#:include "common.fypp" submodule(stdlib_lapack_solve) stdlib_lapack_solve_ldl_comp4 implicit none contains #:for ik,it,ii in LINALG_INT_KINDS_TYPES pure module subroutine stdlib${ii}$_chprfs( uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx,ferr, berr, work,& !! CHPRFS improves the computed solution to a system of linear !! equations when the coefficient matrix is Hermitian indefinite !! and packed, and provides error bounds and backward error estimates !! for the solution. rwork, info ) ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: ldb, ldx, n, nrhs ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) real(sp), intent(out) :: berr(*), ferr(*), rwork(*) complex(sp), intent(in) :: afp(*), ap(*), b(ldb,*) complex(sp), intent(out) :: work(*) complex(sp), intent(inout) :: x(ldx,*) ! ===================================================================== ! Parameters integer(${ik}$), parameter :: itmax = 5_${ik}$ ! Local Scalars logical(lk) :: upper integer(${ik}$) :: count, i, ik, j, k, kase, kk, nz real(sp) :: eps, lstres, s, safe1, safe2, safmin, xk complex(sp) :: zdum ! Local Arrays integer(${ik}$) :: isave(3_${ik}$) ! Intrinsic Functions ! Statement Functions real(sp) :: cabs1 ! Statement Function Definitions cabs1( zdum ) = abs( real( zdum,KIND=sp) ) + abs( aimag( zdum ) ) ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( nrhs<0_${ik}$ ) then info = -3_${ik}$ else if( ldb<max( 1_${ik}$, n ) ) then info = -8_${ik}$ else if( ldx<max( 1_${ik}$, n ) ) then info = -10_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'CHPRFS', -info ) return end if ! quick return if possible if( n==0_${ik}$ .or. nrhs==0_${ik}$ ) then do j = 1, nrhs ferr( j ) = zero berr( j ) = zero end do return end if ! nz = maximum number of nonzero elements in each row of a, plus 1 nz = n + 1_${ik}$ eps = stdlib${ii}$_slamch( 'EPSILON' ) safmin = stdlib${ii}$_slamch( 'SAFE MINIMUM' ) safe1 = nz*safmin safe2 = safe1 / eps ! do for each right hand side loop_140: do j = 1, nrhs count = 1_${ik}$ lstres = three 20 continue ! loop until stopping criterion is satisfied. ! compute residual r = b - a * x call stdlib${ii}$_ccopy( n, b( 1_${ik}$, j ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_chpmv( uplo, n, -cone, ap, x( 1_${ik}$, j ), 1_${ik}$, cone, work, 1_${ik}$ ) ! compute componentwise relative backward error from formula ! max(i) ( abs(r(i)) / ( abs(a)*abs(x) + abs(b) )(i) ) ! where abs(z) is the componentwise absolute value of the matrix ! or vector z. if the i-th component of the denominator is less ! than safe2, then safe1 is added to the i-th components of the ! numerator and denominator before dividing. do i = 1, n rwork( i ) = cabs1( b( i, j ) ) end do ! compute abs(a)*abs(x) + abs(b). kk = 1_${ik}$ if( upper ) then do k = 1, n s = zero xk = cabs1( x( k, j ) ) ik = kk do i = 1, k - 1 rwork( i ) = rwork( i ) + cabs1( ap( ik ) )*xk s = s + cabs1( ap( ik ) )*cabs1( x( i, j ) ) ik = ik + 1_${ik}$ end do rwork( k ) = rwork( k ) + abs( real( ap( kk+k-1 ),KIND=sp) )*xk + s kk = kk + k end do else do k = 1, n s = zero xk = cabs1( x( k, j ) ) rwork( k ) = rwork( k ) + abs( real( ap( kk ),KIND=sp) )*xk ik = kk + 1_${ik}$ do i = k + 1, n rwork( i ) = rwork( i ) + cabs1( ap( ik ) )*xk s = s + cabs1( ap( ik ) )*cabs1( x( i, j ) ) ik = ik + 1_${ik}$ end do rwork( k ) = rwork( k ) + s kk = kk + ( n-k+1 ) end do end if s = zero do i = 1, n if( rwork( i )>safe2 ) then s = max( s, cabs1( work( i ) ) / rwork( i ) ) else s = max( s, ( cabs1( work( i ) )+safe1 ) /( rwork( i )+safe1 ) ) end if end do berr( j ) = s ! test stopping criterion. continue iterating if ! 1) the residual berr(j) is larger than machine epsilon, and ! 2) berr(j) decreased by at least a factor of 2 during the ! last iteration, and ! 3) at most itmax iterations tried. if( berr( j )>eps .and. two*berr( j )<=lstres .and.count<=itmax ) then ! update solution and try again. call stdlib${ii}$_chptrs( uplo, n, 1_${ik}$, afp, ipiv, work, n, info ) call stdlib${ii}$_caxpy( n, cone, work, 1_${ik}$, x( 1_${ik}$, j ), 1_${ik}$ ) lstres = berr( j ) count = count + 1_${ik}$ go to 20 end if ! bound error from formula ! norm(x - xtrue) / norm(x) .le. ferr = ! norm( abs(inv(a))* ! ( abs(r) + nz*eps*( abs(a)*abs(x)+abs(b) ))) / norm(x) ! where ! norm(z) is the magnitude of the largest component of z ! inv(a) is the inverse of a ! abs(z) is the componentwise absolute value of the matrix or ! vector z ! nz is the maximum number of nonzeros in any row of a, plus 1 ! eps is machine epsilon ! the i-th component of abs(r)+nz*eps*(abs(a)*abs(x)+abs(b)) ! is incremented by safe1 if the i-th component of ! abs(a)*abs(x) + abs(b) is less than safe2. ! use stdlib_clacn2 to estimate the infinity-norm of the matrix ! inv(a) * diag(w), ! where w = abs(r) + nz*eps*( abs(a)*abs(x)+abs(b) ))) do i = 1, n if( rwork( i )>safe2 ) then rwork( i ) = cabs1( work( i ) ) + nz*eps*rwork( i ) else rwork( i ) = cabs1( work( i ) ) + nz*eps*rwork( i ) +safe1 end if end do kase = 0_${ik}$ 100 continue call stdlib${ii}$_clacn2( n, work( n+1 ), work, ferr( j ), kase, isave ) if( kase/=0_${ik}$ ) then if( kase==1_${ik}$ ) then ! multiply by diag(w)*inv(a**h). call stdlib${ii}$_chptrs( uplo, n, 1_${ik}$, afp, ipiv, work, n, info ) do i = 1, n work( i ) = rwork( i )*work( i ) end do else if( kase==2_${ik}$ ) then ! multiply by inv(a)*diag(w). do i = 1, n work( i ) = rwork( i )*work( i ) end do call stdlib${ii}$_chptrs( uplo, n, 1_${ik}$, afp, ipiv, work, n, info ) end if go to 100 end if ! normalize error. lstres = zero do i = 1, n lstres = max( lstres, cabs1( x( i, j ) ) ) end do if( lstres/=zero )ferr( j ) = ferr( j ) / lstres end do loop_140 return end subroutine stdlib${ii}$_chprfs pure module subroutine stdlib${ii}$_zhprfs( uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx,ferr, berr, work,& !! ZHPRFS improves the computed solution to a system of linear !! equations when the coefficient matrix is Hermitian indefinite !! and packed, and provides error bounds and backward error estimates !! for the solution. rwork, info ) ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: ldb, ldx, n, nrhs ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) real(dp), intent(out) :: berr(*), ferr(*), rwork(*) complex(dp), intent(in) :: afp(*), ap(*), b(ldb,*) complex(dp), intent(out) :: work(*) complex(dp), intent(inout) :: x(ldx,*) ! ===================================================================== ! Parameters integer(${ik}$), parameter :: itmax = 5_${ik}$ ! Local Scalars logical(lk) :: upper integer(${ik}$) :: count, i, ik, j, k, kase, kk, nz real(dp) :: eps, lstres, s, safe1, safe2, safmin, xk complex(dp) :: zdum ! Local Arrays integer(${ik}$) :: isave(3_${ik}$) ! Intrinsic Functions ! Statement Functions real(dp) :: cabs1 ! Statement Function Definitions cabs1( zdum ) = abs( real( zdum,KIND=dp) ) + abs( aimag( zdum ) ) ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( nrhs<0_${ik}$ ) then info = -3_${ik}$ else if( ldb<max( 1_${ik}$, n ) ) then info = -8_${ik}$ else if( ldx<max( 1_${ik}$, n ) ) then info = -10_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZHPRFS', -info ) return end if ! quick return if possible if( n==0_${ik}$ .or. nrhs==0_${ik}$ ) then do j = 1, nrhs ferr( j ) = zero berr( j ) = zero end do return end if ! nz = maximum number of nonzero elements in each row of a, plus 1 nz = n + 1_${ik}$ eps = stdlib${ii}$_dlamch( 'EPSILON' ) safmin = stdlib${ii}$_dlamch( 'SAFE MINIMUM' ) safe1 = nz*safmin safe2 = safe1 / eps ! do for each right hand side loop_140: do j = 1, nrhs count = 1_${ik}$ lstres = three 20 continue ! loop until stopping criterion is satisfied. ! compute residual r = b - a * x call stdlib${ii}$_zcopy( n, b( 1_${ik}$, j ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_zhpmv( uplo, n, -cone, ap, x( 1_${ik}$, j ), 1_${ik}$, cone, work, 1_${ik}$ ) ! compute componentwise relative backward error from formula ! max(i) ( abs(r(i)) / ( abs(a)*abs(x) + abs(b) )(i) ) ! where abs(z) is the componentwise absolute value of the matrix ! or vector z. if the i-th component of the denominator is less ! than safe2, then safe1 is added to the i-th components of the ! numerator and denominator before dividing. do i = 1, n rwork( i ) = cabs1( b( i, j ) ) end do ! compute abs(a)*abs(x) + abs(b). kk = 1_${ik}$ if( upper ) then do k = 1, n s = zero xk = cabs1( x( k, j ) ) ik = kk do i = 1, k - 1 rwork( i ) = rwork( i ) + cabs1( ap( ik ) )*xk s = s + cabs1( ap( ik ) )*cabs1( x( i, j ) ) ik = ik + 1_${ik}$ end do rwork( k ) = rwork( k ) + abs( real( ap( kk+k-1 ),KIND=dp) )*xk + s kk = kk + k end do else do k = 1, n s = zero xk = cabs1( x( k, j ) ) rwork( k ) = rwork( k ) + abs( real( ap( kk ),KIND=dp) )*xk ik = kk + 1_${ik}$ do i = k + 1, n rwork( i ) = rwork( i ) + cabs1( ap( ik ) )*xk s = s + cabs1( ap( ik ) )*cabs1( x( i, j ) ) ik = ik + 1_${ik}$ end do rwork( k ) = rwork( k ) + s kk = kk + ( n-k+1 ) end do end if s = zero do i = 1, n if( rwork( i )>safe2 ) then s = max( s, cabs1( work( i ) ) / rwork( i ) ) else s = max( s, ( cabs1( work( i ) )+safe1 ) /( rwork( i )+safe1 ) ) end if end do berr( j ) = s ! test stopping criterion. continue iterating if ! 1) the residual berr(j) is larger than machine epsilon, and ! 2) berr(j) decreased by at least a factor of 2 during the ! last iteration, and ! 3) at most itmax iterations tried. if( berr( j )>eps .and. two*berr( j )<=lstres .and.count<=itmax ) then ! update solution and try again. call stdlib${ii}$_zhptrs( uplo, n, 1_${ik}$, afp, ipiv, work, n, info ) call stdlib${ii}$_zaxpy( n, cone, work, 1_${ik}$, x( 1_${ik}$, j ), 1_${ik}$ ) lstres = berr( j ) count = count + 1_${ik}$ go to 20 end if ! bound error from formula ! norm(x - xtrue) / norm(x) .le. ferr = ! norm( abs(inv(a))* ! ( abs(r) + nz*eps*( abs(a)*abs(x)+abs(b) ))) / norm(x) ! where ! norm(z) is the magnitude of the largest component of z ! inv(a) is the inverse of a ! abs(z) is the componentwise absolute value of the matrix or ! vector z ! nz is the maximum number of nonzeros in any row of a, plus 1 ! eps is machine epsilon ! the i-th component of abs(r)+nz*eps*(abs(a)*abs(x)+abs(b)) ! is incremented by safe1 if the i-th component of ! abs(a)*abs(x) + abs(b) is less than safe2. ! use stdlib_zlacn2 to estimate the infinity-norm of the matrix ! inv(a) * diag(w), ! where w = abs(r) + nz*eps*( abs(a)*abs(x)+abs(b) ))) do i = 1, n if( rwork( i )>safe2 ) then rwork( i ) = cabs1( work( i ) ) + nz*eps*rwork( i ) else rwork( i ) = cabs1( work( i ) ) + nz*eps*rwork( i ) +safe1 end if end do kase = 0_${ik}$ 100 continue call stdlib${ii}$_zlacn2( n, work( n+1 ), work, ferr( j ), kase, isave ) if( kase/=0_${ik}$ ) then if( kase==1_${ik}$ ) then ! multiply by diag(w)*inv(a**h). call stdlib${ii}$_zhptrs( uplo, n, 1_${ik}$, afp, ipiv, work, n, info ) do i = 1, n work( i ) = rwork( i )*work( i ) end do else if( kase==2_${ik}$ ) then ! multiply by inv(a)*diag(w). do i = 1, n work( i ) = rwork( i )*work( i ) end do call stdlib${ii}$_zhptrs( uplo, n, 1_${ik}$, afp, ipiv, work, n, info ) end if go to 100 end if ! normalize error. lstres = zero do i = 1, n lstres = max( lstres, cabs1( x( i, j ) ) ) end do if( lstres/=zero )ferr( j ) = ferr( j ) / lstres end do loop_140 return end subroutine stdlib${ii}$_zhprfs #:for ck,ct,ci in CMPLX_KINDS_TYPES #:if not ck in ["sp","dp"] pure module subroutine stdlib${ii}$_${ci}$hprfs( uplo, n, nrhs, ap, afp, ipiv, b, ldb, x, ldx,ferr, berr, work,& !! ZHPRFS: improves the computed solution to a system of linear !! equations when the coefficient matrix is Hermitian indefinite !! and packed, and provides error bounds and backward error estimates !! for the solution. rwork, info ) ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${ck}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: ldb, ldx, n, nrhs ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) real(${ck}$), intent(out) :: berr(*), ferr(*), rwork(*) complex(${ck}$), intent(in) :: afp(*), ap(*), b(ldb,*) complex(${ck}$), intent(out) :: work(*) complex(${ck}$), intent(inout) :: x(ldx,*) ! ===================================================================== ! Parameters integer(${ik}$), parameter :: itmax = 5_${ik}$ ! Local Scalars logical(lk) :: upper integer(${ik}$) :: count, i, ik, j, k, kase, kk, nz real(${ck}$) :: eps, lstres, s, safe1, safe2, safmin, xk complex(${ck}$) :: zdum ! Local Arrays integer(${ik}$) :: isave(3_${ik}$) ! Intrinsic Functions ! Statement Functions real(${ck}$) :: cabs1 ! Statement Function Definitions cabs1( zdum ) = abs( real( zdum,KIND=${ck}$) ) + abs( aimag( zdum ) ) ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( nrhs<0_${ik}$ ) then info = -3_${ik}$ else if( ldb<max( 1_${ik}$, n ) ) then info = -8_${ik}$ else if( ldx<max( 1_${ik}$, n ) ) then info = -10_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZHPRFS', -info ) return end if ! quick return if possible if( n==0_${ik}$ .or. nrhs==0_${ik}$ ) then do j = 1, nrhs ferr( j ) = zero berr( j ) = zero end do return end if ! nz = maximum number of nonzero elements in each row of a, plus 1 nz = n + 1_${ik}$ eps = stdlib${ii}$_${c2ri(ci)}$lamch( 'EPSILON' ) safmin = stdlib${ii}$_${c2ri(ci)}$lamch( 'SAFE MINIMUM' ) safe1 = nz*safmin safe2 = safe1 / eps ! do for each right hand side loop_140: do j = 1, nrhs count = 1_${ik}$ lstres = three 20 continue ! loop until stopping criterion is satisfied. ! compute residual r = b - a * x call stdlib${ii}$_${ci}$copy( n, b( 1_${ik}$, j ), 1_${ik}$, work, 1_${ik}$ ) call stdlib${ii}$_${ci}$hpmv( uplo, n, -cone, ap, x( 1_${ik}$, j ), 1_${ik}$, cone, work, 1_${ik}$ ) ! compute componentwise relative backward error from formula ! max(i) ( abs(r(i)) / ( abs(a)*abs(x) + abs(b) )(i) ) ! where abs(z) is the componentwise absolute value of the matrix ! or vector z. if the i-th component of the denominator is less ! than safe2, then safe1 is added to the i-th components of the ! numerator and denominator before dividing. do i = 1, n rwork( i ) = cabs1( b( i, j ) ) end do ! compute abs(a)*abs(x) + abs(b). kk = 1_${ik}$ if( upper ) then do k = 1, n s = zero xk = cabs1( x( k, j ) ) ik = kk do i = 1, k - 1 rwork( i ) = rwork( i ) + cabs1( ap( ik ) )*xk s = s + cabs1( ap( ik ) )*cabs1( x( i, j ) ) ik = ik + 1_${ik}$ end do rwork( k ) = rwork( k ) + abs( real( ap( kk+k-1 ),KIND=${ck}$) )*xk + s kk = kk + k end do else do k = 1, n s = zero xk = cabs1( x( k, j ) ) rwork( k ) = rwork( k ) + abs( real( ap( kk ),KIND=${ck}$) )*xk ik = kk + 1_${ik}$ do i = k + 1, n rwork( i ) = rwork( i ) + cabs1( ap( ik ) )*xk s = s + cabs1( ap( ik ) )*cabs1( x( i, j ) ) ik = ik + 1_${ik}$ end do rwork( k ) = rwork( k ) + s kk = kk + ( n-k+1 ) end do end if s = zero do i = 1, n if( rwork( i )>safe2 ) then s = max( s, cabs1( work( i ) ) / rwork( i ) ) else s = max( s, ( cabs1( work( i ) )+safe1 ) /( rwork( i )+safe1 ) ) end if end do berr( j ) = s ! test stopping criterion. continue iterating if ! 1) the residual berr(j) is larger than machine epsilon, and ! 2) berr(j) decreased by at least a factor of 2 during the ! last iteration, and ! 3) at most itmax iterations tried. if( berr( j )>eps .and. two*berr( j )<=lstres .and.count<=itmax ) then ! update solution and try again. call stdlib${ii}$_${ci}$hptrs( uplo, n, 1_${ik}$, afp, ipiv, work, n, info ) call stdlib${ii}$_${ci}$axpy( n, cone, work, 1_${ik}$, x( 1_${ik}$, j ), 1_${ik}$ ) lstres = berr( j ) count = count + 1_${ik}$ go to 20 end if ! bound error from formula ! norm(x - xtrue) / norm(x) .le. ferr = ! norm( abs(inv(a))* ! ( abs(r) + nz*eps*( abs(a)*abs(x)+abs(b) ))) / norm(x) ! where ! norm(z) is the magnitude of the largest component of z ! inv(a) is the inverse of a ! abs(z) is the componentwise absolute value of the matrix or ! vector z ! nz is the maximum number of nonzeros in any row of a, plus 1 ! eps is machine epsilon ! the i-th component of abs(r)+nz*eps*(abs(a)*abs(x)+abs(b)) ! is incremented by safe1 if the i-th component of ! abs(a)*abs(x) + abs(b) is less than safe2. ! use stdlib_${ci}$lacn2 to estimate the infinity-norm of the matrix ! inv(a) * diag(w), ! where w = abs(r) + nz*eps*( abs(a)*abs(x)+abs(b) ))) do i = 1, n if( rwork( i )>safe2 ) then rwork( i ) = cabs1( work( i ) ) + nz*eps*rwork( i ) else rwork( i ) = cabs1( work( i ) ) + nz*eps*rwork( i ) +safe1 end if end do kase = 0_${ik}$ 100 continue call stdlib${ii}$_${ci}$lacn2( n, work( n+1 ), work, ferr( j ), kase, isave ) if( kase/=0_${ik}$ ) then if( kase==1_${ik}$ ) then ! multiply by diag(w)*inv(a**h). call stdlib${ii}$_${ci}$hptrs( uplo, n, 1_${ik}$, afp, ipiv, work, n, info ) do i = 1, n work( i ) = rwork( i )*work( i ) end do else if( kase==2_${ik}$ ) then ! multiply by inv(a)*diag(w). do i = 1, n work( i ) = rwork( i )*work( i ) end do call stdlib${ii}$_${ci}$hptrs( uplo, n, 1_${ik}$, afp, ipiv, work, n, info ) end if go to 100 end if ! normalize error. lstres = zero do i = 1, n lstres = max( lstres, cabs1( x( i, j ) ) ) end do if( lstres/=zero )ferr( j ) = ferr( j ) / lstres end do loop_140 return end subroutine stdlib${ii}$_${ci}$hprfs #:endif #:endfor pure module subroutine stdlib${ii}$_checon_rook( uplo, n, a, lda, ipiv, anorm, rcond, work,info ) !! CHECON_ROOK estimates the reciprocal of the condition number of a complex !! Hermitian matrix A using the factorization A = U*D*U**H or !! A = L*D*L**H computed by CHETRF_ROOK. !! An estimate is obtained for norm(inv(A)), and the reciprocal of the !! condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n real(sp), intent(in) :: anorm real(sp), intent(out) :: rcond ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) complex(sp), intent(in) :: a(lda,*) complex(sp), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, kase real(sp) :: ainvnm ! Local Arrays integer(${ik}$) :: isave(3_${ik}$) ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ else if( anorm<zero ) then info = -6_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'CHECON_ROOK', -info ) return end if ! quick return if possible rcond = zero if( n==0_${ik}$ ) then rcond = one return else if( anorm<=zero ) then return end if ! check that the diagonal matrix d is nonsingular. if( upper ) then ! upper triangular storage: examine d from bottom to top do i = n, 1, -1 if( ipiv( i )>0 .and. a( i, i )==zero )return end do else ! lower triangular storage: examine d from top to bottom. do i = 1, n if( ipiv( i )>0 .and. a( i, i )==zero )return end do end if ! estimate the 1-norm of the inverse. kase = 0_${ik}$ 30 continue call stdlib${ii}$_clacn2( n, work( n+1 ), work, ainvnm, kase, isave ) if( kase/=0_${ik}$ ) then ! multiply by inv(l*d*l**h) or inv(u*d*u**h). call stdlib${ii}$_chetrs_rook( uplo, n, 1_${ik}$, a, lda, ipiv, work, n, info ) go to 30 end if ! compute the estimate of the reciprocal condition number. if( ainvnm/=zero )rcond = ( one / ainvnm ) / anorm return end subroutine stdlib${ii}$_checon_rook pure module subroutine stdlib${ii}$_zhecon_rook( uplo, n, a, lda, ipiv, anorm, rcond, work,info ) !! ZHECON_ROOK estimates the reciprocal of the condition number of a complex !! Hermitian matrix A using the factorization A = U*D*U**H or !! A = L*D*L**H computed by CHETRF_ROOK. !! An estimate is obtained for norm(inv(A)), and the reciprocal of the !! condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n real(dp), intent(in) :: anorm real(dp), intent(out) :: rcond ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) complex(dp), intent(in) :: a(lda,*) complex(dp), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, kase real(dp) :: ainvnm ! Local Arrays integer(${ik}$) :: isave(3_${ik}$) ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ else if( anorm<zero ) then info = -6_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZHECON_ROOK', -info ) return end if ! quick return if possible rcond = zero if( n==0_${ik}$ ) then rcond = one return else if( anorm<=zero ) then return end if ! check that the diagonal matrix d is nonsingular. if( upper ) then ! upper triangular storage: examine d from bottom to top do i = n, 1, -1 if( ipiv( i )>0 .and. a( i, i )==zero )return end do else ! lower triangular storage: examine d from top to bottom. do i = 1, n if( ipiv( i )>0 .and. a( i, i )==zero )return end do end if ! estimate the 1-norm of the inverse. kase = 0_${ik}$ 30 continue call stdlib${ii}$_zlacn2( n, work( n+1 ), work, ainvnm, kase, isave ) if( kase/=0_${ik}$ ) then ! multiply by inv(l*d*l**h) or inv(u*d*u**h). call stdlib${ii}$_zhetrs_rook( uplo, n, 1_${ik}$, a, lda, ipiv, work, n, info ) go to 30 end if ! compute the estimate of the reciprocal condition number. if( ainvnm/=zero )rcond = ( one / ainvnm ) / anorm return end subroutine stdlib${ii}$_zhecon_rook #:for ck,ct,ci in CMPLX_KINDS_TYPES #:if not ck in ["sp","dp"] pure module subroutine stdlib${ii}$_${ci}$hecon_rook( uplo, n, a, lda, ipiv, anorm, rcond, work,info ) !! ZHECON_ROOK: estimates the reciprocal of the condition number of a complex !! Hermitian matrix A using the factorization A = U*D*U**H or !! A = L*D*L**H computed by CHETRF_ROOK. !! An estimate is obtained for norm(inv(A)), and the reciprocal of the !! condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${ck}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, n real(${ck}$), intent(in) :: anorm real(${ck}$), intent(out) :: rcond ! Array Arguments integer(${ik}$), intent(in) :: ipiv(*) complex(${ck}$), intent(in) :: a(lda,*) complex(${ck}$), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: upper integer(${ik}$) :: i, kase real(${ck}$) :: ainvnm ! Local Arrays integer(${ik}$) :: isave(3_${ik}$) ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ else if( anorm<zero ) then info = -6_${ik}$ end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZHECON_ROOK', -info ) return end if ! quick return if possible rcond = zero if( n==0_${ik}$ ) then rcond = one return else if( anorm<=zero ) then return end if ! check that the diagonal matrix d is nonsingular. if( upper ) then ! upper triangular storage: examine d from bottom to top do i = n, 1, -1 if( ipiv( i )>0 .and. a( i, i )==zero )return end do else ! lower triangular storage: examine d from top to bottom. do i = 1, n if( ipiv( i )>0 .and. a( i, i )==zero )return end do end if ! estimate the 1-norm of the inverse. kase = 0_${ik}$ 30 continue call stdlib${ii}$_${ci}$lacn2( n, work( n+1 ), work, ainvnm, kase, isave ) if( kase/=0_${ik}$ ) then ! multiply by inv(l*d*l**h) or inv(u*d*u**h). call stdlib${ii}$_${ci}$hetrs_rook( uplo, n, 1_${ik}$, a, lda, ipiv, work, n, info ) go to 30 end if ! compute the estimate of the reciprocal condition number. if( ainvnm/=zero )rcond = ( one / ainvnm ) / anorm return end subroutine stdlib${ii}$_${ci}$hecon_rook #:endif #:endfor pure module subroutine stdlib${ii}$_chetrf_rook( uplo, n, a, lda, ipiv, work, lwork, info ) !! CHETRF_ROOK computes the factorization of a complex Hermitian matrix A !! using the bounded Bunch-Kaufman ("rook") diagonal pivoting method. !! The form of the factorization is !! A = U*D*U**T or A = L*D*L**T !! where U (or L) is a product of permutation and unit upper (lower) !! triangular matrices, and D is Hermitian and block diagonal with !! 1-by-1 and 2-by-2 diagonal blocks. !! This is the blocked version of the algorithm, calling Level 3 BLAS. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, lwork, n ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) complex(sp), intent(inout) :: a(lda,*) complex(sp), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: lquery, upper integer(${ik}$) :: iinfo, iws, j, k, kb, ldwork, lwkopt, nb, nbmin ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) lquery = ( lwork==-1_${ik}$ ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ else if( lwork<1_${ik}$ .and. .not.lquery ) then info = -7_${ik}$ end if if( info==0_${ik}$ ) then ! determine the block size nb = stdlib${ii}$_ilaenv( 1_${ik}$, 'CHETRF_ROOK', uplo, n, -1_${ik}$, -1_${ik}$, -1_${ik}$ ) lwkopt = max( 1_${ik}$, n*nb ) work( 1_${ik}$ ) = lwkopt end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'CHETRF_ROOK', -info ) return else if( lquery ) then return end if nbmin = 2_${ik}$ ldwork = n if( nb>1_${ik}$ .and. nb<n ) then iws = ldwork*nb if( lwork<iws ) then nb = max( lwork / ldwork, 1_${ik}$ ) nbmin = max( 2_${ik}$, stdlib${ii}$_ilaenv( 2_${ik}$, 'CHETRF_ROOK',uplo, n, -1_${ik}$, -1_${ik}$, -1_${ik}$ ) ) end if else iws = 1_${ik}$ end if if( nb<nbmin )nb = n if( upper ) then ! factorize a as u*d*u**t using the upper triangle of a ! k is the main loop index, decreasing from n to 1 in steps of ! kb, where kb is the number of columns factorized by stdlib${ii}$_clahef_rook; ! kb is either nb or nb-1, or k for the last block k = n 10 continue ! if k < 1, exit from loop if( k<1 )go to 40 if( k>nb ) then ! factorize columns k-kb+1:k of a and use blocked code to ! update columns 1:k-kb call stdlib${ii}$_clahef_rook( uplo, k, nb, kb, a, lda,ipiv, work, ldwork, iinfo ) else ! use unblocked code to factorize columns 1:k of a call stdlib${ii}$_chetf2_rook( uplo, k, a, lda, ipiv, iinfo ) kb = k end if ! set info on the first occurrence of a zero pivot if( info==0_${ik}$ .and. iinfo>0_${ik}$ )info = iinfo ! no need to adjust ipiv ! decrease k and return to the start of the main loop k = k - kb go to 10 else ! factorize a as l*d*l**t using the lower triangle of a ! k is the main loop index, increasing from 1 to n in steps of ! kb, where kb is the number of columns factorized by stdlib${ii}$_clahef_rook; ! kb is either nb or nb-1, or n-k+1 for the last block k = 1_${ik}$ 20 continue ! if k > n, exit from loop if( k>n )go to 40 if( k<=n-nb ) then ! factorize columns k:k+kb-1 of a and use blocked code to ! update columns k+kb:n call stdlib${ii}$_clahef_rook( uplo, n-k+1, nb, kb, a( k, k ), lda,ipiv( k ), work, & ldwork, iinfo ) else ! use unblocked code to factorize columns k:n of a call stdlib${ii}$_chetf2_rook( uplo, n-k+1, a( k, k ), lda, ipiv( k ),iinfo ) kb = n - k + 1_${ik}$ end if ! set info on the first occurrence of a zero pivot if( info==0_${ik}$ .and. iinfo>0_${ik}$ )info = iinfo + k - 1_${ik}$ ! adjust ipiv do j = k, k + kb - 1 if( ipiv( j )>0_${ik}$ ) then ipiv( j ) = ipiv( j ) + k - 1_${ik}$ else ipiv( j ) = ipiv( j ) - k + 1_${ik}$ end if end do ! increase k and return to the start of the main loop k = k + kb go to 20 end if 40 continue work( 1_${ik}$ ) = lwkopt return end subroutine stdlib${ii}$_chetrf_rook pure module subroutine stdlib${ii}$_zhetrf_rook( uplo, n, a, lda, ipiv, work, lwork, info ) !! ZHETRF_ROOK computes the factorization of a complex Hermitian matrix A !! using the bounded Bunch-Kaufman ("rook") diagonal pivoting method. !! The form of the factorization is !! A = U*D*U**T or A = L*D*L**T !! where U (or L) is a product of permutation and unit upper (lower) !! triangular matrices, and D is Hermitian and block diagonal with !! 1-by-1 and 2-by-2 diagonal blocks. !! This is the blocked version of the algorithm, calling Level 3 BLAS. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, lwork, n ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) complex(dp), intent(inout) :: a(lda,*) complex(dp), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: lquery, upper integer(${ik}$) :: iinfo, iws, j, k, kb, ldwork, lwkopt, nb, nbmin ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) lquery = ( lwork==-1_${ik}$ ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ else if( lwork<1_${ik}$ .and. .not.lquery ) then info = -7_${ik}$ end if if( info==0_${ik}$ ) then ! determine the block size nb = stdlib${ii}$_ilaenv( 1_${ik}$, 'ZHETRF_ROOK', uplo, n, -1_${ik}$, -1_${ik}$, -1_${ik}$ ) lwkopt = max( 1_${ik}$, n*nb ) work( 1_${ik}$ ) = lwkopt end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZHETRF_ROOK', -info ) return else if( lquery ) then return end if nbmin = 2_${ik}$ ldwork = n if( nb>1_${ik}$ .and. nb<n ) then iws = ldwork*nb if( lwork<iws ) then nb = max( lwork / ldwork, 1_${ik}$ ) nbmin = max( 2_${ik}$, stdlib${ii}$_ilaenv( 2_${ik}$, 'ZHETRF_ROOK',uplo, n, -1_${ik}$, -1_${ik}$, -1_${ik}$ ) ) end if else iws = 1_${ik}$ end if if( nb<nbmin )nb = n if( upper ) then ! factorize a as u*d*u**t using the upper triangle of a ! k is the main loop index, decreasing from n to 1 in steps of ! kb, where kb is the number of columns factorized by stdlib${ii}$_zlahef_rook; ! kb is either nb or nb-1, or k for the last block k = n 10 continue ! if k < 1, exit from loop if( k<1 )go to 40 if( k>nb ) then ! factorize columns k-kb+1:k of a and use blocked code to ! update columns 1:k-kb call stdlib${ii}$_zlahef_rook( uplo, k, nb, kb, a, lda,ipiv, work, ldwork, iinfo ) else ! use unblocked code to factorize columns 1:k of a call stdlib${ii}$_zhetf2_rook( uplo, k, a, lda, ipiv, iinfo ) kb = k end if ! set info on the first occurrence of a zero pivot if( info==0_${ik}$ .and. iinfo>0_${ik}$ )info = iinfo ! no need to adjust ipiv ! decrease k and return to the start of the main loop k = k - kb go to 10 else ! factorize a as l*d*l**t using the lower triangle of a ! k is the main loop index, increasing from 1 to n in steps of ! kb, where kb is the number of columns factorized by stdlib${ii}$_zlahef_rook; ! kb is either nb or nb-1, or n-k+1 for the last block k = 1_${ik}$ 20 continue ! if k > n, exit from loop if( k>n )go to 40 if( k<=n-nb ) then ! factorize columns k:k+kb-1 of a and use blocked code to ! update columns k+kb:n call stdlib${ii}$_zlahef_rook( uplo, n-k+1, nb, kb, a( k, k ), lda,ipiv( k ), work, & ldwork, iinfo ) else ! use unblocked code to factorize columns k:n of a call stdlib${ii}$_zhetf2_rook( uplo, n-k+1, a( k, k ), lda, ipiv( k ),iinfo ) kb = n - k + 1_${ik}$ end if ! set info on the first occurrence of a zero pivot if( info==0_${ik}$ .and. iinfo>0_${ik}$ )info = iinfo + k - 1_${ik}$ ! adjust ipiv do j = k, k + kb - 1 if( ipiv( j )>0_${ik}$ ) then ipiv( j ) = ipiv( j ) + k - 1_${ik}$ else ipiv( j ) = ipiv( j ) - k + 1_${ik}$ end if end do ! increase k and return to the start of the main loop k = k + kb go to 20 end if 40 continue work( 1_${ik}$ ) = lwkopt return end subroutine stdlib${ii}$_zhetrf_rook #:for ck,ct,ci in CMPLX_KINDS_TYPES #:if not ck in ["sp","dp"] pure module subroutine stdlib${ii}$_${ci}$hetrf_rook( uplo, n, a, lda, ipiv, work, lwork, info ) !! ZHETRF_ROOK: computes the factorization of a complex Hermitian matrix A !! using the bounded Bunch-Kaufman ("rook") diagonal pivoting method. !! The form of the factorization is !! A = U*D*U**T or A = L*D*L**T !! where U (or L) is a product of permutation and unit upper (lower) !! triangular matrices, and D is Hermitian and block diagonal with !! 1-by-1 and 2-by-2 diagonal blocks. !! This is the blocked version of the algorithm, calling Level 3 BLAS. ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${ck}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info integer(${ik}$), intent(in) :: lda, lwork, n ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) complex(${ck}$), intent(inout) :: a(lda,*) complex(${ck}$), intent(out) :: work(*) ! ===================================================================== ! Local Scalars logical(lk) :: lquery, upper integer(${ik}$) :: iinfo, iws, j, k, kb, ldwork, lwkopt, nb, nbmin ! Intrinsic Functions ! Executable Statements ! test the input parameters. info = 0_${ik}$ upper = stdlib_lsame( uplo, 'U' ) lquery = ( lwork==-1_${ik}$ ) if( .not.upper .and. .not.stdlib_lsame( uplo, 'L' ) ) then info = -1_${ik}$ else if( n<0_${ik}$ ) then info = -2_${ik}$ else if( lda<max( 1_${ik}$, n ) ) then info = -4_${ik}$ else if( lwork<1_${ik}$ .and. .not.lquery ) then info = -7_${ik}$ end if if( info==0_${ik}$ ) then ! determine the block size nb = stdlib${ii}$_ilaenv( 1_${ik}$, 'ZHETRF_ROOK', uplo, n, -1_${ik}$, -1_${ik}$, -1_${ik}$ ) lwkopt = max( 1_${ik}$, n*nb ) work( 1_${ik}$ ) = lwkopt end if if( info/=0_${ik}$ ) then call stdlib${ii}$_xerbla( 'ZHETRF_ROOK', -info ) return else if( lquery ) then return end if nbmin = 2_${ik}$ ldwork = n if( nb>1_${ik}$ .and. nb<n ) then iws = ldwork*nb if( lwork<iws ) then nb = max( lwork / ldwork, 1_${ik}$ ) nbmin = max( 2_${ik}$, stdlib${ii}$_ilaenv( 2_${ik}$, 'ZHETRF_ROOK',uplo, n, -1_${ik}$, -1_${ik}$, -1_${ik}$ ) ) end if else iws = 1_${ik}$ end if if( nb<nbmin )nb = n if( upper ) then ! factorize a as u*d*u**t using the upper triangle of a ! k is the main loop index, decreasing from n to 1 in steps of ! kb, where kb is the number of columns factorized by stdlib${ii}$_${ci}$lahef_rook; ! kb is either nb or nb-1, or k for the last block k = n 10 continue ! if k < 1, exit from loop if( k<1 )go to 40 if( k>nb ) then ! factorize columns k-kb+1:k of a and use blocked code to ! update columns 1:k-kb call stdlib${ii}$_${ci}$lahef_rook( uplo, k, nb, kb, a, lda,ipiv, work, ldwork, iinfo ) else ! use unblocked code to factorize columns 1:k of a call stdlib${ii}$_${ci}$hetf2_rook( uplo, k, a, lda, ipiv, iinfo ) kb = k end if ! set info on the first occurrence of a zero pivot if( info==0_${ik}$ .and. iinfo>0_${ik}$ )info = iinfo ! no need to adjust ipiv ! decrease k and return to the start of the main loop k = k - kb go to 10 else ! factorize a as l*d*l**t using the lower triangle of a ! k is the main loop index, increasing from 1 to n in steps of ! kb, where kb is the number of columns factorized by stdlib${ii}$_${ci}$lahef_rook; ! kb is either nb or nb-1, or n-k+1 for the last block k = 1_${ik}$ 20 continue ! if k > n, exit from loop if( k>n )go to 40 if( k<=n-nb ) then ! factorize columns k:k+kb-1 of a and use blocked code to ! update columns k+kb:n call stdlib${ii}$_${ci}$lahef_rook( uplo, n-k+1, nb, kb, a( k, k ), lda,ipiv( k ), work, & ldwork, iinfo ) else ! use unblocked code to factorize columns k:n of a call stdlib${ii}$_${ci}$hetf2_rook( uplo, n-k+1, a( k, k ), lda, ipiv( k ),iinfo ) kb = n - k + 1_${ik}$ end if ! set info on the first occurrence of a zero pivot if( info==0_${ik}$ .and. iinfo>0_${ik}$ )info = iinfo + k - 1_${ik}$ ! adjust ipiv do j = k, k + kb - 1 if( ipiv( j )>0_${ik}$ ) then ipiv( j ) = ipiv( j ) + k - 1_${ik}$ else ipiv( j ) = ipiv( j ) - k + 1_${ik}$ end if end do ! increase k and return to the start of the main loop k = k + kb go to 20 end if 40 continue work( 1_${ik}$ ) = lwkopt return end subroutine stdlib${ii}$_${ci}$hetrf_rook #:endif #:endfor pure module subroutine stdlib${ii}$_clahef_rook( uplo, n, nb, kb, a, lda, ipiv, w, ldw,info ) !! CLAHEF_ROOK computes a partial factorization of a complex Hermitian !! matrix A using the bounded Bunch-Kaufman ("rook") diagonal pivoting !! method. The partial factorization has the form: !! A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: !! ( 0 U22 ) ( 0 D ) ( U12**H U22**H ) !! A = ( L11 0 ) ( D 0 ) ( L11**H L21**H ) if UPLO = 'L' !! ( L21 I ) ( 0 A22 ) ( 0 I ) !! where the order of D is at most NB. The actual order is returned in !! the argument KB, and is either NB or NB-1, or N if N <= NB. !! Note that U**H denotes the conjugate transpose of U. !! CLAHEF_ROOK is an auxiliary routine called by CHETRF_ROOK. It uses !! blocked code (calling Level 3 BLAS) to update the submatrix !! A11 (if UPLO = 'U') or A22 (if UPLO = 'L'). ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_sp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info, kb integer(${ik}$), intent(in) :: lda, ldw, n, nb ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) complex(sp), intent(inout) :: a(lda,*) complex(sp), intent(out) :: w(ldw,*) ! ===================================================================== ! Parameters real(sp), parameter :: sevten = 17.0e+0_sp ! Local Scalars logical(lk) :: done integer(${ik}$) :: imax, itemp, ii, j, jb, jj, jmax, jp1, jp2, k, kk, kkw, kp, kstep, kw, & p real(sp) :: absakk, alpha, colmax, stemp, r1, rowmax, t, sfmin complex(sp) :: d11, d21, d22, z ! Intrinsic Functions ! Statement Functions real(sp) :: cabs1 ! Statement Function Definitions cabs1( z ) = abs( real( z,KIND=sp) ) + abs( aimag( z ) ) ! Executable Statements info = 0_${ik}$ ! initialize alpha for use in choosing pivot block size. alpha = ( one+sqrt( sevten ) ) / eight ! compute machine safe minimum sfmin = stdlib${ii}$_slamch( 'S' ) if( stdlib_lsame( uplo, 'U' ) ) then ! factorize the trailing columns of a using the upper triangle ! of a and working backwards, and compute the matrix w = u12*d ! for use in updating a11 (note that conjg(w) is actually stored) ! k is the main loop index, decreasing from n in steps of 1 or 2 k = n 10 continue ! kw is the column of w which corresponds to column k of a kw = nb + k - n ! exit from loop if( ( k<=n-nb+1 .and. nb<n ) .or. k<1 )go to 30 kstep = 1_${ik}$ p = k ! copy column k of a to column kw of w and update it if( k>1_${ik}$ )call stdlib${ii}$_ccopy( k-1, a( 1_${ik}$, k ), 1_${ik}$, w( 1_${ik}$, kw ), 1_${ik}$ ) w( k, kw ) = real( a( k, k ),KIND=sp) if( k<n ) then call stdlib${ii}$_cgemv( 'NO TRANSPOSE', k, n-k, -cone, a( 1_${ik}$, k+1 ), lda,w( k, kw+1 ), & ldw, cone, w( 1_${ik}$, kw ), 1_${ik}$ ) w( k, kw ) = real( w( k, kw ),KIND=sp) end if ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = abs( real( w( k, kw ),KIND=sp) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value. ! determine both colmax and imax. if( k>1_${ik}$ ) then imax = stdlib${ii}$_icamax( k-1, w( 1_${ik}$, kw ), 1_${ik}$ ) colmax = cabs1( w( imax, kw ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero or underflow: set info and continue if( info==0_${ik}$ )info = k kp = k a( k, k ) = real( w( k, kw ),KIND=sp) if( k>1_${ik}$ )call stdlib${ii}$_ccopy( k-1, w( 1_${ik}$, kw ), 1_${ik}$, a( 1_${ik}$, k ), 1_${ik}$ ) else ! ============================================================ ! begin pivot search ! case(1) ! equivalent to testing for absakk>=alpha*colmax ! (used to handle nan and inf) if( .not.( absakk<alpha*colmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else ! lop until pivot found done = .false. 12 continue ! begin pivot search loop body ! copy column imax to column kw-1 of w and update it if( imax>1_${ik}$ )call stdlib${ii}$_ccopy( imax-1, a( 1_${ik}$, imax ), 1_${ik}$, w( 1_${ik}$, kw-1 ),1_${ik}$ ) w( imax, kw-1 ) = real( a( imax, imax ),KIND=sp) call stdlib${ii}$_ccopy( k-imax, a( imax, imax+1 ), lda,w( imax+1, kw-1 ), 1_${ik}$ ) call stdlib${ii}$_clacgv( k-imax, w( imax+1, kw-1 ), 1_${ik}$ ) if( k<n ) then call stdlib${ii}$_cgemv( 'NO TRANSPOSE', k, n-k, -cone,a( 1_${ik}$, k+1 ), lda, w( & imax, kw+1 ), ldw,cone, w( 1_${ik}$, kw-1 ), 1_${ik}$ ) w( imax, kw-1 ) = real( w( imax, kw-1 ),KIND=sp) end if ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value. ! determine both rowmax and jmax. if( imax/=k ) then jmax = imax + stdlib${ii}$_icamax( k-imax, w( imax+1, kw-1 ),1_${ik}$ ) rowmax = cabs1( w( jmax, kw-1 ) ) else rowmax = zero end if if( imax>1_${ik}$ ) then itemp = stdlib${ii}$_icamax( imax-1, w( 1_${ik}$, kw-1 ), 1_${ik}$ ) stemp = cabs1( w( itemp, kw-1 ) ) if( stemp>rowmax ) then rowmax = stemp jmax = itemp end if end if ! case(2) ! equivalent to testing for ! abs( real( w( imax,kw-1 ),KIND=sp) )>=alpha*rowmax ! (used to handle nan and inf) if( .not.( abs( real( w( imax,kw-1 ),KIND=sp) )<alpha*rowmax ) ) & then ! interchange rows and columns k and imax, ! use 1-by-1 pivot block kp = imax ! copy column kw-1 of w to column kw of w call stdlib${ii}$_ccopy( k, w( 1_${ik}$, kw-1 ), 1_${ik}$, w( 1_${ik}$, kw ), 1_${ik}$ ) done = .true. ! case(3) ! equivalent to testing for rowmax==colmax, ! (used to handle nan and inf) else if( ( p==jmax ) .or. ( rowmax<=colmax ) )then ! interchange rows and columns k-1 and imax, ! use 2-by-2 pivot block kp = imax kstep = 2_${ik}$ done = .true. ! case(4) else ! pivot not found: set params and repeat p = imax colmax = rowmax imax = jmax ! copy updated jmaxth (next imaxth) column to kth of w call stdlib${ii}$_ccopy( k, w( 1_${ik}$, kw-1 ), 1_${ik}$, w( 1_${ik}$, kw ), 1_${ik}$ ) end if ! end pivot search loop body if( .not.done ) goto 12 end if ! end pivot search ! ============================================================ ! kk is the column of a where pivoting step stopped kk = k - kstep + 1_${ik}$ ! kkw is the column of w which corresponds to column kk of a kkw = nb + kk - n ! interchange rows and columns p and k. ! updated column p is already stored in column kw of w. if( ( kstep==2_${ik}$ ) .and. ( p/=k ) ) then ! copy non-updated column k to column p of submatrix a ! at step k. no need to copy element into columns ! k and k-1 of a for 2-by-2 pivot, since these columns ! will be later overwritten. a( p, p ) = real( a( k, k ),KIND=sp) call stdlib${ii}$_ccopy( k-1-p, a( p+1, k ), 1_${ik}$, a( p, p+1 ),lda ) call stdlib${ii}$_clacgv( k-1-p, a( p, p+1 ), lda ) if( p>1_${ik}$ )call stdlib${ii}$_ccopy( p-1, a( 1_${ik}$, k ), 1_${ik}$, a( 1_${ik}$, p ), 1_${ik}$ ) ! interchange rows k and p in the last k+1 to n columns of a ! (columns k and k-1 of a for 2-by-2 pivot will be ! later overwritten). interchange rows k and p ! in last kkw to nb columns of w. if( k<n )call stdlib${ii}$_cswap( n-k, a( k, k+1 ), lda, a( p, k+1 ),lda ) call stdlib${ii}$_cswap( n-kk+1, w( k, kkw ), ldw, w( p, kkw ),ldw ) end if ! interchange rows and columns kp and kk. ! updated column kp is already stored in column kkw of w. if( kp/=kk ) then ! copy non-updated column kk to column kp of submatrix a ! at step k. no need to copy element into column k ! (or k and k-1 for 2-by-2 pivot) of a, since these columns ! will be later overwritten. a( kp, kp ) = real( a( kk, kk ),KIND=sp) call stdlib${ii}$_ccopy( kk-1-kp, a( kp+1, kk ), 1_${ik}$, a( kp, kp+1 ),lda ) call stdlib${ii}$_clacgv( kk-1-kp, a( kp, kp+1 ), lda ) if( kp>1_${ik}$ )call stdlib${ii}$_ccopy( kp-1, a( 1_${ik}$, kk ), 1_${ik}$, a( 1_${ik}$, kp ), 1_${ik}$ ) ! interchange rows kk and kp in last k+1 to n columns of a ! (columns k (or k and k-1 for 2-by-2 pivot) of a will be ! later overwritten). interchange rows kk and kp ! in last kkw to nb columns of w. if( k<n )call stdlib${ii}$_cswap( n-k, a( kk, k+1 ), lda, a( kp, k+1 ),lda ) call stdlib${ii}$_cswap( n-kk+1, w( kk, kkw ), ldw, w( kp, kkw ),ldw ) end if if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column kw of w now holds ! w(kw) = u(k)*d(k), ! where u(k) is the k-th column of u ! (1) store subdiag. elements of column u(k) ! and 1-by-1 block d(k) in column k of a. ! (note: diagonal element u(k,k) is a unit element ! and not stored) ! a(k,k) := d(k,k) = w(k,kw) ! a(1:k-1,k) := u(1:k-1,k) = w(1:k-1,kw)/d(k,k) ! (note: no need to use for hermitian matrix ! a( k, k ) = real( w( k, k),KIND=sp) to separately copy diagonal ! element d(k,k) from w (potentially saves only one load)) call stdlib${ii}$_ccopy( k, w( 1_${ik}$, kw ), 1_${ik}$, a( 1_${ik}$, k ), 1_${ik}$ ) if( k>1_${ik}$ ) then ! (note: no need to check if a(k,k) is not zero, ! since that was ensured earlier in pivot search: ! case a(k,k) = 0 falls into 2x2 pivot case(3)) ! handle division by a small number t = real( a( k, k ),KIND=sp) if( abs( t )>=sfmin ) then r1 = one / t call stdlib${ii}$_csscal( k-1, r1, a( 1_${ik}$, k ), 1_${ik}$ ) else do ii = 1, k-1 a( ii, k ) = a( ii, k ) / t end do end if ! (2) conjugate column w(kw) call stdlib${ii}$_clacgv( k-1, w( 1_${ik}$, kw ), 1_${ik}$ ) end if else ! 2-by-2 pivot block d(k): columns kw and kw-1 of w now hold ! ( w(kw-1) w(kw) ) = ( u(k-1) u(k) )*d(k) ! where u(k) and u(k-1) are the k-th and (k-1)-th columns ! of u ! (1) store u(1:k-2,k-1) and u(1:k-2,k) and 2-by-2 ! block d(k-1:k,k-1:k) in columns k-1 and k of a. ! (note: 2-by-2 diagonal block u(k-1:k,k-1:k) is a unit ! block and not stored) ! a(k-1:k,k-1:k) := d(k-1:k,k-1:k) = w(k-1:k,kw-1:kw) ! a(1:k-2,k-1:k) := u(1:k-2,k:k-1:k) = ! = w(1:k-2,kw-1:kw) * ( d(k-1:k,k-1:k)**(-1) ) if( k>2_${ik}$ ) then ! factor out the columns of the inverse of 2-by-2 pivot ! block d, so that each column contains 1, to reduce the ! number of flops when we multiply panel ! ( w(kw-1) w(kw) ) by this inverse, i.e. by d**(-1). ! d**(-1) = ( d11 cj(d21) )**(-1) = ! ( d21 d22 ) ! = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) = ! ( (-d21) ( d11 ) ) ! = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) * ! * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) = ! ( ( -1 ) ( d11/conj(d21) ) ) ! = 1/(|d21|**2) * 1/(d22*d11-1) * ! * ( d21*( d11 ) conj(d21)*( -1 ) ) = ! ( ( -1 ) ( d22 ) ) ! = (1/|d21|**2) * t * ( d21*( d11 ) conj(d21)*( -1 ) ) = ! ( ( -1 ) ( d22 ) ) ! = ( (t/conj(d21))*( d11 ) (t/d21)*( -1 ) ) = ! ( ( -1 ) ( d22 ) ) ! handle division by a small number. (note: order of ! operations is important) ! = ( t*(( d11 )/conj(d21)) t*(( -1 )/d21 ) ) ! ( (( -1 ) ) (( d22 ) ) ), ! where d11 = d22/d21, ! d22 = d11/conj(d21), ! d21 = d21, ! t = 1/(d22*d11-1). ! (note: no need to check for division by zero, ! since that was ensured earlier in pivot search: ! (a) d21 != 0 in 2x2 pivot case(4), ! since |d21| should be larger than |d11| and |d22|; ! (b) (d22*d11 - 1) != 0, since from (a), ! both |d11| < 1, |d22| < 1, hence |d22*d11| << 1.) d21 = w( k-1, kw ) d11 = w( k, kw ) / conjg( d21 ) d22 = w( k-1, kw-1 ) / d21 t = one / ( real( d11*d22,KIND=sp)-one ) ! update elements in columns a(k-1) and a(k) as ! dot products of rows of ( w(kw-1) w(kw) ) and columns ! of d**(-1) do j = 1, k - 2 a( j, k-1 ) = t*( ( d11*w( j, kw-1 )-w( j, kw ) ) /d21 ) a( j, k ) = t*( ( d22*w( j, kw )-w( j, kw-1 ) ) /conjg( d21 ) ) end do end if ! copy d(k) to a a( k-1, k-1 ) = w( k-1, kw-1 ) a( k-1, k ) = w( k-1, kw ) a( k, k ) = w( k, kw ) ! (2) conjugate columns w(kw) and w(kw-1) call stdlib${ii}$_clacgv( k-1, w( 1_${ik}$, kw ), 1_${ik}$ ) call stdlib${ii}$_clacgv( k-2, w( 1_${ik}$, kw-1 ), 1_${ik}$ ) end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -p ipiv( k-1 ) = -kp end if ! decrease k and return to the start of the main loop k = k - kstep go to 10 30 continue ! update the upper triangle of a11 (= a(1:k,1:k)) as ! a11 := a11 - u12*d*u12**h = a11 - u12*w**h ! computing blocks of nb columns at a time (note that conjg(w) is ! actually stored) do j = ( ( k-1 ) / nb )*nb + 1, 1, -nb jb = min( nb, k-j+1 ) ! update the upper triangle of the diagonal block do jj = j, j + jb - 1 a( jj, jj ) = real( a( jj, jj ),KIND=sp) call stdlib${ii}$_cgemv( 'NO TRANSPOSE', jj-j+1, n-k, -cone,a( j, k+1 ), lda, w( jj,& kw+1 ), ldw, cone,a( j, jj ), 1_${ik}$ ) a( jj, jj ) = real( a( jj, jj ),KIND=sp) end do ! update the rectangular superdiagonal block if( j>=2_${ik}$ )call stdlib${ii}$_cgemm( 'NO TRANSPOSE', 'TRANSPOSE', j-1, jb, n-k,-cone, a( & 1_${ik}$, k+1 ), lda, w( j, kw+1 ), ldw,cone, a( 1_${ik}$, j ), lda ) end do ! put u12 in standard form by partially undoing the interchanges ! in of rows in columns k+1:n looping backwards from k+1 to n j = k + 1_${ik}$ 60 continue ! undo the interchanges (if any) of rows j and jp2 ! (or j and jp2, and j+1 and jp1) at each step j kstep = 1_${ik}$ jp1 = 1_${ik}$ ! (here, j is a diagonal index) jj = j jp2 = ipiv( j ) if( jp2<0_${ik}$ ) then jp2 = -jp2 ! (here, j is a diagonal index) j = j + 1_${ik}$ jp1 = -ipiv( j ) kstep = 2_${ik}$ end if ! (note: here, j is used to determine row length. length n-j+1 ! of the rows to swap back doesn't include diagonal element) j = j + 1_${ik}$ if( jp2/=jj .and. j<=n )call stdlib${ii}$_cswap( n-j+1, a( jp2, j ), lda, a( jj, j ), & lda ) jj = jj + 1_${ik}$ if( kstep==2_${ik}$ .and. jp1/=jj .and. j<=n )call stdlib${ii}$_cswap( n-j+1, a( jp1, j ), & lda, a( jj, j ), lda ) if( j<n )go to 60 ! set kb to the number of columns factorized kb = n - k else ! factorize the leading columns of a using the lower triangle ! of a and working forwards, and compute the matrix w = l21*d ! for use in updating a22 (note that conjg(w) is actually stored) ! k is the main loop index, increasing from 1 in steps of 1 or 2 k = 1_${ik}$ 70 continue ! exit from loop if( ( k>=nb .and. nb<n ) .or. k>n )go to 90 kstep = 1_${ik}$ p = k ! copy column k of a to column k of w and update column k of w w( k, k ) = real( a( k, k ),KIND=sp) if( k<n )call stdlib${ii}$_ccopy( n-k, a( k+1, k ), 1_${ik}$, w( k+1, k ), 1_${ik}$ ) if( k>1_${ik}$ ) then call stdlib${ii}$_cgemv( 'NO TRANSPOSE', n-k+1, k-1, -cone, a( k, 1_${ik}$ ),lda, w( k, 1_${ik}$ ), & ldw, cone, w( k, k ), 1_${ik}$ ) w( k, k ) = real( w( k, k ),KIND=sp) end if ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = abs( real( w( k, k ),KIND=sp) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value. ! determine both colmax and imax. if( k<n ) then imax = k + stdlib${ii}$_icamax( n-k, w( k+1, k ), 1_${ik}$ ) colmax = cabs1( w( imax, k ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero or underflow: set info and continue if( info==0_${ik}$ )info = k kp = k a( k, k ) = real( w( k, k ),KIND=sp) if( k<n )call stdlib${ii}$_ccopy( n-k, w( k+1, k ), 1_${ik}$, a( k+1, k ), 1_${ik}$ ) else ! ============================================================ ! begin pivot search ! case(1) ! equivalent to testing for absakk>=alpha*colmax ! (used to handle nan and inf) if( .not.( absakk<alpha*colmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else done = .false. ! loop until pivot found 72 continue ! begin pivot search loop body ! copy column imax to column k+1 of w and update it call stdlib${ii}$_ccopy( imax-k, a( imax, k ), lda, w( k, k+1 ), 1_${ik}$) call stdlib${ii}$_clacgv( imax-k, w( k, k+1 ), 1_${ik}$ ) w( imax, k+1 ) = real( a( imax, imax ),KIND=sp) if( imax<n )call stdlib${ii}$_ccopy( n-imax, a( imax+1, imax ), 1_${ik}$,w( imax+1, k+1 & ), 1_${ik}$ ) if( k>1_${ik}$ ) then call stdlib${ii}$_cgemv( 'NO TRANSPOSE', n-k+1, k-1, -cone,a( k, 1_${ik}$ ), lda, w( & imax, 1_${ik}$ ), ldw,cone, w( k, k+1 ), 1_${ik}$ ) w( imax, k+1 ) = real( w( imax, k+1 ),KIND=sp) end if ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value. ! determine both rowmax and jmax. if( imax/=k ) then jmax = k - 1_${ik}$ + stdlib${ii}$_icamax( imax-k, w( k, k+1 ), 1_${ik}$ ) rowmax = cabs1( w( jmax, k+1 ) ) else rowmax = zero end if if( imax<n ) then itemp = imax + stdlib${ii}$_icamax( n-imax, w( imax+1, k+1 ), 1_${ik}$) stemp = cabs1( w( itemp, k+1 ) ) if( stemp>rowmax ) then rowmax = stemp jmax = itemp end if end if ! case(2) ! equivalent to testing for ! abs( real( w( imax,k+1 ),KIND=sp) )>=alpha*rowmax ! (used to handle nan and inf) if( .not.( abs( real( w( imax,k+1 ),KIND=sp) )<alpha*rowmax ) ) & then ! interchange rows and columns k and imax, ! use 1-by-1 pivot block kp = imax ! copy column k+1 of w to column k of w call stdlib${ii}$_ccopy( n-k+1, w( k, k+1 ), 1_${ik}$, w( k, k ), 1_${ik}$ ) done = .true. ! case(3) ! equivalent to testing for rowmax==colmax, ! (used to handle nan and inf) else if( ( p==jmax ) .or. ( rowmax<=colmax ) )then ! interchange rows and columns k+1 and imax, ! use 2-by-2 pivot block kp = imax kstep = 2_${ik}$ done = .true. ! case(4) else ! pivot not found: set params and repeat p = imax colmax = rowmax imax = jmax ! copy updated jmaxth (next imaxth) column to kth of w call stdlib${ii}$_ccopy( n-k+1, w( k, k+1 ), 1_${ik}$, w( k, k ), 1_${ik}$ ) end if ! end pivot search loop body if( .not.done ) goto 72 end if ! end pivot search ! ============================================================ ! kk is the column of a where pivoting step stopped kk = k + kstep - 1_${ik}$ ! interchange rows and columns p and k (only for 2-by-2 pivot). ! updated column p is already stored in column k of w. if( ( kstep==2_${ik}$ ) .and. ( p/=k ) ) then ! copy non-updated column kk-1 to column p of submatrix a ! at step k. no need to copy element into columns ! k and k+1 of a for 2-by-2 pivot, since these columns ! will be later overwritten. a( p, p ) = real( a( k, k ),KIND=sp) call stdlib${ii}$_ccopy( p-k-1, a( k+1, k ), 1_${ik}$, a( p, k+1 ), lda ) call stdlib${ii}$_clacgv( p-k-1, a( p, k+1 ), lda ) if( p<n )call stdlib${ii}$_ccopy( n-p, a( p+1, k ), 1_${ik}$, a( p+1, p ), 1_${ik}$ ) ! interchange rows k and p in first k-1 columns of a ! (columns k and k+1 of a for 2-by-2 pivot will be ! later overwritten). interchange rows k and p ! in first kk columns of w. if( k>1_${ik}$ )call stdlib${ii}$_cswap( k-1, a( k, 1_${ik}$ ), lda, a( p, 1_${ik}$ ), lda ) call stdlib${ii}$_cswap( kk, w( k, 1_${ik}$ ), ldw, w( p, 1_${ik}$ ), ldw ) end if ! interchange rows and columns kp and kk. ! updated column kp is already stored in column kk of w. if( kp/=kk ) then ! copy non-updated column kk to column kp of submatrix a ! at step k. no need to copy element into column k ! (or k and k+1 for 2-by-2 pivot) of a, since these columns ! will be later overwritten. a( kp, kp ) = real( a( kk, kk ),KIND=sp) call stdlib${ii}$_ccopy( kp-kk-1, a( kk+1, kk ), 1_${ik}$, a( kp, kk+1 ),lda ) call stdlib${ii}$_clacgv( kp-kk-1, a( kp, kk+1 ), lda ) if( kp<n )call stdlib${ii}$_ccopy( n-kp, a( kp+1, kk ), 1_${ik}$, a( kp+1, kp ), 1_${ik}$ ) ! interchange rows kk and kp in first k-1 columns of a ! (column k (or k and k+1 for 2-by-2 pivot) of a will be ! later overwritten). interchange rows kk and kp ! in first kk columns of w. if( k>1_${ik}$ )call stdlib${ii}$_cswap( k-1, a( kk, 1_${ik}$ ), lda, a( kp, 1_${ik}$ ), lda ) call stdlib${ii}$_cswap( kk, w( kk, 1_${ik}$ ), ldw, w( kp, 1_${ik}$ ), ldw ) end if if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k of w now holds ! w(k) = l(k)*d(k), ! where l(k) is the k-th column of l ! (1) store subdiag. elements of column l(k) ! and 1-by-1 block d(k) in column k of a. ! (note: diagonal element l(k,k) is a unit element ! and not stored) ! a(k,k) := d(k,k) = w(k,k) ! a(k+1:n,k) := l(k+1:n,k) = w(k+1:n,k)/d(k,k) ! (note: no need to use for hermitian matrix ! a( k, k ) = real( w( k, k),KIND=sp) to separately copy diagonal ! element d(k,k) from w (potentially saves only one load)) call stdlib${ii}$_ccopy( n-k+1, w( k, k ), 1_${ik}$, a( k, k ), 1_${ik}$ ) if( k<n ) then ! (note: no need to check if a(k,k) is not zero, ! since that was ensured earlier in pivot search: ! case a(k,k) = 0 falls into 2x2 pivot case(3)) ! handle division by a small number t = real( a( k, k ),KIND=sp) if( abs( t )>=sfmin ) then r1 = one / t call stdlib${ii}$_csscal( n-k, r1, a( k+1, k ), 1_${ik}$ ) else do ii = k + 1, n a( ii, k ) = a( ii, k ) / t end do end if ! (2) conjugate column w(k) call stdlib${ii}$_clacgv( n-k, w( k+1, k ), 1_${ik}$ ) end if else ! 2-by-2 pivot block d(k): columns k and k+1 of w now hold ! ( w(k) w(k+1) ) = ( l(k) l(k+1) )*d(k) ! where l(k) and l(k+1) are the k-th and (k+1)-th columns ! of l ! (1) store l(k+2:n,k) and l(k+2:n,k+1) and 2-by-2 ! block d(k:k+1,k:k+1) in columns k and k+1 of a. ! note: 2-by-2 diagonal block l(k:k+1,k:k+1) is a unit ! block and not stored. ! a(k:k+1,k:k+1) := d(k:k+1,k:k+1) = w(k:k+1,k:k+1) ! a(k+2:n,k:k+1) := l(k+2:n,k:k+1) = ! = w(k+2:n,k:k+1) * ( d(k:k+1,k:k+1)**(-1) ) if( k<n-1 ) then ! factor out the columns of the inverse of 2-by-2 pivot ! block d, so that each column contains 1, to reduce the ! number of flops when we multiply panel ! ( w(kw-1) w(kw) ) by this inverse, i.e. by d**(-1). ! d**(-1) = ( d11 cj(d21) )**(-1) = ! ( d21 d22 ) ! = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) = ! ( (-d21) ( d11 ) ) ! = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) * ! * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) = ! ( ( -1 ) ( d11/conj(d21) ) ) ! = 1/(|d21|**2) * 1/(d22*d11-1) * ! * ( d21*( d11 ) conj(d21)*( -1 ) ) = ! ( ( -1 ) ( d22 ) ) ! = (1/|d21|**2) * t * ( d21*( d11 ) conj(d21)*( -1 ) ) = ! ( ( -1 ) ( d22 ) ) ! = ( (t/conj(d21))*( d11 ) (t/d21)*( -1 ) ) = ! ( ( -1 ) ( d22 ) ) ! handle division by a small number. (note: order of ! operations is important) ! = ( t*(( d11 )/conj(d21)) t*(( -1 )/d21 ) ) ! ( (( -1 ) ) (( d22 ) ) ), ! where d11 = d22/d21, ! d22 = d11/conj(d21), ! d21 = d21, ! t = 1/(d22*d11-1). ! (note: no need to check for division by zero, ! since that was ensured earlier in pivot search: ! (a) d21 != 0 in 2x2 pivot case(4), ! since |d21| should be larger than |d11| and |d22|; ! (b) (d22*d11 - 1) != 0, since from (a), ! both |d11| < 1, |d22| < 1, hence |d22*d11| << 1.) d21 = w( k+1, k ) d11 = w( k+1, k+1 ) / d21 d22 = w( k, k ) / conjg( d21 ) t = one / ( real( d11*d22,KIND=sp)-one ) ! update elements in columns a(k) and a(k+1) as ! dot products of rows of ( w(k) w(k+1) ) and columns ! of d**(-1) do j = k + 2, n a( j, k ) = t*( ( d11*w( j, k )-w( j, k+1 ) ) /conjg( d21 ) ) a( j, k+1 ) = t*( ( d22*w( j, k+1 )-w( j, k ) ) /d21 ) end do end if ! copy d(k) to a a( k, k ) = w( k, k ) a( k+1, k ) = w( k+1, k ) a( k+1, k+1 ) = w( k+1, k+1 ) ! (2) conjugate columns w(k) and w(k+1) call stdlib${ii}$_clacgv( n-k, w( k+1, k ), 1_${ik}$ ) call stdlib${ii}$_clacgv( n-k-1, w( k+2, k+1 ), 1_${ik}$ ) end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -p ipiv( k+1 ) = -kp end if ! increase k and return to the start of the main loop k = k + kstep go to 70 90 continue ! update the lower triangle of a22 (= a(k:n,k:n)) as ! a22 := a22 - l21*d*l21**h = a22 - l21*w**h ! computing blocks of nb columns at a time (note that conjg(w) is ! actually stored) do j = k, n, nb jb = min( nb, n-j+1 ) ! update the lower triangle of the diagonal block do jj = j, j + jb - 1 a( jj, jj ) = real( a( jj, jj ),KIND=sp) call stdlib${ii}$_cgemv( 'NO TRANSPOSE', j+jb-jj, k-1, -cone,a( jj, 1_${ik}$ ), lda, w( jj,& 1_${ik}$ ), ldw, cone,a( jj, jj ), 1_${ik}$ ) a( jj, jj ) = real( a( jj, jj ),KIND=sp) end do ! update the rectangular subdiagonal block if( j+jb<=n )call stdlib${ii}$_cgemm( 'NO TRANSPOSE', 'TRANSPOSE', n-j-jb+1, jb,k-1, -& cone, a( j+jb, 1_${ik}$ ), lda, w( j, 1_${ik}$ ),ldw, cone, a( j+jb, j ), lda ) end do ! put l21 in standard form by partially undoing the interchanges ! of rows in columns 1:k-1 looping backwards from k-1 to 1 j = k - 1_${ik}$ 120 continue ! undo the interchanges (if any) of rows j and jp2 ! (or j and jp2, and j-1 and jp1) at each step j kstep = 1_${ik}$ jp1 = 1_${ik}$ ! (here, j is a diagonal index) jj = j jp2 = ipiv( j ) if( jp2<0_${ik}$ ) then jp2 = -jp2 ! (here, j is a diagonal index) j = j - 1_${ik}$ jp1 = -ipiv( j ) kstep = 2_${ik}$ end if ! (note: here, j is used to determine row length. length j ! of the rows to swap back doesn't include diagonal element) j = j - 1_${ik}$ if( jp2/=jj .and. j>=1_${ik}$ )call stdlib${ii}$_cswap( j, a( jp2, 1_${ik}$ ), lda, a( jj, 1_${ik}$ ), lda ) jj = jj -1_${ik}$ if( kstep==2_${ik}$ .and. jp1/=jj .and. j>=1_${ik}$ )call stdlib${ii}$_cswap( j, a( jp1, 1_${ik}$ ), lda, a(& jj, 1_${ik}$ ), lda ) if( j>1 )go to 120 ! set kb to the number of columns factorized kb = k - 1_${ik}$ end if return end subroutine stdlib${ii}$_clahef_rook pure module subroutine stdlib${ii}$_zlahef_rook( uplo, n, nb, kb, a, lda, ipiv, w, ldw,info ) !! ZLAHEF_ROOK computes a partial factorization of a complex Hermitian !! matrix A using the bounded Bunch-Kaufman ("rook") diagonal pivoting !! method. The partial factorization has the form: !! A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: !! ( 0 U22 ) ( 0 D ) ( U12**H U22**H ) !! A = ( L11 0 ) ( D 0 ) ( L11**H L21**H ) if UPLO = 'L' !! ( L21 I ) ( 0 A22 ) ( 0 I ) !! where the order of D is at most NB. The actual order is returned in !! the argument KB, and is either NB or NB-1, or N if N <= NB. !! Note that U**H denotes the conjugate transpose of U. !! ZLAHEF_ROOK is an auxiliary routine called by ZHETRF_ROOK. It uses !! blocked code (calling Level 3 BLAS) to update the submatrix !! A11 (if UPLO = 'U') or A22 (if UPLO = 'L'). ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_dp, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info, kb integer(${ik}$), intent(in) :: lda, ldw, n, nb ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) complex(dp), intent(inout) :: a(lda,*) complex(dp), intent(out) :: w(ldw,*) ! ===================================================================== ! Parameters real(dp), parameter :: sevten = 17.0e+0_dp ! Local Scalars logical(lk) :: done integer(${ik}$) :: imax, itemp, ii, j, jb, jj, jmax, jp1, jp2, k, kk, kkw, kp, kstep, kw, & p real(dp) :: absakk, alpha, colmax, dtemp, r1, rowmax, t, sfmin complex(dp) :: d11, d21, d22, z ! Intrinsic Functions ! Statement Functions real(dp) :: cabs1 ! Statement Function Definitions cabs1( z ) = abs( real( z,KIND=dp) ) + abs( aimag( z ) ) ! Executable Statements info = 0_${ik}$ ! initialize alpha for use in choosing pivot block size. alpha = ( one+sqrt( sevten ) ) / eight ! compute machine safe minimum sfmin = stdlib${ii}$_dlamch( 'S' ) if( stdlib_lsame( uplo, 'U' ) ) then ! factorize the trailing columns of a using the upper triangle ! of a and working backwards, and compute the matrix w = u12*d ! for use in updating a11 (note that conjg(w) is actually stored) ! k is the main loop index, decreasing from n in steps of 1 or 2 k = n 10 continue ! kw is the column of w which corresponds to column k of a kw = nb + k - n ! exit from loop if( ( k<=n-nb+1 .and. nb<n ) .or. k<1 )go to 30 kstep = 1_${ik}$ p = k ! copy column k of a to column kw of w and update it if( k>1_${ik}$ )call stdlib${ii}$_zcopy( k-1, a( 1_${ik}$, k ), 1_${ik}$, w( 1_${ik}$, kw ), 1_${ik}$ ) w( k, kw ) = real( a( k, k ),KIND=dp) if( k<n ) then call stdlib${ii}$_zgemv( 'NO TRANSPOSE', k, n-k, -cone, a( 1_${ik}$, k+1 ), lda,w( k, kw+1 ), & ldw, cone, w( 1_${ik}$, kw ), 1_${ik}$ ) w( k, kw ) = real( w( k, kw ),KIND=dp) end if ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = abs( real( w( k, kw ),KIND=dp) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value. ! determine both colmax and imax. if( k>1_${ik}$ ) then imax = stdlib${ii}$_izamax( k-1, w( 1_${ik}$, kw ), 1_${ik}$ ) colmax = cabs1( w( imax, kw ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero or underflow: set info and continue if( info==0_${ik}$ )info = k kp = k a( k, k ) = real( w( k, kw ),KIND=dp) if( k>1_${ik}$ )call stdlib${ii}$_zcopy( k-1, w( 1_${ik}$, kw ), 1_${ik}$, a( 1_${ik}$, k ), 1_${ik}$ ) else ! ============================================================ ! begin pivot search ! case(1) ! equivalent to testing for absakk>=alpha*colmax ! (used to handle nan and inf) if( .not.( absakk<alpha*colmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else ! lop until pivot found done = .false. 12 continue ! begin pivot search loop body ! copy column imax to column kw-1 of w and update it if( imax>1_${ik}$ )call stdlib${ii}$_zcopy( imax-1, a( 1_${ik}$, imax ), 1_${ik}$, w( 1_${ik}$, kw-1 ),1_${ik}$ ) w( imax, kw-1 ) = real( a( imax, imax ),KIND=dp) call stdlib${ii}$_zcopy( k-imax, a( imax, imax+1 ), lda,w( imax+1, kw-1 ), 1_${ik}$ ) call stdlib${ii}$_zlacgv( k-imax, w( imax+1, kw-1 ), 1_${ik}$ ) if( k<n ) then call stdlib${ii}$_zgemv( 'NO TRANSPOSE', k, n-k, -cone,a( 1_${ik}$, k+1 ), lda, w( & imax, kw+1 ), ldw,cone, w( 1_${ik}$, kw-1 ), 1_${ik}$ ) w( imax, kw-1 ) = real( w( imax, kw-1 ),KIND=dp) end if ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value. ! determine both rowmax and jmax. if( imax/=k ) then jmax = imax + stdlib${ii}$_izamax( k-imax, w( imax+1, kw-1 ),1_${ik}$ ) rowmax = cabs1( w( jmax, kw-1 ) ) else rowmax = zero end if if( imax>1_${ik}$ ) then itemp = stdlib${ii}$_izamax( imax-1, w( 1_${ik}$, kw-1 ), 1_${ik}$ ) dtemp = cabs1( w( itemp, kw-1 ) ) if( dtemp>rowmax ) then rowmax = dtemp jmax = itemp end if end if ! case(2) ! equivalent to testing for ! abs( real( w( imax,kw-1 ),KIND=dp) )>=alpha*rowmax ! (used to handle nan and inf) if( .not.( abs( real( w( imax,kw-1 ),KIND=dp) )<alpha*rowmax ) ) & then ! interchange rows and columns k and imax, ! use 1-by-1 pivot block kp = imax ! copy column kw-1 of w to column kw of w call stdlib${ii}$_zcopy( k, w( 1_${ik}$, kw-1 ), 1_${ik}$, w( 1_${ik}$, kw ), 1_${ik}$ ) done = .true. ! case(3) ! equivalent to testing for rowmax==colmax, ! (used to handle nan and inf) else if( ( p==jmax ) .or. ( rowmax<=colmax ) )then ! interchange rows and columns k-1 and imax, ! use 2-by-2 pivot block kp = imax kstep = 2_${ik}$ done = .true. ! case(4) else ! pivot not found: set params and repeat p = imax colmax = rowmax imax = jmax ! copy updated jmaxth (next imaxth) column to kth of w call stdlib${ii}$_zcopy( k, w( 1_${ik}$, kw-1 ), 1_${ik}$, w( 1_${ik}$, kw ), 1_${ik}$ ) end if ! end pivot search loop body if( .not.done ) goto 12 end if ! end pivot search ! ============================================================ ! kk is the column of a where pivoting step stopped kk = k - kstep + 1_${ik}$ ! kkw is the column of w which corresponds to column kk of a kkw = nb + kk - n ! interchange rows and columns p and k. ! updated column p is already stored in column kw of w. if( ( kstep==2_${ik}$ ) .and. ( p/=k ) ) then ! copy non-updated column k to column p of submatrix a ! at step k. no need to copy element into columns ! k and k-1 of a for 2-by-2 pivot, since these columns ! will be later overwritten. a( p, p ) = real( a( k, k ),KIND=dp) call stdlib${ii}$_zcopy( k-1-p, a( p+1, k ), 1_${ik}$, a( p, p+1 ),lda ) call stdlib${ii}$_zlacgv( k-1-p, a( p, p+1 ), lda ) if( p>1_${ik}$ )call stdlib${ii}$_zcopy( p-1, a( 1_${ik}$, k ), 1_${ik}$, a( 1_${ik}$, p ), 1_${ik}$ ) ! interchange rows k and p in the last k+1 to n columns of a ! (columns k and k-1 of a for 2-by-2 pivot will be ! later overwritten). interchange rows k and p ! in last kkw to nb columns of w. if( k<n )call stdlib${ii}$_zswap( n-k, a( k, k+1 ), lda, a( p, k+1 ),lda ) call stdlib${ii}$_zswap( n-kk+1, w( k, kkw ), ldw, w( p, kkw ),ldw ) end if ! interchange rows and columns kp and kk. ! updated column kp is already stored in column kkw of w. if( kp/=kk ) then ! copy non-updated column kk to column kp of submatrix a ! at step k. no need to copy element into column k ! (or k and k-1 for 2-by-2 pivot) of a, since these columns ! will be later overwritten. a( kp, kp ) = real( a( kk, kk ),KIND=dp) call stdlib${ii}$_zcopy( kk-1-kp, a( kp+1, kk ), 1_${ik}$, a( kp, kp+1 ),lda ) call stdlib${ii}$_zlacgv( kk-1-kp, a( kp, kp+1 ), lda ) if( kp>1_${ik}$ )call stdlib${ii}$_zcopy( kp-1, a( 1_${ik}$, kk ), 1_${ik}$, a( 1_${ik}$, kp ), 1_${ik}$ ) ! interchange rows kk and kp in last k+1 to n columns of a ! (columns k (or k and k-1 for 2-by-2 pivot) of a will be ! later overwritten). interchange rows kk and kp ! in last kkw to nb columns of w. if( k<n )call stdlib${ii}$_zswap( n-k, a( kk, k+1 ), lda, a( kp, k+1 ),lda ) call stdlib${ii}$_zswap( n-kk+1, w( kk, kkw ), ldw, w( kp, kkw ),ldw ) end if if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column kw of w now holds ! w(kw) = u(k)*d(k), ! where u(k) is the k-th column of u ! (1) store subdiag. elements of column u(k) ! and 1-by-1 block d(k) in column k of a. ! (note: diagonal element u(k,k) is a unit element ! and not stored) ! a(k,k) := d(k,k) = w(k,kw) ! a(1:k-1,k) := u(1:k-1,k) = w(1:k-1,kw)/d(k,k) ! (note: no need to use for hermitian matrix ! a( k, k ) = real( w( k, k),KIND=dp) to separately copy diagonal ! element d(k,k) from w (potentially saves only one load)) call stdlib${ii}$_zcopy( k, w( 1_${ik}$, kw ), 1_${ik}$, a( 1_${ik}$, k ), 1_${ik}$ ) if( k>1_${ik}$ ) then ! (note: no need to check if a(k,k) is not zero, ! since that was ensured earlier in pivot search: ! case a(k,k) = 0 falls into 2x2 pivot case(3)) ! handle division by a small number t = real( a( k, k ),KIND=dp) if( abs( t )>=sfmin ) then r1 = one / t call stdlib${ii}$_zdscal( k-1, r1, a( 1_${ik}$, k ), 1_${ik}$ ) else do ii = 1, k-1 a( ii, k ) = a( ii, k ) / t end do end if ! (2) conjugate column w(kw) call stdlib${ii}$_zlacgv( k-1, w( 1_${ik}$, kw ), 1_${ik}$ ) end if else ! 2-by-2 pivot block d(k): columns kw and kw-1 of w now hold ! ( w(kw-1) w(kw) ) = ( u(k-1) u(k) )*d(k) ! where u(k) and u(k-1) are the k-th and (k-1)-th columns ! of u ! (1) store u(1:k-2,k-1) and u(1:k-2,k) and 2-by-2 ! block d(k-1:k,k-1:k) in columns k-1 and k of a. ! (note: 2-by-2 diagonal block u(k-1:k,k-1:k) is a unit ! block and not stored) ! a(k-1:k,k-1:k) := d(k-1:k,k-1:k) = w(k-1:k,kw-1:kw) ! a(1:k-2,k-1:k) := u(1:k-2,k:k-1:k) = ! = w(1:k-2,kw-1:kw) * ( d(k-1:k,k-1:k)**(-1) ) if( k>2_${ik}$ ) then ! factor out the columns of the inverse of 2-by-2 pivot ! block d, so that each column contains 1, to reduce the ! number of flops when we multiply panel ! ( w(kw-1) w(kw) ) by this inverse, i.e. by d**(-1). ! d**(-1) = ( d11 cj(d21) )**(-1) = ! ( d21 d22 ) ! = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) = ! ( (-d21) ( d11 ) ) ! = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) * ! * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) = ! ( ( -1 ) ( d11/conj(d21) ) ) ! = 1/(|d21|**2) * 1/(d22*d11-1) * ! * ( d21*( d11 ) conj(d21)*( -1 ) ) = ! ( ( -1 ) ( d22 ) ) ! = (1/|d21|**2) * t * ( d21*( d11 ) conj(d21)*( -1 ) ) = ! ( ( -1 ) ( d22 ) ) ! = ( (t/conj(d21))*( d11 ) (t/d21)*( -1 ) ) = ! ( ( -1 ) ( d22 ) ) ! handle division by a small number. (note: order of ! operations is important) ! = ( t*(( d11 )/conj(d21)) t*(( -1 )/d21 ) ) ! ( (( -1 ) ) (( d22 ) ) ), ! where d11 = d22/d21, ! d22 = d11/conj(d21), ! d21 = d21, ! t = 1/(d22*d11-1). ! (note: no need to check for division by zero, ! since that was ensured earlier in pivot search: ! (a) d21 != 0 in 2x2 pivot case(4), ! since |d21| should be larger than |d11| and |d22|; ! (b) (d22*d11 - 1) != 0, since from (a), ! both |d11| < 1, |d22| < 1, hence |d22*d11| << 1.) d21 = w( k-1, kw ) d11 = w( k, kw ) / conjg( d21 ) d22 = w( k-1, kw-1 ) / d21 t = one / ( real( d11*d22,KIND=dp)-one ) ! update elements in columns a(k-1) and a(k) as ! dot products of rows of ( w(kw-1) w(kw) ) and columns ! of d**(-1) do j = 1, k - 2 a( j, k-1 ) = t*( ( d11*w( j, kw-1 )-w( j, kw ) ) /d21 ) a( j, k ) = t*( ( d22*w( j, kw )-w( j, kw-1 ) ) /conjg( d21 ) ) end do end if ! copy d(k) to a a( k-1, k-1 ) = w( k-1, kw-1 ) a( k-1, k ) = w( k-1, kw ) a( k, k ) = w( k, kw ) ! (2) conjugate columns w(kw) and w(kw-1) call stdlib${ii}$_zlacgv( k-1, w( 1_${ik}$, kw ), 1_${ik}$ ) call stdlib${ii}$_zlacgv( k-2, w( 1_${ik}$, kw-1 ), 1_${ik}$ ) end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -p ipiv( k-1 ) = -kp end if ! decrease k and return to the start of the main loop k = k - kstep go to 10 30 continue ! update the upper triangle of a11 (= a(1:k,1:k)) as ! a11 := a11 - u12*d*u12**h = a11 - u12*w**h ! computing blocks of nb columns at a time (note that conjg(w) is ! actually stored) do j = ( ( k-1 ) / nb )*nb + 1, 1, -nb jb = min( nb, k-j+1 ) ! update the upper triangle of the diagonal block do jj = j, j + jb - 1 a( jj, jj ) = real( a( jj, jj ),KIND=dp) call stdlib${ii}$_zgemv( 'NO TRANSPOSE', jj-j+1, n-k, -cone,a( j, k+1 ), lda, w( jj,& kw+1 ), ldw, cone,a( j, jj ), 1_${ik}$ ) a( jj, jj ) = real( a( jj, jj ),KIND=dp) end do ! update the rectangular superdiagonal block if( j>=2_${ik}$ )call stdlib${ii}$_zgemm( 'NO TRANSPOSE', 'TRANSPOSE', j-1, jb, n-k,-cone, a( & 1_${ik}$, k+1 ), lda, w( j, kw+1 ), ldw,cone, a( 1_${ik}$, j ), lda ) end do ! put u12 in standard form by partially undoing the interchanges ! in of rows in columns k+1:n looping backwards from k+1 to n j = k + 1_${ik}$ 60 continue ! undo the interchanges (if any) of rows j and jp2 ! (or j and jp2, and j+1 and jp1) at each step j kstep = 1_${ik}$ jp1 = 1_${ik}$ ! (here, j is a diagonal index) jj = j jp2 = ipiv( j ) if( jp2<0_${ik}$ ) then jp2 = -jp2 ! (here, j is a diagonal index) j = j + 1_${ik}$ jp1 = -ipiv( j ) kstep = 2_${ik}$ end if ! (note: here, j is used to determine row length. length n-j+1 ! of the rows to swap back doesn't include diagonal element) j = j + 1_${ik}$ if( jp2/=jj .and. j<=n )call stdlib${ii}$_zswap( n-j+1, a( jp2, j ), lda, a( jj, j ), & lda ) jj = jj + 1_${ik}$ if( kstep==2_${ik}$ .and. jp1/=jj .and. j<=n )call stdlib${ii}$_zswap( n-j+1, a( jp1, j ), & lda, a( jj, j ), lda ) if( j<n )go to 60 ! set kb to the number of columns factorized kb = n - k else ! factorize the leading columns of a using the lower triangle ! of a and working forwards, and compute the matrix w = l21*d ! for use in updating a22 (note that conjg(w) is actually stored) ! k is the main loop index, increasing from 1 in steps of 1 or 2 k = 1_${ik}$ 70 continue ! exit from loop if( ( k>=nb .and. nb<n ) .or. k>n )go to 90 kstep = 1_${ik}$ p = k ! copy column k of a to column k of w and update column k of w w( k, k ) = real( a( k, k ),KIND=dp) if( k<n )call stdlib${ii}$_zcopy( n-k, a( k+1, k ), 1_${ik}$, w( k+1, k ), 1_${ik}$ ) if( k>1_${ik}$ ) then call stdlib${ii}$_zgemv( 'NO TRANSPOSE', n-k+1, k-1, -cone, a( k, 1_${ik}$ ),lda, w( k, 1_${ik}$ ), & ldw, cone, w( k, k ), 1_${ik}$ ) w( k, k ) = real( w( k, k ),KIND=dp) end if ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = abs( real( w( k, k ),KIND=dp) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value. ! determine both colmax and imax. if( k<n ) then imax = k + stdlib${ii}$_izamax( n-k, w( k+1, k ), 1_${ik}$ ) colmax = cabs1( w( imax, k ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero or underflow: set info and continue if( info==0_${ik}$ )info = k kp = k a( k, k ) = real( w( k, k ),KIND=dp) if( k<n )call stdlib${ii}$_zcopy( n-k, w( k+1, k ), 1_${ik}$, a( k+1, k ), 1_${ik}$ ) else ! ============================================================ ! begin pivot search ! case(1) ! equivalent to testing for absakk>=alpha*colmax ! (used to handle nan and inf) if( .not.( absakk<alpha*colmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else done = .false. ! loop until pivot found 72 continue ! begin pivot search loop body ! copy column imax to column k+1 of w and update it call stdlib${ii}$_zcopy( imax-k, a( imax, k ), lda, w( k, k+1 ), 1_${ik}$) call stdlib${ii}$_zlacgv( imax-k, w( k, k+1 ), 1_${ik}$ ) w( imax, k+1 ) = real( a( imax, imax ),KIND=dp) if( imax<n )call stdlib${ii}$_zcopy( n-imax, a( imax+1, imax ), 1_${ik}$,w( imax+1, k+1 & ), 1_${ik}$ ) if( k>1_${ik}$ ) then call stdlib${ii}$_zgemv( 'NO TRANSPOSE', n-k+1, k-1, -cone,a( k, 1_${ik}$ ), lda, w( & imax, 1_${ik}$ ), ldw,cone, w( k, k+1 ), 1_${ik}$ ) w( imax, k+1 ) = real( w( imax, k+1 ),KIND=dp) end if ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value. ! determine both rowmax and jmax. if( imax/=k ) then jmax = k - 1_${ik}$ + stdlib${ii}$_izamax( imax-k, w( k, k+1 ), 1_${ik}$ ) rowmax = cabs1( w( jmax, k+1 ) ) else rowmax = zero end if if( imax<n ) then itemp = imax + stdlib${ii}$_izamax( n-imax, w( imax+1, k+1 ), 1_${ik}$) dtemp = cabs1( w( itemp, k+1 ) ) if( dtemp>rowmax ) then rowmax = dtemp jmax = itemp end if end if ! case(2) ! equivalent to testing for ! abs( real( w( imax,k+1 ),KIND=dp) )>=alpha*rowmax ! (used to handle nan and inf) if( .not.( abs( real( w( imax,k+1 ),KIND=dp) )<alpha*rowmax ) ) & then ! interchange rows and columns k and imax, ! use 1-by-1 pivot block kp = imax ! copy column k+1 of w to column k of w call stdlib${ii}$_zcopy( n-k+1, w( k, k+1 ), 1_${ik}$, w( k, k ), 1_${ik}$ ) done = .true. ! case(3) ! equivalent to testing for rowmax==colmax, ! (used to handle nan and inf) else if( ( p==jmax ) .or. ( rowmax<=colmax ) )then ! interchange rows and columns k+1 and imax, ! use 2-by-2 pivot block kp = imax kstep = 2_${ik}$ done = .true. ! case(4) else ! pivot not found: set params and repeat p = imax colmax = rowmax imax = jmax ! copy updated jmaxth (next imaxth) column to kth of w call stdlib${ii}$_zcopy( n-k+1, w( k, k+1 ), 1_${ik}$, w( k, k ), 1_${ik}$ ) end if ! end pivot search loop body if( .not.done ) goto 72 end if ! end pivot search ! ============================================================ ! kk is the column of a where pivoting step stopped kk = k + kstep - 1_${ik}$ ! interchange rows and columns p and k (only for 2-by-2 pivot). ! updated column p is already stored in column k of w. if( ( kstep==2_${ik}$ ) .and. ( p/=k ) ) then ! copy non-updated column kk-1 to column p of submatrix a ! at step k. no need to copy element into columns ! k and k+1 of a for 2-by-2 pivot, since these columns ! will be later overwritten. a( p, p ) = real( a( k, k ),KIND=dp) call stdlib${ii}$_zcopy( p-k-1, a( k+1, k ), 1_${ik}$, a( p, k+1 ), lda ) call stdlib${ii}$_zlacgv( p-k-1, a( p, k+1 ), lda ) if( p<n )call stdlib${ii}$_zcopy( n-p, a( p+1, k ), 1_${ik}$, a( p+1, p ), 1_${ik}$ ) ! interchange rows k and p in first k-1 columns of a ! (columns k and k+1 of a for 2-by-2 pivot will be ! later overwritten). interchange rows k and p ! in first kk columns of w. if( k>1_${ik}$ )call stdlib${ii}$_zswap( k-1, a( k, 1_${ik}$ ), lda, a( p, 1_${ik}$ ), lda ) call stdlib${ii}$_zswap( kk, w( k, 1_${ik}$ ), ldw, w( p, 1_${ik}$ ), ldw ) end if ! interchange rows and columns kp and kk. ! updated column kp is already stored in column kk of w. if( kp/=kk ) then ! copy non-updated column kk to column kp of submatrix a ! at step k. no need to copy element into column k ! (or k and k+1 for 2-by-2 pivot) of a, since these columns ! will be later overwritten. a( kp, kp ) = real( a( kk, kk ),KIND=dp) call stdlib${ii}$_zcopy( kp-kk-1, a( kk+1, kk ), 1_${ik}$, a( kp, kk+1 ),lda ) call stdlib${ii}$_zlacgv( kp-kk-1, a( kp, kk+1 ), lda ) if( kp<n )call stdlib${ii}$_zcopy( n-kp, a( kp+1, kk ), 1_${ik}$, a( kp+1, kp ), 1_${ik}$ ) ! interchange rows kk and kp in first k-1 columns of a ! (column k (or k and k+1 for 2-by-2 pivot) of a will be ! later overwritten). interchange rows kk and kp ! in first kk columns of w. if( k>1_${ik}$ )call stdlib${ii}$_zswap( k-1, a( kk, 1_${ik}$ ), lda, a( kp, 1_${ik}$ ), lda ) call stdlib${ii}$_zswap( kk, w( kk, 1_${ik}$ ), ldw, w( kp, 1_${ik}$ ), ldw ) end if if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column k of w now holds ! w(k) = l(k)*d(k), ! where l(k) is the k-th column of l ! (1) store subdiag. elements of column l(k) ! and 1-by-1 block d(k) in column k of a. ! (note: diagonal element l(k,k) is a unit element ! and not stored) ! a(k,k) := d(k,k) = w(k,k) ! a(k+1:n,k) := l(k+1:n,k) = w(k+1:n,k)/d(k,k) ! (note: no need to use for hermitian matrix ! a( k, k ) = real( w( k, k),KIND=dp) to separately copy diagonal ! element d(k,k) from w (potentially saves only one load)) call stdlib${ii}$_zcopy( n-k+1, w( k, k ), 1_${ik}$, a( k, k ), 1_${ik}$ ) if( k<n ) then ! (note: no need to check if a(k,k) is not zero, ! since that was ensured earlier in pivot search: ! case a(k,k) = 0 falls into 2x2 pivot case(3)) ! handle division by a small number t = real( a( k, k ),KIND=dp) if( abs( t )>=sfmin ) then r1 = one / t call stdlib${ii}$_zdscal( n-k, r1, a( k+1, k ), 1_${ik}$ ) else do ii = k + 1, n a( ii, k ) = a( ii, k ) / t end do end if ! (2) conjugate column w(k) call stdlib${ii}$_zlacgv( n-k, w( k+1, k ), 1_${ik}$ ) end if else ! 2-by-2 pivot block d(k): columns k and k+1 of w now hold ! ( w(k) w(k+1) ) = ( l(k) l(k+1) )*d(k) ! where l(k) and l(k+1) are the k-th and (k+1)-th columns ! of l ! (1) store l(k+2:n,k) and l(k+2:n,k+1) and 2-by-2 ! block d(k:k+1,k:k+1) in columns k and k+1 of a. ! note: 2-by-2 diagonal block l(k:k+1,k:k+1) is a unit ! block and not stored. ! a(k:k+1,k:k+1) := d(k:k+1,k:k+1) = w(k:k+1,k:k+1) ! a(k+2:n,k:k+1) := l(k+2:n,k:k+1) = ! = w(k+2:n,k:k+1) * ( d(k:k+1,k:k+1)**(-1) ) if( k<n-1 ) then ! factor out the columns of the inverse of 2-by-2 pivot ! block d, so that each column contains 1, to reduce the ! number of flops when we multiply panel ! ( w(kw-1) w(kw) ) by this inverse, i.e. by d**(-1). ! d**(-1) = ( d11 cj(d21) )**(-1) = ! ( d21 d22 ) ! = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) = ! ( (-d21) ( d11 ) ) ! = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) * ! * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) = ! ( ( -1 ) ( d11/conj(d21) ) ) ! = 1/(|d21|**2) * 1/(d22*d11-1) * ! * ( d21*( d11 ) conj(d21)*( -1 ) ) = ! ( ( -1 ) ( d22 ) ) ! = (1/|d21|**2) * t * ( d21*( d11 ) conj(d21)*( -1 ) ) = ! ( ( -1 ) ( d22 ) ) ! = ( (t/conj(d21))*( d11 ) (t/d21)*( -1 ) ) = ! ( ( -1 ) ( d22 ) ) ! handle division by a small number. (note: order of ! operations is important) ! = ( t*(( d11 )/conj(d21)) t*(( -1 )/d21 ) ) ! ( (( -1 ) ) (( d22 ) ) ), ! where d11 = d22/d21, ! d22 = d11/conj(d21), ! d21 = d21, ! t = 1/(d22*d11-1). ! (note: no need to check for division by zero, ! since that was ensured earlier in pivot search: ! (a) d21 != 0 in 2x2 pivot case(4), ! since |d21| should be larger than |d11| and |d22|; ! (b) (d22*d11 - 1) != 0, since from (a), ! both |d11| < 1, |d22| < 1, hence |d22*d11| << 1.) d21 = w( k+1, k ) d11 = w( k+1, k+1 ) / d21 d22 = w( k, k ) / conjg( d21 ) t = one / ( real( d11*d22,KIND=dp)-one ) ! update elements in columns a(k) and a(k+1) as ! dot products of rows of ( w(k) w(k+1) ) and columns ! of d**(-1) do j = k + 2, n a( j, k ) = t*( ( d11*w( j, k )-w( j, k+1 ) ) /conjg( d21 ) ) a( j, k+1 ) = t*( ( d22*w( j, k+1 )-w( j, k ) ) /d21 ) end do end if ! copy d(k) to a a( k, k ) = w( k, k ) a( k+1, k ) = w( k+1, k ) a( k+1, k+1 ) = w( k+1, k+1 ) ! (2) conjugate columns w(k) and w(k+1) call stdlib${ii}$_zlacgv( n-k, w( k+1, k ), 1_${ik}$ ) call stdlib${ii}$_zlacgv( n-k-1, w( k+2, k+1 ), 1_${ik}$ ) end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -p ipiv( k+1 ) = -kp end if ! increase k and return to the start of the main loop k = k + kstep go to 70 90 continue ! update the lower triangle of a22 (= a(k:n,k:n)) as ! a22 := a22 - l21*d*l21**h = a22 - l21*w**h ! computing blocks of nb columns at a time (note that conjg(w) is ! actually stored) do j = k, n, nb jb = min( nb, n-j+1 ) ! update the lower triangle of the diagonal block do jj = j, j + jb - 1 a( jj, jj ) = real( a( jj, jj ),KIND=dp) call stdlib${ii}$_zgemv( 'NO TRANSPOSE', j+jb-jj, k-1, -cone,a( jj, 1_${ik}$ ), lda, w( jj,& 1_${ik}$ ), ldw, cone,a( jj, jj ), 1_${ik}$ ) a( jj, jj ) = real( a( jj, jj ),KIND=dp) end do ! update the rectangular subdiagonal block if( j+jb<=n )call stdlib${ii}$_zgemm( 'NO TRANSPOSE', 'TRANSPOSE', n-j-jb+1, jb,k-1, -& cone, a( j+jb, 1_${ik}$ ), lda, w( j, 1_${ik}$ ),ldw, cone, a( j+jb, j ), lda ) end do ! put l21 in standard form by partially undoing the interchanges ! of rows in columns 1:k-1 looping backwards from k-1 to 1 j = k - 1_${ik}$ 120 continue ! undo the interchanges (if any) of rows j and jp2 ! (or j and jp2, and j-1 and jp1) at each step j kstep = 1_${ik}$ jp1 = 1_${ik}$ ! (here, j is a diagonal index) jj = j jp2 = ipiv( j ) if( jp2<0_${ik}$ ) then jp2 = -jp2 ! (here, j is a diagonal index) j = j - 1_${ik}$ jp1 = -ipiv( j ) kstep = 2_${ik}$ end if ! (note: here, j is used to determine row length. length j ! of the rows to swap back doesn't include diagonal element) j = j - 1_${ik}$ if( jp2/=jj .and. j>=1_${ik}$ )call stdlib${ii}$_zswap( j, a( jp2, 1_${ik}$ ), lda, a( jj, 1_${ik}$ ), lda ) jj = jj -1_${ik}$ if( kstep==2_${ik}$ .and. jp1/=jj .and. j>=1_${ik}$ )call stdlib${ii}$_zswap( j, a( jp1, 1_${ik}$ ), lda, a(& jj, 1_${ik}$ ), lda ) if( j>1 )go to 120 ! set kb to the number of columns factorized kb = k - 1_${ik}$ end if return end subroutine stdlib${ii}$_zlahef_rook #:for ck,ct,ci in CMPLX_KINDS_TYPES #:if not ck in ["sp","dp"] pure module subroutine stdlib${ii}$_${ci}$lahef_rook( uplo, n, nb, kb, a, lda, ipiv, w, ldw,info ) !! ZLAHEF_ROOK: computes a partial factorization of a complex Hermitian !! matrix A using the bounded Bunch-Kaufman ("rook") diagonal pivoting !! method. The partial factorization has the form: !! A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or: !! ( 0 U22 ) ( 0 D ) ( U12**H U22**H ) !! A = ( L11 0 ) ( D 0 ) ( L11**H L21**H ) if UPLO = 'L' !! ( L21 I ) ( 0 A22 ) ( 0 I ) !! where the order of D is at most NB. The actual order is returned in !! the argument KB, and is either NB or NB-1, or N if N <= NB. !! Note that U**H denotes the conjugate transpose of U. !! ZLAHEF_ROOK is an auxiliary routine called by ZHETRF_ROOK. It uses !! blocked code (calling Level 3 BLAS) to update the submatrix !! A11 (if UPLO = 'U') or A22 (if UPLO = 'L'). ! -- lapack computational routine -- ! -- lapack is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- use stdlib_blas_constants_${ck}$, only: negone, zero, half, one, two, three, four, eight, ten, czero, chalf, cone, cnegone ! Scalar Arguments character, intent(in) :: uplo integer(${ik}$), intent(out) :: info, kb integer(${ik}$), intent(in) :: lda, ldw, n, nb ! Array Arguments integer(${ik}$), intent(out) :: ipiv(*) complex(${ck}$), intent(inout) :: a(lda,*) complex(${ck}$), intent(out) :: w(ldw,*) ! ===================================================================== ! Parameters real(${ck}$), parameter :: sevten = 17.0e+0_${ck}$ ! Local Scalars logical(lk) :: done integer(${ik}$) :: imax, itemp, ii, j, jb, jj, jmax, jp1, jp2, k, kk, kkw, kp, kstep, kw, & p real(${ck}$) :: absakk, alpha, colmax, dtemp, r1, rowmax, t, sfmin complex(${ck}$) :: d11, d21, d22, z ! Intrinsic Functions ! Statement Functions real(${ck}$) :: cabs1 ! Statement Function Definitions cabs1( z ) = abs( real( z,KIND=${ck}$) ) + abs( aimag( z ) ) ! Executable Statements info = 0_${ik}$ ! initialize alpha for use in choosing pivot block size. alpha = ( one+sqrt( sevten ) ) / eight ! compute machine safe minimum sfmin = stdlib${ii}$_${c2ri(ci)}$lamch( 'S' ) if( stdlib_lsame( uplo, 'U' ) ) then ! factorize the trailing columns of a using the upper triangle ! of a and working backwards, and compute the matrix w = u12*d ! for use in updating a11 (note that conjg(w) is actually stored) ! k is the main loop index, decreasing from n in steps of 1 or 2 k = n 10 continue ! kw is the column of w which corresponds to column k of a kw = nb + k - n ! exit from loop if( ( k<=n-nb+1 .and. nb<n ) .or. k<1 )go to 30 kstep = 1_${ik}$ p = k ! copy column k of a to column kw of w and update it if( k>1_${ik}$ )call stdlib${ii}$_${ci}$copy( k-1, a( 1_${ik}$, k ), 1_${ik}$, w( 1_${ik}$, kw ), 1_${ik}$ ) w( k, kw ) = real( a( k, k ),KIND=${ck}$) if( k<n ) then call stdlib${ii}$_${ci}$gemv( 'NO TRANSPOSE', k, n-k, -cone, a( 1_${ik}$, k+1 ), lda,w( k, kw+1 ), & ldw, cone, w( 1_${ik}$, kw ), 1_${ik}$ ) w( k, kw ) = real( w( k, kw ),KIND=${ck}$) end if ! determine rows and columns to be interchanged and whether ! a 1-by-1 or 2-by-2 pivot block will be used absakk = abs( real( w( k, kw ),KIND=${ck}$) ) ! imax is the row-index of the largest off-diagonal element in ! column k, and colmax is its absolute value. ! determine both colmax and imax. if( k>1_${ik}$ ) then imax = stdlib${ii}$_i${ci}$amax( k-1, w( 1_${ik}$, kw ), 1_${ik}$ ) colmax = cabs1( w( imax, kw ) ) else colmax = zero end if if( max( absakk, colmax )==zero ) then ! column k is zero or underflow: set info and continue if( info==0_${ik}$ )info = k kp = k a( k, k ) = real( w( k, kw ),KIND=${ck}$) if( k>1_${ik}$ )call stdlib${ii}$_${ci}$copy( k-1, w( 1_${ik}$, kw ), 1_${ik}$, a( 1_${ik}$, k ), 1_${ik}$ ) else ! ============================================================ ! begin pivot search ! case(1) ! equivalent to testing for absakk>=alpha*colmax ! (used to handle nan and inf) if( .not.( absakk<alpha*colmax ) ) then ! no interchange, use 1-by-1 pivot block kp = k else ! lop until pivot found done = .false. 12 continue ! begin pivot search loop body ! copy column imax to column kw-1 of w and update it if( imax>1_${ik}$ )call stdlib${ii}$_${ci}$copy( imax-1, a( 1_${ik}$, imax ), 1_${ik}$, w( 1_${ik}$, kw-1 ),1_${ik}$ ) w( imax, kw-1 ) = real( a( imax, imax ),KIND=${ck}$) call stdlib${ii}$_${ci}$copy( k-imax, a( imax, imax+1 ), lda,w( imax+1, kw-1 ), 1_${ik}$ ) call stdlib${ii}$_${ci}$lacgv( k-imax, w( imax+1, kw-1 ), 1_${ik}$ ) if( k<n ) then call stdlib${ii}$_${ci}$gemv( 'NO TRANSPOSE', k, n-k, -cone,a( 1_${ik}$, k+1 ), lda, w( & imax, kw+1 ), ldw,cone, w( 1_${ik}$, kw-1 ), 1_${ik}$ ) w( imax, kw-1 ) = real( w( imax, kw-1 ),KIND=${ck}$) end if ! jmax is the column-index of the largest off-diagonal ! element in row imax, and rowmax is its absolute value. ! determine both rowmax and jmax. if( imax/=k ) then jmax = imax + stdlib${ii}$_i${ci}$amax( k-imax, w( imax+1, kw-1 ),1_${ik}$ ) rowmax = cabs1( w( jmax, kw-1 ) ) else rowmax = zero end if if( imax>1_${ik}$ ) then itemp = stdlib${ii}$_i${ci}$amax( imax-1, w( 1_${ik}$, kw-1 ), 1_${ik}$ ) dtemp = cabs1( w( itemp, kw-1 ) ) if( dtemp>rowmax ) then rowmax = dtemp jmax = itemp end if end if ! case(2) ! equivalent to testing for ! abs( real( w( imax,kw-1 ),KIND=${ck}$) )>=alpha*rowmax ! (used to handle nan and inf) if( .not.( abs( real( w( imax,kw-1 ),KIND=${ck}$) )<alpha*rowmax ) ) & then ! interchange rows and columns k and imax, ! use 1-by-1 pivot block kp = imax ! copy column kw-1 of w to column kw of w call stdlib${ii}$_${ci}$copy( k, w( 1_${ik}$, kw-1 ), 1_${ik}$, w( 1_${ik}$, kw ), 1_${ik}$ ) done = .true. ! case(3) ! equivalent to testing for rowmax==colmax, ! (used to handle nan and inf) else if( ( p==jmax ) .or. ( rowmax<=colmax ) )then ! interchange rows and columns k-1 and imax, ! use 2-by-2 pivot block kp = imax kstep = 2_${ik}$ done = .true. ! case(4) else ! pivot not found: set params and repeat p = imax colmax = rowmax imax = jmax ! copy updated jmaxth (next imaxth) column to kth of w call stdlib${ii}$_${ci}$copy( k, w( 1_${ik}$, kw-1 ), 1_${ik}$, w( 1_${ik}$, kw ), 1_${ik}$ ) end if ! end pivot search loop body if( .not.done ) goto 12 end if ! end pivot search ! ============================================================ ! kk is the column of a where pivoting step stopped kk = k - kstep + 1_${ik}$ ! kkw is the column of w which corresponds to column kk of a kkw = nb + kk - n ! interchange rows and columns p and k. ! updated column p is already stored in column kw of w. if( ( kstep==2_${ik}$ ) .and. ( p/=k ) ) then ! copy non-updated column k to column p of submatrix a ! at step k. no need to copy element into columns ! k and k-1 of a for 2-by-2 pivot, since these columns ! will be later overwritten. a( p, p ) = real( a( k, k ),KIND=${ck}$) call stdlib${ii}$_${ci}$copy( k-1-p, a( p+1, k ), 1_${ik}$, a( p, p+1 ),lda ) call stdlib${ii}$_${ci}$lacgv( k-1-p, a( p, p+1 ), lda ) if( p>1_${ik}$ )call stdlib${ii}$_${ci}$copy( p-1, a( 1_${ik}$, k ), 1_${ik}$, a( 1_${ik}$, p ), 1_${ik}$ ) ! interchange rows k and p in the last k+1 to n columns of a ! (columns k and k-1 of a for 2-by-2 pivot will be ! later overwritten). interchange rows k and p ! in last kkw to nb columns of w. if( k<n )call stdlib${ii}$_${ci}$swap( n-k, a( k, k+1 ), lda, a( p, k+1 ),lda ) call stdlib${ii}$_${ci}$swap( n-kk+1, w( k, kkw ), ldw, w( p, kkw ),ldw ) end if ! interchange rows and columns kp and kk. ! updated column kp is already stored in column kkw of w. if( kp/=kk ) then ! copy non-updated column kk to column kp of submatrix a ! at step k. no need to copy element into column k ! (or k and k-1 for 2-by-2 pivot) of a, since these columns ! will be later overwritten. a( kp, kp ) = real( a( kk, kk ),KIND=${ck}$) call stdlib${ii}$_${ci}$copy( kk-1-kp, a( kp+1, kk ), 1_${ik}$, a( kp, kp+1 ),lda ) call stdlib${ii}$_${ci}$lacgv( kk-1-kp, a( kp, kp+1 ), lda ) if( kp>1_${ik}$ )call stdlib${ii}$_${ci}$copy( kp-1, a( 1_${ik}$, kk ), 1_${ik}$, a( 1_${ik}$, kp ), 1_${ik}$ ) ! interchange rows kk and kp in last k+1 to n columns of a ! (columns k (or k and k-1 for 2-by-2 pivot) of a will be ! later overwritten). interchange rows kk and kp ! in last kkw to nb columns of w. if( k<n )call stdlib${ii}$_${ci}$swap( n-k, a( kk, k+1 ), lda, a( kp, k+1 ),lda ) call stdlib${ii}$_${ci}$swap( n-kk+1, w( kk, kkw ), ldw, w( kp, kkw ),ldw ) end if if( kstep==1_${ik}$ ) then ! 1-by-1 pivot block d(k): column kw of w now holds ! w(kw) = u(k)*d(k), ! where u(k) is the k-th column of u ! (1) store subdiag. elements of column u(k) ! and 1-by-1 block d(k) in column k of a. ! (note: diagonal element u(k,k) is a unit element ! and not stored) ! a(k,k) := d(k,k) = w(k,kw) ! a(1:k-1,k) := u(1:k-1,k) = w(1:k-1,kw)/d(k,k) ! (note: no need to use for hermitian matrix ! a( k, k ) = real( w( k, k),KIND=${ck}$) to separately copy diagonal ! element d(k,k) from w (potentially saves only one load)) call stdlib${ii}$_${ci}$copy( k, w( 1_${ik}$, kw ), 1_${ik}$, a( 1_${ik}$, k ), 1_${ik}$ ) if( k>1_${ik}$ ) then ! (note: no need to check if a(k,k) is not zero, ! since that was ensured earlier in pivot search: ! case a(k,k) = 0 falls into 2x2 pivot case(3)) ! handle division by a small number t = real( a( k, k ),KIND=${ck}$) if( abs( t )>=sfmin ) then r1 = one / t call stdlib${ii}$_${ci}$dscal( k-1, r1, a( 1_${ik}$, k ), 1_${ik}$ ) else do ii = 1, k-1 a( ii, k ) = a( ii, k ) / t end do end if ! (2) conjugate column w(kw) call stdlib${ii}$_${ci}$lacgv( k-1, w( 1_${ik}$, kw ), 1_${ik}$ ) end if else ! 2-by-2 pivot block d(k): columns kw and kw-1 of w now hold ! ( w(kw-1) w(kw) ) = ( u(k-1) u(k) )*d(k) ! where u(k) and u(k-1) are the k-th and (k-1)-th columns ! of u ! (1) store u(1:k-2,k-1) and u(1:k-2,k) and 2-by-2 ! block d(k-1:k,k-1:k) in columns k-1 and k of a. ! (note: 2-by-2 diagonal block u(k-1:k,k-1:k) is a unit ! block and not stored) ! a(k-1:k,k-1:k) := d(k-1:k,k-1:k) = w(k-1:k,kw-1:kw) ! a(1:k-2,k-1:k) := u(1:k-2,k:k-1:k) = ! = w(1:k-2,kw-1:kw) * ( d(k-1:k,k-1:k)**(-1) ) if( k>2_${ik}$ ) then ! factor out the columns of the inverse of 2-by-2 pivot ! block d, so that each column contains 1, to reduce the ! number of flops when we multiply panel ! ( w(kw-1) w(kw) ) by this inverse, i.e. by d**(-1). ! d**(-1) = ( d11 cj(d21) )**(-1) = ! ( d21 d22 ) ! = 1/(d11*d22-|d21|**2) * ( ( d22) (-cj(d21) ) ) = ! ( (-d21) ( d11 ) ) ! = 1/(|d21|**2) * 1/((d11/cj(d21))*(d22/d21)-1) * ! * ( d21*( d22/d21 ) conj(d21)*( - 1 ) ) = ! ( ( -1 ) ( d11/conj(d21) ) ) ! = 1/(|d21|**2) * 1/(d22*d11-1) * ! * ( d21*( d11 ) conj(d21)*( -1 ) ) = ! ( ( -1 ) ( d22 ) ) ! = (1/|d21|**2) * t * ( d21*( d11 ) conj(d21)*( -1 ) ) = ! ( ( -1 ) ( d22 ) ) ! = ( (t/conj(d21))*( d11 ) (t/d21)*( -1 ) ) = ! ( ( -1 ) ( d22 ) ) ! handle division by a small number. (note: order of ! operations is important) ! = ( t*(( d11 )/conj(d21)) t*(( -1 )/d21 ) ) ! ( (( -1 ) ) (( d22 ) ) ), ! where d11 = d22/d21, ! d22 = d11/conj(d21), ! d21 = d21, ! t = 1/(d22*d11-1). ! (note: no need to check for division by zero, ! since that was ensured earlier in pivot search: ! (a) d21 != 0 in 2x2 pivot case(4), ! since |d21| should be larger than |d11| and |d22|; ! (b) (d22*d11 - 1) != 0, since from (a), ! both |d11| < 1, |d22| < 1, hence |d22*d11| << 1.) d21 = w( k-1, kw ) d11 = w( k, kw ) / conjg( d21 ) d22 = w( k-1, kw-1 ) / d21 t = one / ( real( d11*d22,KIND=${ck}$)-one ) ! update elements in columns a(k-1) and a(k) as ! dot products of rows of ( w(kw-1) w(kw) ) and columns ! of d**(-1) do j = 1, k - 2 a( j, k-1 ) = t*( ( d11*w( j, kw-1 )-w( j, kw ) ) /d21 ) a( j, k ) = t*( ( d22*w( j, kw )-w( j, kw-1 ) ) /conjg( d21 ) ) end do end if ! copy d(k) to a a( k-1, k-1 ) = w( k-1, kw-1 ) a( k-1, k ) = w( k-1, kw ) a( k, k ) = w( k, kw ) ! (2) conjugate columns w(kw) and w(kw-1) call stdlib${ii}$_${ci}$lacgv( k-1, w( 1_${ik}$, kw ), 1_${ik}$ ) call stdlib${ii}$_${ci}$lacgv( k-2, w( 1_${ik}$, kw-1 ), 1_${ik}$ ) end if end if ! store details of the interchanges in ipiv if( kstep==1_${ik}$ ) then ipiv( k ) = kp else ipiv( k ) = -p ipiv( k-1 ) = -kp end if ! decrease k and return to the start of the main loop k = k - kstep go to 10 30 continue ! update the upper triangle of a11 (= a(1:k,1:k)) as ! a11 := a11 - u12*d*u12**h = a11 - u12*w**h ! computing blocks of nb columns at a time (note that conjg(w) is ! actually stored) do j = ( ( k-1 ) / nb )*nb + 1, 1, -nb jb = min( nb, k-j+1 ) ! update the upper triangle of the diagonal block do jj = j, j + jb - 1 a( jj, jj ) = real( a( jj, jj ),KIND=${ck}$) call stdlib${ii}$_${ci}$gemv( 'NO TRANSPOSE', jj-j+1, n-k, -cone,a( j, k+1 ), lda, w( jj,& kw+1 ), ldw, cone,a( j, jj ), 1_${ik}$ ) a( jj, jj ) = real( a( jj, jj ),KIND=${ck}$) end do ! update the rectangular superdiagonal block if( j>=2_${ik}$ )call stdlib${ii}$_${ci}$gemm( 'NO TRANSPOSE', 'TRANSPOSE', j-1, jb, n-k,-cone, a( & 1_${ik}$, k+1 ), lda, w( j, kw+1 ), ldw,cone, a( 1_${ik}$, j ), lda ) end do ! put u12 in standard form by partially undoing the interchanges ! in of rows in columns k+1:n looping backwards from k+1 to n j = k + 1_${ik}$ 60 continue ! undo the interchanges (if any) of rows j and jp2 ! (or j and jp2, and j+1 and jp1) at each step j kstep = 1_${ik}$ jp1 = 1_${ik}$ ! (here, j is a diagonal index) jj = j jp2 = ipiv( j ) if( jp2<0_${ik}$ ) then jp2 = -jp2 ! (here, j is a diagonal index) j = j + 1_${ik}$ jp1 = -ipiv( j ) kstep = 2_${ik}$ end if ! (note: here, j is used to determine row length. length n-j+1 ! of the rows to swap back doesn't include diagonal element) j = j + 1_${ik}$ if( jp2/=jj .and. j<=n )call stdlib${ii}$_${ci}$swap( n-j+1, a( jp2, j ), lda, a( jj, j ), & lda ) jj = jj + 1_${ik}$ if( kstep==2_${ik}$ .and. jp1/=jj .and. j<=n )call stdlib${ii}$_${ci}$swap( n-j+1, a( jp1, j ), & lda, a( jj, j ), lda ) if( j<n )go to 60 ! set kb to the number of columns factorized kb = n - k else ! factorize the leading columns of a using the lower triangle ! of a and working forwards, and compute the matrix w = l21*d ! for use in updating a22 (note that conjg(w) is actually stored) ! k is the main loop index, increasing from 1 in steps of 1 or 2 k = 1_${ik}$ 70 continue ! exit from loop if( ( k>=nb .and. nb<n ) .or. k>n )go to 90 kstep = 1_${ik}$ p = k ! copy column k of a to column k of w and update column k of w w( k, k ) = real( a( k, k ),KIND=${ck}$) if( k<n )call stdlib${ii}$_${ci}$copy( n-k, a( k+1, k ), 1_${ik}$, w( k+1, k ), 1_${ik}$ ) if( k>1_${ik}$ ) then call stdlib${ii}$_${ci}$gemv( 'NO TRANSPOSE', n-k+1, k-1, -cone, a( k, 1_${ik}$ ),lda, w( k, 1_${ik}$ ), & ldw, cone