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ ) = wk ap( j+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ ) = wkp1 end do end if end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k+1 ) = -kp end if ! increase k and return to the start of the main loop k = k + kstep kc = knc + n - k + 2_${ik}$ go to 60 end if 110 continue return end subroutine stdlib${ii}$_${ri}$sptrf #:endif #:endfor pure module subroutine stdlib${ii}$_csptrf( uplo, n, ap, ipiv, info ) !! CSPTRF computes the factorization of a complex symmetric matrix A !! stored in packed format using the Bunch-Kaufman diagonal pivoting !! method: !! A = U*D*U**T or A = L*D*L**T !! where U (or L) is a product of permutation and unit upper (lower) !! triangular matrices, and D is symmetric and block diagonal with !! 1-by-1 and 2-by-2 diagonal blocks. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: n ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) complex(sp), intent(inout) :: ap(*) ! ===================================================================== ! Parameters real(sp), parameter :: sevten = 17.0e+0_sp ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, imax, j, jmax, k, kc, kk, knc, kp, kpc, kstep, kx, npp real(sp) :: absakk, alpha, colmax, rowmax complex(sp) :: d11, d12, d21, d22, r1, t, wk, wkm1, wkp1, zdum ! Intrinsic Functions ! Statement Functions real(sp) :: cabs1 ! Statement Function Definitions cabs1( zdum ) = abs( real( zdum,KIND=sp) ) + abs( aimag( zdum ) ) ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'CSPTRF', -info ) return end if ! initialize alpha for use in choosing pivot block size. alpha = ( one+sqrt( sevten ) ) / eight if( upper ) then ! factorize a as u*d*u**t using the upper triangle of a ! k is the main loop index, decreasing from n to 1 in steps of ! 1 or 2 k = n kc = ( n-1 )*n / 2_${ik}$ + 1_${ik}$ 10 continue knc = kc ! if k < 1, exit from loop if( k<1 )go to 110 kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = cabs1( ap( kc+k-1 ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value if( k>1_${ik}$ ) then imax = stdlib${ii}$_icamax( k-1, ap( kc ), 1_${ik}$ ) colmax = cabs1( ap( kc+imax-1 ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero: set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else rowmax = zero jmax = imax kx = imax*( imax+1 ) / 2_${ik}$ + imax do j = imax + 1, k if( cabs1( ap( kx ) )>rowmax ) then rowmax = cabs1( ap( kx ) ) jmax = j end if kx = kx + j end do kpc = ( imax-1 )*imax / 2_${ik}$ + 1_${ik}$ if( imax>1_${ik}$ ) then jmax = stdlib${ii}$_icamax( imax-1, ap( kpc ), 1_${ik}$ ) rowmax = max( rowmax, cabs1( ap( kpc+jmax-1 ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( cabs1( ap( kpc+imax-1 ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax else ! interchange rows and columns k-1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if kk = k - kstep + 1_${ik}$ if( kstep==2_${ik}$ )knc = knc - k + 1_${ik}$ if( kp/=kk ) then ! interchange rows and columns kk and kp in the leading ! submatrix a(1:k,1:k) call stdlib${ii}$_cswap( kp-1, ap( knc ), 1_${ik}$, ap( kpc ), 1_${ik}$ ) kx = kpc + kp - 1_${ik}$ do j = kp + 1, kk - 1 kx = kx + j - 1_${ik}$ t = ap( knc+j-1 ) ap( knc+j-1 ) = ap( kx ) ap( kx ) = t end do t = ap( knc+kk-1 ) ap( knc+kk-1 ) = ap( kpc+kp-1 ) ap( kpc+kp-1 ) = t if( kstep==2_${ik}$ ) then t = ap( kc+k-2 ) ap( kc+k-2 ) = ap( kc+kp-1 ) ap( kc+kp-1 ) = t end if end if ! update the leading submatrix if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k now holds ! w(k) = u(k)*d(k) ! where u(k) is the k-th column of u ! perform a rank-1 update of a(1:k-1,1:k-1) as ! a := a - u(k)*d(k)*u(k)**t = a - w(k)*1/d(k)*w(k)**t r1 = cone / ap( kc+k-1 ) call stdlib${ii}$_cspr( uplo, k-1, -r1, ap( kc ), 1_${ik}$, ap ) ! store u(k) in column k call stdlib${ii}$_cscal( k-1, r1, ap( kc ), 1_${ik}$ ) else ! 2-by-2 pivot block d(k): columns k and k-1 now hold ! ( w(k-1) w(k) ) = ( u(k-1) u(k) )*d(k) ! where u(k) and u(k-1) are the k-th and (k-1)-th columns ! of u ! perform a rank-2 update of a(1:k-2,1:k-2) as ! a := a - ( u(k-1) u(k) )*d(k)*( u(k-1) u(k) )**t ! = a - ( w(k-1) w(k) )*inv(d(k))*( w(k-1) w(k) )**t if( k>2_${ik}$ ) then d12 = ap( k-1+( k-1 )*k / 2_${ik}$ ) d22 = ap( k-1+( k-2 )*( k-1 ) / 2_${ik}$ ) / d12 d11 = ap( k+( k-1 )*k / 2_${ik}$ ) / d12 t = cone / ( d11*d22-cone ) d12 = t / d12 do j = k - 2, 1, -1 wkm1 = d12*( d11*ap( j+( k-2 )*( k-1 ) / 2_${ik}$ )-ap( j+( k-1 )*k / 2_${ik}$ ) ) wk = d12*( d22*ap( j+( k-1 )*k / 2_${ik}$ )-ap( j+( k-2 )*( k-1 ) / 2_${ik}$ ) ) do i = j, 1, -1 ap( i+( j-1 )*j / 2_${ik}$ ) = ap( i+( j-1 )*j / 2_${ik}$ ) -ap( i+( k-1 )*k / 2_${ik}$ )& *wk -ap( i+( k-2 )*( k-1 ) / 2_${ik}$ )*wkm1 end do ap( j+( k-1 )*k / 2_${ik}$ ) = wk ap( j+( k-2 )*( k-1 ) / 2_${ik}$ ) = wkm1 end do end if end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k-1 ) = -kp end if ! decrease k and return to the start of the main loop k = k - kstep kc = knc - k go to 10 else ! factorize a as l*d*l**t using the lower triangle of a ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2 k = 1_${ik}$ kc = 1_${ik}$ npp = n*( n+1 ) / 2_${ik}$ 60 continue knc = kc ! if k > n, exit from loop if( k>n )go to 110 kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = cabs1( ap( kc ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value if( k<n ) then imax = k + stdlib${ii}$_icamax( n-k, ap( kc+1 ), 1_${ik}$ ) colmax = cabs1( ap( kc+imax-k ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero: set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value rowmax = zero kx = kc + imax - k do j = k, imax - 1 if( cabs1( ap( kx ) )>rowmax ) then rowmax = cabs1( ap( kx ) ) jmax = j end if kx = kx + n - j end do kpc = npp - ( n-imax+1 )*( n-imax+2 ) / 2_${ik}$ + 1_${ik}$ if( imax<n ) then jmax = imax + stdlib${ii}$_icamax( n-imax, ap( kpc+1 ), 1_${ik}$ ) rowmax = max( rowmax, cabs1( ap( kpc+jmax-imax ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( cabs1( ap( kpc ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax else ! interchange rows and columns k+1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if kk = k + kstep - 1_${ik}$ if( kstep==2_${ik}$ )knc = knc + n - k + 1_${ik}$ if( kp/=kk ) then ! interchange rows and columns kk and kp in the trailing ! submatrix a(k:n,k:n) if( kp<n )call stdlib${ii}$_cswap( n-kp, ap( knc+kp-kk+1 ), 1_${ik}$, ap( kpc+1 ),1_${ik}$ ) kx = knc + kp - kk do j = kk + 1, kp - 1 kx = kx + n - j + 1_${ik}$ t = ap( knc+j-kk ) ap( knc+j-kk ) = ap( kx ) ap( kx ) = t end do t = ap( knc ) ap( knc ) = ap( kpc ) ap( kpc ) = t if( kstep==2_${ik}$ ) then t = ap( kc+1 ) ap( kc+1 ) = ap( kc+kp-k ) ap( kc+kp-k ) = t end if end if ! update the trailing submatrix if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k now holds ! w(k) = l(k)*d(k) ! where l(k) is the k-th column of l if( k<n ) then ! perform a rank-1 update of a(k+1:n,k+1:n) as ! a := a - l(k)*d(k)*l(k)**t = a - w(k)*(1/d(k))*w(k)**t r1 = cone / ap( kc ) call stdlib${ii}$_cspr( uplo, n-k, -r1, ap( kc+1 ), 1_${ik}$,ap( kc+n-k+1 ) ) ! store l(k) in column k call stdlib${ii}$_cscal( n-k, r1, ap( kc+1 ), 1_${ik}$ ) end if else ! 2-by-2 pivot block d(k): columns k and k+1 now hold ! ( w(k) w(k+1) ) = ( l(k) l(k+1) )*d(k) ! where l(k) and l(k+1) are the k-th and (k+1)-th columns ! of l if( k<n-1 ) then ! perform a rank-2 update of a(k+2:n,k+2:n) as ! a := a - ( l(k) l(k+1) )*d(k)*( l(k) l(k+1) )**t ! = a - ( w(k) w(k+1) )*inv(d(k))*( w(k) w(k+1) )**t ! where l(k) and l(k+1) are the k-th and (k+1)-th ! columns of l d21 = ap( k+1+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ ) d11 = ap( k+1+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ ) / d21 d22 = ap( k+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ ) / d21 t = cone / ( d11*d22-cone ) d21 = t / d21 do j = k + 2, n wk = d21*( d11*ap( j+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ )-ap( j+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ ) ) wkp1 = d21*( d22*ap( j+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ )-ap( j+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ )& ) do i = j, n ap( i+( j-1 )*( 2_${ik}$*n-j ) / 2_${ik}$ ) = ap( i+( j-1 )*( 2_${ik}$*n-j ) / 2_${ik}$ ) - ap( & i+( k-1 )*( 2_${ik}$*n-k ) /2_${ik}$ )*wk - ap( i+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ )*wkp1 end do ap( j+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ ) = wk ap( j+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ ) = wkp1 end do end if end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k+1 ) = -kp end if ! increase k and return to the start of the main loop k = k + kstep kc = knc + n - k + 2_${ik}$ go to 60 end if 110 continue return end subroutine stdlib${ii}$_csptrf pure module subroutine stdlib${ii}$_zsptrf( uplo, n, ap, ipiv, info ) !! ZSPTRF computes the factorization of a complex symmetric matrix A !! stored in packed format using the Bunch-Kaufman diagonal pivoting !! method: !! A = U*D*U**T or A = L*D*L**T !! where U (or L) is a product of permutation and unit upper (lower) !! triangular matrices, and D is symmetric and block diagonal with !! 1-by-1 and 2-by-2 diagonal blocks. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: n ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) complex(dp), intent(inout) :: ap(*) ! ===================================================================== ! Parameters real(dp), parameter :: sevten = 17.0e+0_dp ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, imax, j, jmax, k, kc, kk, knc, kp, kpc, kstep, kx, npp real(dp) :: absakk, alpha, colmax, rowmax complex(dp) :: d11, d12, d21, d22, r1, t, wk, wkm1, wkp1, zdum ! Intrinsic Functions ! Statement Functions real(dp) :: cabs1 ! Statement Function Definitions cabs1( zdum ) = abs( real( zdum,KIND=dp) ) + abs( aimag( zdum ) ) ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZSPTRF', -info ) return end if ! initialize alpha for use in choosing pivot block size. alpha = ( one+sqrt( sevten ) ) / eight if( upper ) then ! factorize a as u*d*u**t using the upper triangle of a ! k is the main loop index, decreasing from n to 1 in steps of ! 1 or 2 k = n kc = ( n-1 )*n / 2_${ik}$ + 1_${ik}$ 10 continue knc = kc ! if k < 1, exit from loop if( k<1 )go to 110 kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = cabs1( ap( kc+k-1 ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value if( k>1_${ik}$ ) then imax = stdlib${ii}$_izamax( k-1, ap( kc ), 1_${ik}$ ) colmax = cabs1( ap( kc+imax-1 ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero: set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else rowmax = zero jmax = imax kx = imax*( imax+1 ) / 2_${ik}$ + imax do j = imax + 1, k if( cabs1( ap( kx ) )>rowmax ) then rowmax = cabs1( ap( kx ) ) jmax = j end if kx = kx + j end do kpc = ( imax-1 )*imax / 2_${ik}$ + 1_${ik}$ if( imax>1_${ik}$ ) then jmax = stdlib${ii}$_izamax( imax-1, ap( kpc ), 1_${ik}$ ) rowmax = max( rowmax, cabs1( ap( kpc+jmax-1 ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( cabs1( ap( kpc+imax-1 ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax else ! interchange rows and columns k-1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if kk = k - kstep + 1_${ik}$ if( kstep==2_${ik}$ )knc = knc - k + 1_${ik}$ if( kp/=kk ) then ! interchange rows and columns kk and kp in the leading ! submatrix a(1:k,1:k) call stdlib${ii}$_zswap( kp-1, ap( knc ), 1_${ik}$, ap( kpc ), 1_${ik}$ ) kx = kpc + kp - 1_${ik}$ do j = kp + 1, kk - 1 kx = kx + j - 1_${ik}$ t = ap( knc+j-1 ) ap( knc+j-1 ) = ap( kx ) ap( kx ) = t end do t = ap( knc+kk-1 ) ap( knc+kk-1 ) = ap( kpc+kp-1 ) ap( kpc+kp-1 ) = t if( kstep==2_${ik}$ ) then t = ap( kc+k-2 ) ap( kc+k-2 ) = ap( kc+kp-1 ) ap( kc+kp-1 ) = t end if end if ! update the leading submatrix if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k now holds ! w(k) = u(k)*d(k) ! where u(k) is the k-th column of u ! perform a rank-1 update of a(1:k-1,1:k-1) as ! a := a - u(k)*d(k)*u(k)**t = a - w(k)*1/d(k)*w(k)**t r1 = cone / ap( kc+k-1 ) call stdlib${ii}$_zspr( uplo, k-1, -r1, ap( kc ), 1_${ik}$, ap ) ! store u(k) in column k call stdlib${ii}$_zscal( k-1, r1, ap( kc ), 1_${ik}$ ) else ! 2-by-2 pivot block d(k): columns k and k-1 now hold ! ( w(k-1) w(k) ) = ( u(k-1) u(k) )*d(k) ! where u(k) and u(k-1) are the k-th and (k-1)-th columns ! of u ! perform a rank-2 update of a(1:k-2,1:k-2) as ! a := a - ( u(k-1) u(k) )*d(k)*( u(k-1) u(k) )**t ! = a - ( w(k-1) w(k) )*inv(d(k))*( w(k-1) w(k) )**t if( k>2_${ik}$ ) then d12 = ap( k-1+( k-1 )*k / 2_${ik}$ ) d22 = ap( k-1+( k-2 )*( k-1 ) / 2_${ik}$ ) / d12 d11 = ap( k+( k-1 )*k / 2_${ik}$ ) / d12 t = cone / ( d11*d22-cone ) d12 = t / d12 do j = k - 2, 1, -1 wkm1 = d12*( d11*ap( j+( k-2 )*( k-1 ) / 2_${ik}$ )-ap( j+( k-1 )*k / 2_${ik}$ ) ) wk = d12*( d22*ap( j+( k-1 )*k / 2_${ik}$ )-ap( j+( k-2 )*( k-1 ) / 2_${ik}$ ) ) do i = j, 1, -1 ap( i+( j-1 )*j / 2_${ik}$ ) = ap( i+( j-1 )*j / 2_${ik}$ ) -ap( i+( k-1 )*k / 2_${ik}$ )& *wk -ap( i+( k-2 )*( k-1 ) / 2_${ik}$ )*wkm1 end do ap( j+( k-1 )*k / 2_${ik}$ ) = wk ap( j+( k-2 )*( k-1 ) / 2_${ik}$ ) = wkm1 end do end if end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k-1 ) = -kp end if ! decrease k and return to the start of the main loop k = k - kstep kc = knc - k go to 10 else ! factorize a as l*d*l**t using the lower triangle of a ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2 k = 1_${ik}$ kc = 1_${ik}$ npp = n*( n+1 ) / 2_${ik}$ 60 continue knc = kc ! if k > n, exit from loop if( k>n )go to 110 kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = cabs1( ap( kc ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value if( k<n ) then imax = k + stdlib${ii}$_izamax( n-k, ap( kc+1 ), 1_${ik}$ ) colmax = cabs1( ap( kc+imax-k ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero: set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value rowmax = zero kx = kc + imax - k do j = k, imax - 1 if( cabs1( ap( kx ) )>rowmax ) then rowmax = cabs1( ap( kx ) ) jmax = j end if kx = kx + n - j end do kpc = npp - ( n-imax+1 )*( n-imax+2 ) / 2_${ik}$ + 1_${ik}$ if( imax<n ) then jmax = imax + stdlib${ii}$_izamax( n-imax, ap( kpc+1 ), 1_${ik}$ ) rowmax = max( rowmax, cabs1( ap( kpc+jmax-imax ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( cabs1( ap( kpc ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax else ! interchange rows and columns k+1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if kk = k + kstep - 1_${ik}$ if( kstep==2_${ik}$ )knc = knc + n - k + 1_${ik}$ if( kp/=kk ) then ! interchange rows and columns kk and kp in the trailing ! submatrix a(k:n,k:n) if( kp<n )call stdlib${ii}$_zswap( n-kp, ap( knc+kp-kk+1 ), 1_${ik}$, ap( kpc+1 ),1_${ik}$ ) kx = knc + kp - kk do j = kk + 1, kp - 1 kx = kx + n - j + 1_${ik}$ t = ap( knc+j-kk ) ap( knc+j-kk ) = ap( kx ) ap( kx ) = t end do t = ap( knc ) ap( knc ) = ap( kpc ) ap( kpc ) = t if( kstep==2_${ik}$ ) then t = ap( kc+1 ) ap( kc+1 ) = ap( kc+kp-k ) ap( kc+kp-k ) = t end if end if ! update the trailing submatrix if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k now holds ! w(k) = l(k)*d(k) ! where l(k) is the k-th column of l if( k<n ) then ! perform a rank-1 update of a(k+1:n,k+1:n) as ! a := a - l(k)*d(k)*l(k)**t = a - w(k)*(1/d(k))*w(k)**t r1 = cone / ap( kc ) call stdlib${ii}$_zspr( uplo, n-k, -r1, ap( kc+1 ), 1_${ik}$,ap( kc+n-k+1 ) ) ! store l(k) in column k call stdlib${ii}$_zscal( n-k, r1, ap( kc+1 ), 1_${ik}$ ) end if else ! 2-by-2 pivot block d(k): columns k and k+1 now hold ! ( w(k) w(k+1) ) = ( l(k) l(k+1) )*d(k) ! where l(k) and l(k+1) are the k-th and (k+1)-th columns ! of l if( k<n-1 ) then ! perform a rank-2 update of a(k+2:n,k+2:n) as ! a := a - ( l(k) l(k+1) )*d(k)*( l(k) l(k+1) )**t ! = a - ( w(k) w(k+1) )*inv(d(k))*( w(k) w(k+1) )**t ! where l(k) and l(k+1) are the k-th and (k+1)-th ! columns of l d21 = ap( k+1+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ ) d11 = ap( k+1+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ ) / d21 d22 = ap( k+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ ) / d21 t = cone / ( d11*d22-cone ) d21 = t / d21 do j = k + 2, n wk = d21*( d11*ap( j+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ )-ap( j+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ ) ) wkp1 = d21*( d22*ap( j+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ )-ap( j+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ )& ) do i = j, n ap( i+( j-1 )*( 2_${ik}$*n-j ) / 2_${ik}$ ) = ap( i+( j-1 )*( 2_${ik}$*n-j ) / 2_${ik}$ ) - ap( & i+( k-1 )*( 2_${ik}$*n-k ) /2_${ik}$ )*wk - ap( i+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ )*wkp1 end do ap( j+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ ) = wk ap( j+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ ) = wkp1 end do end if end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k+1 ) = -kp end if ! increase k and return to the start of the main loop k = k + kstep kc = knc + n - k + 2_${ik}$ go to 60 end if 110 continue return end subroutine stdlib${ii}$_zsptrf #:for ck,ct,ci in CMPLX_KINDS_TYPES #:if not ck in ["sp","dp"] pure module subroutine stdlib${ii}$_${ci}$sptrf( uplo, n, ap, ipiv, info ) !! ZSPTRF: computes the factorization of a complex symmetric matrix A !! stored in packed format using the Bunch-Kaufman diagonal pivoting !! method: !! A = U*D*U**T or A = L*D*L**T !! where U (or L) is a product of permutation and unit upper (lower) !! triangular matrices, and D is symmetric and block diagonal with !! 1-by-1 and 2-by-2 diagonal blocks. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${ck}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: n ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) complex(${ck}$), intent(inout) :: ap(*) ! ===================================================================== ! Parameters real(${ck}$), parameter :: sevten = 17.0e+0_${ck}$ ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, imax, j, jmax, k, kc, kk, knc, kp, kpc, kstep, kx, npp real(${ck}$) :: absakk, alpha, colmax, rowmax complex(${ck}$) :: d11, d12, d21, d22, r1, t, wk, wkm1, wkp1, zdum ! Intrinsic Functions ! Statement Functions real(${ck}$) :: cabs1 ! Statement Function Definitions cabs1( zdum ) = abs( real( zdum,KIND=${ck}$) ) + abs( aimag( zdum ) ) ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZSPTRF', -info ) return end if ! initialize alpha for use in choosing pivot block size. alpha = ( one+sqrt( sevten ) ) / eight if( upper ) then ! factorize a as u*d*u**t using the upper triangle of a ! k is the main loop index, decreasing from n to 1 in steps of ! 1 or 2 k = n kc = ( n-1 )*n / 2_${ik}$ + 1_${ik}$ 10 continue knc = kc ! if k < 1, exit from loop if( k<1 )go to 110 kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = cabs1( ap( kc+k-1 ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value if( k>1_${ik}$ ) then imax = stdlib${ii}$_i${ci}$amax( k-1, ap( kc ), 1_${ik}$ ) colmax = cabs1( ap( kc+imax-1 ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero: set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else rowmax = zero jmax = imax kx = imax*( imax+1 ) / 2_${ik}$ + imax do j = imax + 1, k if( cabs1( ap( kx ) )>rowmax ) then rowmax = cabs1( ap( kx ) ) jmax = j end if kx = kx + j end do kpc = ( imax-1 )*imax / 2_${ik}$ + 1_${ik}$ if( imax>1_${ik}$ ) then jmax = stdlib${ii}$_i${ci}$amax( imax-1, ap( kpc ), 1_${ik}$ ) rowmax = max( rowmax, cabs1( ap( kpc+jmax-1 ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( cabs1( ap( kpc+imax-1 ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax else ! interchange rows and columns k-1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if kk = k - kstep + 1_${ik}$ if( kstep==2_${ik}$ )knc = knc - k + 1_${ik}$ if( kp/=kk ) then ! interchange rows and columns kk and kp in the leading ! submatrix a(1:k,1:k) call stdlib${ii}$_${ci}$swap( kp-1, ap( knc ), 1_${ik}$, ap( kpc ), 1_${ik}$ ) kx = kpc + kp - 1_${ik}$ do j = kp + 1, kk - 1 kx = kx + j - 1_${ik}$ t = ap( knc+j-1 ) ap( knc+j-1 ) = ap( kx ) ap( kx ) = t end do t = ap( knc+kk-1 ) ap( knc+kk-1 ) = ap( kpc+kp-1 ) ap( kpc+kp-1 ) = t if( kstep==2_${ik}$ ) then t = ap( kc+k-2 ) ap( kc+k-2 ) = ap( kc+kp-1 ) ap( kc+kp-1 ) = t end if end if ! update the leading submatrix if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k now holds ! w(k) = u(k)*d(k) ! where u(k) is the k-th column of u ! perform a rank-1 update of a(1:k-1,1:k-1) as ! a := a - u(k)*d(k)*u(k)**t = a - w(k)*1/d(k)*w(k)**t r1 = cone / ap( kc+k-1 ) call stdlib${ii}$_${ci}$spr( uplo, k-1, -r1, ap( kc ), 1_${ik}$, ap ) ! store u(k) in column k call stdlib${ii}$_${ci}$scal( k-1, r1, ap( kc ), 1_${ik}$ ) else ! 2-by-2 pivot block d(k): columns k and k-1 now hold ! ( w(k-1) w(k) ) = ( u(k-1) u(k) )*d(k) ! where u(k) and u(k-1) are the k-th and (k-1)-th columns ! of u ! perform a rank-2 update of a(1:k-2,1:k-2) as ! a := a - ( u(k-1) u(k) )*d(k)*( u(k-1) u(k) )**t ! = a - ( w(k-1) w(k) )*inv(d(k))*( w(k-1) w(k) )**t if( k>2_${ik}$ ) then d12 = ap( k-1+( k-1 )*k / 2_${ik}$ ) d22 = ap( k-1+( k-2 )*( k-1 ) / 2_${ik}$ ) / d12 d11 = ap( k+( k-1 )*k / 2_${ik}$ ) / d12 t = cone / ( d11*d22-cone ) d12 = t / d12 do j = k - 2, 1, -1 wkm1 = d12*( d11*ap( j+( k-2 )*( k-1 ) / 2_${ik}$ )-ap( j+( k-1 )*k / 2_${ik}$ ) ) wk = d12*( d22*ap( j+( k-1 )*k / 2_${ik}$ )-ap( j+( k-2 )*( k-1 ) / 2_${ik}$ ) ) do i = j, 1, -1 ap( i+( j-1 )*j / 2_${ik}$ ) = ap( i+( j-1 )*j / 2_${ik}$ ) -ap( i+( k-1 )*k / 2_${ik}$ )& *wk -ap( i+( k-2 )*( k-1 ) / 2_${ik}$ )*wkm1 end do ap( j+( k-1 )*k / 2_${ik}$ ) = wk ap( j+( k-2 )*( k-1 ) / 2_${ik}$ ) = wkm1 end do end if end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k-1 ) = -kp end if ! decrease k and return to the start of the main loop k = k - kstep kc = knc - k go to 10 else ! factorize a as l*d*l**t using the lower triangle of a ! k is the main loop index, increasing from 1 to n in steps of ! 1 or 2 k = 1_${ik}$ kc = 1_${ik}$ npp = n*( n+1 ) / 2_${ik}$ 60 continue knc = kc ! if k > n, exit from loop if( k>n )go to 110 kstep = 1_${ik}$ ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = cabs1( ap( kc ) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value if( k<n ) then imax = k + stdlib${ii}$_i${ci}$amax( n-k, ap( kc+1 ), 1_${ik}$ ) colmax = cabs1( ap( kc+imax-k ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero: set info and continue if( info==0_${ik}$ )info = k kp = k else if( absakk>=alpha*colmax ) then ! no interchange, use 1-by-1 pivot block kp = k else ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value rowmax = zero kx = kc + imax - k do j = k, imax - 1 if( cabs1( ap( kx ) )>rowmax ) then rowmax = cabs1( ap( kx ) ) jmax = j end if kx = kx + n - j end do kpc = npp - ( n-imax+1 )*( n-imax+2 ) / 2_${ik}$ + 1_${ik}$ if( imax<n ) then jmax = imax + stdlib${ii}$_i${ci}$amax( n-imax, ap( kpc+1 ), 1_${ik}$ ) rowmax = max( rowmax, cabs1( ap( kpc+jmax-imax ) ) ) end if if( absakk>=alpha*colmax*( colmax / rowmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else if( cabs1( ap( kpc ) )>=alpha*rowmax ) then ! interchange rows and columns k and imax, use 1-by-1 ! pivot block kp = imax else ! interchange rows and columns k+1 and imax, use 2-by-2 ! pivot block kp = imax kstep = 2_${ik}$ end if end if kk = k + kstep - 1_${ik}$ if( kstep==2_${ik}$ )knc = knc + n - k + 1_${ik}$ if( kp/=kk ) then ! interchange rows and columns kk and kp in the trailing ! submatrix a(k:n,k:n) if( kp<n )call stdlib${ii}$_${ci}$swap( n-kp, ap( knc+kp-kk+1 ), 1_${ik}$, ap( kpc+1 ),1_${ik}$ ) kx = knc + kp - kk do j = kk + 1, kp - 1 kx = kx + n - j + 1_${ik}$ t = ap( knc+j-kk ) ap( knc+j-kk ) = ap( kx ) ap( kx ) = t end do t = ap( knc ) ap( knc ) = ap( kpc ) ap( kpc ) = t if( kstep==2_${ik}$ ) then t = ap( kc+1 ) ap( kc+1 ) = ap( kc+kp-k ) ap( kc+kp-k ) = t end if end if ! update the trailing submatrix if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k now holds ! w(k) = l(k)*d(k) ! where l(k) is the k-th column of l if( k<n ) then ! perform a rank-1 update of a(k+1:n,k+1:n) as ! a := a - l(k)*d(k)*l(k)**t = a - w(k)*(1/d(k))*w(k)**t r1 = cone / ap( kc ) call stdlib${ii}$_${ci}$spr( uplo, n-k, -r1, ap( kc+1 ), 1_${ik}$,ap( kc+n-k+1 ) ) ! store l(k) in column k call stdlib${ii}$_${ci}$scal( n-k, r1, ap( kc+1 ), 1_${ik}$ ) end if else ! 2-by-2 pivot block d(k): columns k and k+1 now hold ! ( w(k) w(k+1) ) = ( l(k) l(k+1) )*d(k) ! where l(k) and l(k+1) are the k-th and (k+1)-th columns ! of l if( k<n-1 ) then ! perform a rank-2 update of a(k+2:n,k+2:n) as ! a := a - ( l(k) l(k+1) )*d(k)*( l(k) l(k+1) )**t ! = a - ( w(k) w(k+1) )*inv(d(k))*( w(k) w(k+1) )**t ! where l(k) and l(k+1) are the k-th and (k+1)-th ! columns of l d21 = ap( k+1+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ ) d11 = ap( k+1+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ ) / d21 d22 = ap( k+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ ) / d21 t = cone / ( d11*d22-cone ) d21 = t / d21 do j = k + 2, n wk = d21*( d11*ap( j+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ )-ap( j+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ ) ) wkp1 = d21*( d22*ap( j+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ )-ap( j+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ )& ) do i = j, n ap( i+( j-1 )*( 2_${ik}$*n-j ) / 2_${ik}$ ) = ap( i+( j-1 )*( 2_${ik}$*n-j ) / 2_${ik}$ ) - ap( & i+( k-1 )*( 2_${ik}$*n-k ) /2_${ik}$ )*wk - ap( i+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ )*wkp1 end do ap( j+( k-1 )*( 2_${ik}$*n-k ) / 2_${ik}$ ) = wk ap( j+k*( 2_${ik}$*n-k-1 ) / 2_${ik}$ ) = wkp1 end do end if end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -kp ipiv( k+1 ) = -kp end if ! increase k and return to the start of the main loop k = k + kstep kc = knc + n - k + 2_${ik}$ go to 60 end if 110 continue return end subroutine stdlib${ii}$_${ci}$sptrf #:endif #:endfor #:endfor end submodule stdlib_lapack_solve_ldl_comp