#:include "common.fypp" #:for ck,ct,ci in CMPLX_KINDS_TYPES #:if not ck in ["sp","dp"] module stdlib_linalg_blas_${ci}$ use stdlib_linalg_constants use stdlib_linalg_blas_aux use stdlib_linalg_blas_s use stdlib_linalg_blas_c use stdlib_linalg_blas_d use stdlib_linalg_blas_z #:for rk,rt,ri in REAL_KINDS_TYPES #:if not rk in ["sp","dp"] use stdlib_linalg_blas_${ri}$ #:endif #:endfor implicit none(type,external) private public :: sp,dp,${ck}$,lk,ilp public :: stdlib_${ci}$axpy public :: stdlib_${ci}$copy public :: stdlib_${ci}$dotc public :: stdlib_${ci}$dotu public :: stdlib_${ci}$drot public :: stdlib_${ci}$dscal public :: stdlib_${ci}$gbmv public :: stdlib_${ci}$gemm public :: stdlib_${ci}$gemv public :: stdlib_${ci}$gerc public :: stdlib_${ci}$geru public :: stdlib_${ci}$hbmv public :: stdlib_${ci}$hemm public :: stdlib_${ci}$hemv public :: stdlib_${ci}$her public :: stdlib_${ci}$her2 public :: stdlib_${ci}$her2k public :: stdlib_${ci}$herk public :: stdlib_${ci}$hpmv public :: stdlib_${ci}$hpr public :: stdlib_${ci}$hpr2 public :: stdlib_${ci}$rotg public :: stdlib_${ci}$scal public :: stdlib_${ci}$swap public :: stdlib_${ci}$symm public :: stdlib_${ci}$syr2k public :: stdlib_${ci}$syrk public :: stdlib_${ci}$tbmv public :: stdlib_${ci}$tbsv public :: stdlib_${ci}$tpmv public :: stdlib_${ci}$tpsv public :: stdlib_${ci}$trmm public :: stdlib_${ci}$trmv public :: stdlib_${ci}$trsm public :: stdlib_${ci}$trsv ! 128-bit real constants real(${ck}$), parameter, private :: negone = -1.00_${ck}$ real(${ck}$), parameter, private :: zero = 0.00_${ck}$ real(${ck}$), parameter, private :: half = 0.50_${ck}$ real(${ck}$), parameter, private :: one = 1.00_${ck}$ real(${ck}$), parameter, private :: two = 2.00_${ck}$ real(${ck}$), parameter, private :: three = 3.00_${ck}$ real(${ck}$), parameter, private :: four = 4.00_${ck}$ real(${ck}$), parameter, private :: eight = 8.00_${ck}$ real(${ck}$), parameter, private :: ten = 10.00_${ck}$ ! 128-bit complex constants complex(${ck}$), parameter, private :: czero = ( 0.0_${ck}$,0.0_${ck}$) complex(${ck}$), parameter, private :: chalf = ( 0.5_${ck}$,0.0_${ck}$) complex(${ck}$), parameter, private :: cone = ( 1.0_${ck}$,0.0_${ck}$) complex(${ck}$), parameter, private :: cnegone = (-1.0_${ck}$,0.0_${ck}$) ! 128-bit scaling constants integer, parameter, private :: maxexp = maxexponent(zero) integer, parameter, private :: minexp = minexponent(zero) real(${ck}$), parameter, private :: rradix = real(radix(zero),${ck}$) real(${ck}$), parameter, private :: ulp = epsilon(zero) real(${ck}$), parameter, private :: eps = ulp*half real(${ck}$), parameter, private :: safmin = rradix**max(minexp-1,1-maxexp) real(${ck}$), parameter, private :: safmax = one/safmin real(${ck}$), parameter, private :: smlnum = safmin/ulp real(${ck}$), parameter, private :: bignum = safmax*ulp real(${ck}$), parameter, private :: rtmin = sqrt(smlnum) real(${ck}$), parameter, private :: rtmax = sqrt(bignum) ! 128-bit Blue's scaling constants ! ssml>=1/s and sbig==1/S with s,S as defined in https://doi.org/10.1145/355769.355771 real(${ck}$), parameter, private :: tsml = rradix**ceiling((minexp-1)*half) real(${ck}$), parameter, private :: tbig = rradix**floor((maxexp-digits(zero)+1)*half) real(${ck}$), parameter, private :: ssml = rradix**(-floor((minexp-digits(zero))*half)) real(${ck}$), parameter, private :: sbig = rradix**(-ceiling((maxexp+digits(zero)-1)*half)) contains pure subroutine stdlib_${ci}$axpy(n,za,zx,incx,zy,incy) !! ZAXPY: constant times a vector plus a vector. ! -- reference blas level1 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments complex(${ck}$), intent(in) :: za integer(ilp), intent(in) :: incx, incy, n ! Array Arguments complex(${ck}$), intent(in) :: zx(*) complex(${ck}$), intent(inout) :: zy(*) ! ===================================================================== ! Local Scalars integer(ilp) :: i, ix, iy if (n<=0) return if (stdlib_cabs1(za)==0.0_${ck}$) return if (incx==1 .and. incy==1) then ! code for both increments equal to 1 do i = 1,n zy(i) = zy(i) + za*zx(i) end do else ! code for unequal increments or equal increments ! not equal to 1 ix = 1 iy = 1 if (incx<0) ix = (-n+1)*incx + 1 if (incy<0) iy = (-n+1)*incy + 1 do i = 1,n zy(iy) = zy(iy) + za*zx(ix) ix = ix + incx iy = iy + incy end do end if return end subroutine stdlib_${ci}$axpy pure subroutine stdlib_${ci}$copy(n,zx,incx,zy,incy) !! ZCOPY: copies a vector, x, to a vector, y. ! -- reference blas level1 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments integer(ilp), intent(in) :: incx, incy, n ! Array Arguments complex(${ck}$), intent(in) :: zx(*) complex(${ck}$), intent(out) :: zy(*) ! ===================================================================== ! Local Scalars integer(ilp) :: i, ix, iy if (n<=0) return if (incx==1 .and. incy==1) then ! code for both increments equal to 1 do i = 1,n zy(i) = zx(i) end do else ! code for unequal increments or equal increments ! not equal to 1 ix = 1 iy = 1 if (incx<0) ix = (-n+1)*incx + 1 if (incy<0) iy = (-n+1)*incy + 1 do i = 1,n zy(iy) = zx(ix) ix = ix + incx iy = iy + incy end do end if return end subroutine stdlib_${ci}$copy pure complex(${ck}$) function stdlib_${ci}$dotc(n,zx,incx,zy,incy) !! ZDOTC: forms the dot product of two complex vectors !! ZDOTC = X^H * Y ! -- reference blas level1 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments integer(ilp), intent(in) :: incx, incy, n ! Array Arguments complex(${ck}$), intent(in) :: zx(*), zy(*) ! ===================================================================== ! Local Scalars complex(${ck}$) :: ztemp integer(ilp) :: i, ix, iy ! Intrinsic Functions intrinsic :: conjg ztemp = (0.0_${ck}$,0.0_${ck}$) stdlib_${ci}$dotc = (0.0_${ck}$,0.0_${ck}$) if (n<=0) return if (incx==1 .and. incy==1) then ! code for both increments equal to 1 do i = 1,n ztemp = ztemp + conjg(zx(i))*zy(i) end do else ! code for unequal increments or equal increments ! not equal to 1 ix = 1 iy = 1 if (incx<0) ix = (-n+1)*incx + 1 if (incy<0) iy = (-n+1)*incy + 1 do i = 1,n ztemp = ztemp + conjg(zx(ix))*zy(iy) ix = ix + incx iy = iy + incy end do end if stdlib_${ci}$dotc = ztemp return end function stdlib_${ci}$dotc pure complex(${ck}$) function stdlib_${ci}$dotu(n,zx,incx,zy,incy) !! ZDOTU: forms the dot product of two complex vectors !! ZDOTU = X^T * Y ! -- reference blas level1 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments integer(ilp), intent(in) :: incx, incy, n ! Array Arguments complex(${ck}$), intent(in) :: zx(*), zy(*) ! ===================================================================== ! Local Scalars complex(${ck}$) :: ztemp integer(ilp) :: i, ix, iy ztemp = (0.0_${ck}$,0.0_${ck}$) stdlib_${ci}$dotu = (0.0_${ck}$,0.0_${ck}$) if (n<=0) return if (incx==1 .and. incy==1) then ! code for both increments equal to 1 do i = 1,n ztemp = ztemp + zx(i)*zy(i) end do else ! code for unequal increments or equal increments ! not equal to 1 ix = 1 iy = 1 if (incx<0) ix = (-n+1)*incx + 1 if (incy<0) iy = (-n+1)*incy + 1 do i = 1,n ztemp = ztemp + zx(ix)*zy(iy) ix = ix + incx iy = iy + incy end do end if stdlib_${ci}$dotu = ztemp return end function stdlib_${ci}$dotu pure subroutine stdlib_${ci}$drot( n, zx, incx, zy, incy, c, s ) !! Applies a plane rotation, where the cos and sin (c and s) are real !! and the vectors cx and cy are complex. !! jack dongarra, linpack, 3/11/78. ! -- reference blas level1 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments integer(ilp), intent(in) :: incx, incy, n real(${ck}$), intent(in) :: c, s ! Array Arguments complex(${ck}$), intent(inout) :: zx(*), zy(*) ! ===================================================================== ! Local Scalars integer(ilp) :: i, ix, iy complex(${ck}$) :: ctemp ! Executable Statements if( n<=0 )return if( incx==1 .and. incy==1 ) then ! code for both increments equal to 1 do i = 1, n ctemp = c*zx( i ) + s*zy( i ) zy( i ) = c*zy( i ) - s*zx( i ) zx( i ) = ctemp end do else ! code for unequal increments or equal increments not equal ! to 1 ix = 1 iy = 1 if( incx<0 )ix = ( -n+1 )*incx + 1 if( incy<0 )iy = ( -n+1 )*incy + 1 do i = 1, n ctemp = c*zx( ix ) + s*zy( iy ) zy( iy ) = c*zy( iy ) - s*zx( ix ) zx( ix ) = ctemp ix = ix + incx iy = iy + incy end do end if return end subroutine stdlib_${ci}$drot pure subroutine stdlib_${ci}$dscal(n,da,zx,incx) !! ZDSCAL: scales a vector by a constant. ! -- reference blas level1 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments real(${ck}$), intent(in) :: da integer(ilp), intent(in) :: incx, n ! Array Arguments complex(${ck}$), intent(inout) :: zx(*) ! ===================================================================== ! Local Scalars integer(ilp) :: i, nincx ! Intrinsic Functions intrinsic :: cmplx if (n<=0 .or. incx<=0) return if (incx==1) then ! code for increment equal to 1 do i = 1,n zx(i) = cmplx(da,0.0_${ck}$,KIND=${ck}$)*zx(i) end do else ! code for increment not equal to 1 nincx = n*incx do i = 1,nincx,incx zx(i) = cmplx(da,0.0_${ck}$,KIND=${ck}$)*zx(i) end do end if return end subroutine stdlib_${ci}$dscal pure subroutine stdlib_${ci}$gbmv(trans,m,n,kl,ku,alpha,a,lda,x,incx,beta,y,incy) !! ZGBMV: performs one of the matrix-vector operations !! y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, or !! y := alpha*A**H*x + beta*y, !! where alpha and beta are scalars, x and y are vectors and A is an !! m by n band matrix, with kl sub-diagonals and ku super-diagonals. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments complex(${ck}$), intent(in) :: alpha, beta integer(ilp), intent(in) :: incx, incy, kl, ku, lda, m, n character, intent(in) :: trans ! Array Arguments complex(${ck}$), intent(in) :: a(lda,*), x(*) complex(${ck}$), intent(inout) :: y(*) ! ===================================================================== ! Local Scalars complex(${ck}$) :: temp integer(ilp) :: i, info, ix, iy, j, jx, jy, k, kup1, kx, ky, lenx, leny logical(lk) :: noconj ! Intrinsic Functions intrinsic :: conjg,max,min ! test the input parameters. info = 0 if (.not.stdlib_lsame(trans,'N') .and. .not.stdlib_lsame(trans,'T') & .and..not.stdlib_lsame(trans,'C')) then info = 1 else if (m<0) then info = 2 else if (n<0) then info = 3 else if (kl<0) then info = 4 else if (ku<0) then info = 5 else if (lda< (kl+ku+1)) then info = 8 else if (incx==0) then info = 10 else if (incy==0) then info = 13 end if if (info/=0) then call stdlib_xerbla('ZGBMV ',info) return end if ! quick return if possible. if ((m==0) .or. (n==0) .or.((alpha==czero).and. (beta==cone))) return noconj = stdlib_lsame(trans,'T') ! set lenx and leny, the lengths of the vectors x and y, and set ! up the start points in x and y. if (stdlib_lsame(trans,'N')) then lenx = n leny = m else lenx = m leny = n end if if (incx>0) then kx = 1 else kx = 1 - (lenx-1)*incx end if if (incy>0) then ky = 1 else ky = 1 - (leny-1)*incy end if ! start the operations. in this version the elements of a are ! accessed sequentially with cone pass through the band part of a. ! first form y := beta*y. if (beta/=cone) then if (incy==1) then if (beta==czero) then do i = 1,leny y(i) = czero end do else do i = 1,leny y(i) = beta*y(i) end do end if else iy = ky if (beta==czero) then do i = 1,leny y(iy) = czero iy = iy + incy end do else do i = 1,leny y(iy) = beta*y(iy) iy = iy + incy end do end if end if end if if (alpha==czero) return kup1 = ku + 1 if (stdlib_lsame(trans,'N')) then ! form y := alpha*a*x + y. jx = kx if (incy==1) then do j = 1,n temp = alpha*x(jx) k = kup1 - j do i = max(1,j-ku),min(m,j+kl) y(i) = y(i) + temp*a(k+i,j) end do jx = jx + incx end do else do j = 1,n temp = alpha*x(jx) iy = ky k = kup1 - j do i = max(1,j-ku),min(m,j+kl) y(iy) = y(iy) + temp*a(k+i,j) iy = iy + incy end do jx = jx + incx if (j>ku) ky = ky + incy end do end if else ! form y := alpha*a**t*x + y or y := alpha*a**h*x + y. jy = ky if (incx==1) then do j = 1,n temp = czero k = kup1 - j if (noconj) then do i = max(1,j-ku),min(m,j+kl) temp = temp + a(k+i,j)*x(i) end do else do i = max(1,j-ku),min(m,j+kl) temp = temp + conjg(a(k+i,j))*x(i) end do end if y(jy) = y(jy) + alpha*temp jy = jy + incy end do else do j = 1,n temp = czero ix = kx k = kup1 - j if (noconj) then do i = max(1,j-ku),min(m,j+kl) temp = temp + a(k+i,j)*x(ix) ix = ix + incx end do else do i = max(1,j-ku),min(m,j+kl) temp = temp + conjg(a(k+i,j))*x(ix) ix = ix + incx end do end if y(jy) = y(jy) + alpha*temp jy = jy + incy if (j>ku) kx = kx + incx end do end if end if return end subroutine stdlib_${ci}$gbmv pure subroutine stdlib_${ci}$gemm(transa,transb,m,n,k,alpha,a,lda,b,ldb,beta,c,ldc) !! ZGEMM: performs one of the matrix-matrix operations !! C := alpha*op( A )*op( B ) + beta*C, !! where op( X ) is one of !! op( X ) = X or op( X ) = X**T or op( X ) = X**H, !! alpha and beta are scalars, and A, B and C are matrices, with op( A ) !! an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. ! -- reference blas level3 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments complex(${ck}$), intent(in) :: alpha, beta integer(ilp), intent(in) :: k, lda, ldb, ldc, m, n character, intent(in) :: transa, transb ! Array Arguments complex(${ck}$), intent(in) :: a(lda,*), b(ldb,*) complex(${ck}$), intent(inout) :: c(ldc,*) ! ===================================================================== ! Intrinsic Functions intrinsic :: conjg,max ! Local Scalars complex(${ck}$) :: temp integer(ilp) :: i, info, j, l, nrowa, nrowb logical(lk) :: conja, conjb, nota, notb ! set nota and notb as true if a and b respectively are not ! conjugated or transposed, set conja and conjb as true if a and ! b respectively are to be transposed but not conjugated and set ! nrowa and nrowb as the number of rows of a and b respectively. nota = stdlib_lsame(transa,'N') notb = stdlib_lsame(transb,'N') conja = stdlib_lsame(transa,'C') conjb = stdlib_lsame(transb,'C') if (nota) then nrowa = m else nrowa = k end if if (notb) then nrowb = k else nrowb = n end if ! test the input parameters. info = 0 if ((.not.nota) .and. (.not.conja) .and.(.not.stdlib_lsame(transa,'T'))) then info = 1 else if ((.not.notb) .and. (.not.conjb) .and.(.not.stdlib_lsame(transb,'T'))) & then info = 2 else if (m<0) then info = 3 else if (n<0) then info = 4 else if (k<0) then info = 5 else if (lda<max(1,nrowa)) then info = 8 else if (ldb<max(1,nrowb)) then info = 10 else if (ldc<max(1,m)) then info = 13 end if if (info/=0) then call stdlib_xerbla('ZGEMM ',info) return end if ! quick return if possible. if ((m==0) .or. (n==0) .or.(((alpha==czero).or. (k==0)).and. (beta==cone))) & return ! and when alpha.eq.czero. if (alpha==czero) then if (beta==czero) then do j = 1,n do i = 1,m c(i,j) = czero end do end do else do j = 1,n do i = 1,m c(i,j) = beta*c(i,j) end do end do end if return end if ! start the operations. if (notb) then if (nota) then ! form c := alpha*a*b + beta*c. do j = 1,n if (beta==czero) then do i = 1,m c(i,j) = czero end do else if (beta/=cone) then do i = 1,m c(i,j) = beta*c(i,j) end do end if do l = 1,k temp = alpha*b(l,j) do i = 1,m c(i,j) = c(i,j) + temp*a(i,l) end do end do end do else if (conja) then ! form c := alpha*a**h*b + beta*c. do j = 1,n do i = 1,m temp = czero do l = 1,k temp = temp + conjg(a(l,i))*b(l,j) end do if (beta==czero) then c(i,j) = alpha*temp else c(i,j) = alpha*temp + beta*c(i,j) end if end do end do else ! form c := alpha*a**t*b + beta*c do j = 1,n do i = 1,m temp = czero do l = 1,k temp = temp + a(l,i)*b(l,j) end do if (beta==czero) then c(i,j) = alpha*temp else c(i,j) = alpha*temp + beta*c(i,j) end if end do end do end if else if (nota) then if (conjb) then ! form c := alpha*a*b**h + beta*c. do j = 1,n if (beta==czero) then do i = 1,m c(i,j) = czero end do else if (beta/=cone) then do i = 1,m c(i,j) = beta*c(i,j) end do end if do l = 1,k temp = alpha*conjg(b(j,l)) do i = 1,m c(i,j) = c(i,j) + temp*a(i,l) end do end do end do else ! form c := alpha*a*b**t + beta*c do j = 1,n if (beta==czero) then do i = 1,m c(i,j) = czero end do else if (beta/=cone) then do i = 1,m c(i,j) = beta*c(i,j) end do end if do l = 1,k temp = alpha*b(j,l) do i = 1,m c(i,j) = c(i,j) + temp*a(i,l) end do end do end do end if else if (conja) then if (conjb) then ! form c := alpha*a**h*b**h + beta*c. do j = 1,n do i = 1,m temp = czero do l = 1,k temp = temp + conjg(a(l,i))*conjg(b(j,l)) end do if (beta==czero) then c(i,j) = alpha*temp else c(i,j) = alpha*temp + beta*c(i,j) end if end do end do else ! form c := alpha*a**h*b**t + beta*c do j = 1,n do i = 1,m temp = czero do l = 1,k temp = temp + conjg(a(l,i))*b(j,l) end do if (beta==czero) then c(i,j) = alpha*temp else c(i,j) = alpha*temp + beta*c(i,j) end if end do end do end if else if (conjb) then ! form c := alpha*a**t*b**h + beta*c do j = 1,n do i = 1,m temp = czero do l = 1,k temp = temp + a(l,i)*conjg(b(j,l)) end do if (beta==czero) then c(i,j) = alpha*temp else c(i,j) = alpha*temp + beta*c(i,j) end if end do end do else ! form c := alpha*a**t*b**t + beta*c do j = 1,n do i = 1,m temp = czero do l = 1,k temp = temp + a(l,i)*b(j,l) end do if (beta==czero) then c(i,j) = alpha*temp else c(i,j) = alpha*temp + beta*c(i,j) end if end do end do end if end if return end subroutine stdlib_${ci}$gemm pure subroutine stdlib_${ci}$gemv(trans,m,n,alpha,a,lda,x,incx,beta,y,incy) !! ZGEMV: performs one of the matrix-vector operations !! y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, or !! y := alpha*A**H*x + beta*y, !! where alpha and beta are scalars, x and y are vectors and A is an !! m by n matrix. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments complex(${ck}$), intent(in) :: alpha, beta integer(ilp), intent(in) :: incx, incy, lda, m, n character, intent(in) :: trans ! Array Arguments complex(${ck}$), intent(in) :: a(lda,*), x(*) complex(${ck}$), intent(inout) :: y(*) ! ===================================================================== ! Local Scalars complex(${ck}$) :: temp integer(ilp) :: i, info, ix, iy, j, jx, jy, kx, ky, lenx, leny logical(lk) :: noconj ! Intrinsic Functions intrinsic :: conjg,max ! test the input parameters. info = 0 if (.not.stdlib_lsame(trans,'N') .and. .not.stdlib_lsame(trans,'T') & .and..not.stdlib_lsame(trans,'C')) then info = 1 else if (m<0) then info = 2 else if (n<0) then info = 3 else if (lda<max(1,m)) then info = 6 else if (incx==0) then info = 8 else if (incy==0) then info = 11 end if if (info/=0) then call stdlib_xerbla('ZGEMV ',info) return end if ! quick return if possible. if ((m==0) .or. (n==0) .or.((alpha==czero).and. (beta==cone))) return noconj = stdlib_lsame(trans,'T') ! set lenx and leny, the lengths of the vectors x and y, and set ! up the start points in x and y. if (stdlib_lsame(trans,'N')) then lenx = n leny = m else lenx = m leny = n end if if (incx>0) then kx = 1 else kx = 1 - (lenx-1)*incx end if if (incy>0) then ky = 1 else ky = 1 - (leny-1)*incy end if ! start the operations. in this version the elements of a are ! accessed sequentially with cone pass through a. ! first form y := beta*y. if (beta/=cone) then if (incy==1) then if (beta==czero) then do i = 1,leny y(i) = czero end do else do i = 1,leny y(i) = beta*y(i) end do end if else iy = ky if (beta==czero) then do i = 1,leny y(iy) = czero iy = iy + incy end do else do i = 1,leny y(iy) = beta*y(iy) iy = iy + incy end do end if end if end if if (alpha==czero) return if (stdlib_lsame(trans,'N')) then ! form y := alpha*a*x + y. jx = kx if (incy==1) then do j = 1,n temp = alpha*x(jx) do i = 1,m y(i) = y(i) + temp*a(i,j) end do jx = jx + incx end do else do j = 1,n temp = alpha*x(jx) iy = ky do i = 1,m y(iy) = y(iy) + temp*a(i,j) iy = iy + incy end do jx = jx + incx end do end if else ! form y := alpha*a**t*x + y or y := alpha*a**h*x + y. jy = ky if (incx==1) then do j = 1,n temp = czero if (noconj) then do i = 1,m temp = temp + a(i,j)*x(i) end do else do i = 1,m temp = temp + conjg(a(i,j))*x(i) end do end if y(jy) = y(jy) + alpha*temp jy = jy + incy end do else do j = 1,n temp = czero ix = kx if (noconj) then do i = 1,m temp = temp + a(i,j)*x(ix) ix = ix + incx end do else do i = 1,m temp = temp + conjg(a(i,j))*x(ix) ix = ix + incx end do end if y(jy) = y(jy) + alpha*temp jy = jy + incy end do end if end if return end subroutine stdlib_${ci}$gemv pure subroutine stdlib_${ci}$gerc(m,n,alpha,x,incx,y,incy,a,lda) !! ZGERC: performs the rank 1 operation !! A := alpha*x*y**H + A, !! where alpha is a scalar, x is an m element vector, y is an n element !! vector and A is an m by n matrix. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments complex(${ck}$), intent(in) :: alpha integer(ilp), intent(in) :: incx, incy, lda, m, n ! Array Arguments complex(${ck}$), intent(inout) :: a(lda,*) complex(${ck}$), intent(in) :: x(*), y(*) ! ===================================================================== ! Local Scalars complex(${ck}$) :: temp integer(ilp) :: i, info, ix, j, jy, kx ! Intrinsic Functions intrinsic :: conjg,max ! test the input parameters. info = 0 if (m<0) then info = 1 else if (n<0) then info = 2 else if (incx==0) then info = 5 else if (incy==0) then info = 7 else if (lda<max(1,m)) then info = 9 end if if (info/=0) then call stdlib_xerbla('ZGERC ',info) return end if ! quick return if possible. if ((m==0) .or. (n==0) .or. (alpha==czero)) return ! start the operations. in this version the elements of a are ! accessed sequentially with cone pass through a. if (incy>0) then jy = 1 else jy = 1 - (n-1)*incy end if if (incx==1) then do j = 1,n if (y(jy)/=czero) then temp = alpha*conjg(y(jy)) do i = 1,m a(i,j) = a(i,j) + x(i)*temp end do end if jy = jy + incy end do else if (incx>0) then kx = 1 else kx = 1 - (m-1)*incx end if do j = 1,n if (y(jy)/=czero) then temp = alpha*conjg(y(jy)) ix = kx do i = 1,m a(i,j) = a(i,j) + x(ix)*temp ix = ix + incx end do end if jy = jy + incy end do end if return end subroutine stdlib_${ci}$gerc pure subroutine stdlib_${ci}$geru(m,n,alpha,x,incx,y,incy,a,lda) !! ZGERU: performs the rank 1 operation !! A := alpha*x*y**T + A, !! where alpha is a scalar, x is an m element vector, y is an n element !! vector and A is an m by n matrix. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments complex(${ck}$), intent(in) :: alpha integer(ilp), intent(in) :: incx, incy, lda, m, n ! Array Arguments complex(${ck}$), intent(inout) :: a(lda,*) complex(${ck}$), intent(in) :: x(*), y(*) ! ===================================================================== ! Local Scalars complex(${ck}$) :: temp integer(ilp) :: i, info, ix, j, jy, kx ! Intrinsic Functions intrinsic :: max ! test the input parameters. info = 0 if (m<0) then info = 1 else if (n<0) then info = 2 else if (incx==0) then info = 5 else if (incy==0) then info = 7 else if (lda<max(1,m)) then info = 9 end if if (info/=0) then call stdlib_xerbla('ZGERU ',info) return end if ! quick return if possible. if ((m==0) .or. (n==0) .or. (alpha==czero)) return ! start the operations. in this version the elements of a are ! accessed sequentially with cone pass through a. if (incy>0) then jy = 1 else jy = 1 - (n-1)*incy end if if (incx==1) then do j = 1,n if (y(jy)/=czero) then temp = alpha*y(jy) do i = 1,m a(i,j) = a(i,j) + x(i)*temp end do end if jy = jy + incy end do else if (incx>0) then kx = 1 else kx = 1 - (m-1)*incx end if do j = 1,n if (y(jy)/=czero) then temp = alpha*y(jy) ix = kx do i = 1,m a(i,j) = a(i,j) + x(ix)*temp ix = ix + incx end do end if jy = jy + incy end do end if return end subroutine stdlib_${ci}$geru pure subroutine stdlib_${ci}$hbmv(uplo,n,k,alpha,a,lda,x,incx,beta,y,incy) !! ZHBMV: performs the matrix-vector operation !! y := alpha*A*x + beta*y, !! where alpha and beta are scalars, x and y are n element vectors and !! A is an n by n hermitian band matrix, with k super-diagonals. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments complex(${ck}$), intent(in) :: alpha, beta integer(ilp), intent(in) :: incx, incy, k, lda, n character, intent(in) :: uplo ! Array Arguments complex(${ck}$), intent(in) :: a(lda,*), x(*) complex(${ck}$), intent(inout) :: y(*) ! ===================================================================== ! Local Scalars complex(${ck}$) :: temp1, temp2 integer(ilp) :: i, info, ix, iy, j, jx, jy, kplus1, kx, ky, l ! Intrinsic Functions intrinsic :: real,conjg,max,min ! test the input parameters. info = 0 if (.not.stdlib_lsame(uplo,'U') .and. .not.stdlib_lsame(uplo,'L')) then info = 1 else if (n<0) then info = 2 else if (k<0) then info = 3 else if (lda< (k+1)) then info = 6 else if (incx==0) then info = 8 else if (incy==0) then info = 11 end if if (info/=0) then call stdlib_xerbla('ZHBMV ',info) return end if ! quick return if possible. if ((n==0) .or. ((alpha==czero).and. (beta==cone))) return ! set up the start points in x and y. if (incx>0) then kx = 1 else kx = 1 - (n-1)*incx end if if (incy>0) then ky = 1 else ky = 1 - (n-1)*incy end if ! start the operations. in this version the elements of the array a ! are accessed sequentially with cone pass through a. ! first form y := beta*y. if (beta/=cone) then if (incy==1) then if (beta==czero) then do i = 1,n y(i) = czero end do else do i = 1,n y(i) = beta*y(i) end do end if else iy = ky if (beta==czero) then do i = 1,n y(iy) = czero iy = iy + incy end do else do i = 1,n y(iy) = beta*y(iy) iy = iy + incy end do end if end if end if if (alpha==czero) return if (stdlib_lsame(uplo,'U')) then ! form y when upper triangle of a is stored. kplus1 = k + 1 if ((incx==1) .and. (incy==1)) then do j = 1,n temp1 = alpha*x(j) temp2 = czero l = kplus1 - j do i = max(1,j-k),j - 1 y(i) = y(i) + temp1*a(l+i,j) temp2 = temp2 + conjg(a(l+i,j))*x(i) end do y(j) = y(j) + temp1*real(a(kplus1,j),KIND=${ck}$) + alpha*temp2 end do else jx = kx jy = ky do j = 1,n temp1 = alpha*x(jx) temp2 = czero ix = kx iy = ky l = kplus1 - j do i = max(1,j-k),j - 1 y(iy) = y(iy) + temp1*a(l+i,j) temp2 = temp2 + conjg(a(l+i,j))*x(ix) ix = ix + incx iy = iy + incy end do y(jy) = y(jy) + temp1*real(a(kplus1,j),KIND=${ck}$) + alpha*temp2 jx = jx + incx jy = jy + incy if (j>k) then kx = kx + incx ky = ky + incy end if end do end if else ! form y when lower triangle of a is stored. if ((incx==1) .and. (incy==1)) then do j = 1,n temp1 = alpha*x(j) temp2 = czero y(j) = y(j) + temp1*real(a(1,j),KIND=${ck}$) l = 1 - j do i = j + 1,min(n,j+k) y(i) = y(i) + temp1*a(l+i,j) temp2 = temp2 + conjg(a(l+i,j))*x(i) end do y(j) = y(j) + alpha*temp2 end do else jx = kx jy = ky do j = 1,n temp1 = alpha*x(jx) temp2 = czero y(jy) = y(jy) + temp1*real(a(1,j),KIND=${ck}$) l = 1 - j ix = jx iy = jy do i = j + 1,min(n,j+k) ix = ix + incx iy = iy + incy y(iy) = y(iy) + temp1*a(l+i,j) temp2 = temp2 + conjg(a(l+i,j))*x(ix) end do y(jy) = y(jy) + alpha*temp2 jx = jx + incx jy = jy + incy end do end if end if return end subroutine stdlib_${ci}$hbmv pure subroutine stdlib_${ci}$hemm(side,uplo,m,n,alpha,a,lda,b,ldb,beta,c,ldc) !! ZHEMM: performs one of the matrix-matrix operations !! C := alpha*A*B + beta*C, !! or !! C := alpha*B*A + beta*C, !! where alpha and beta are scalars, A is an hermitian matrix and B and !! C are m by n matrices. ! -- reference blas level3 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments complex(${ck}$), intent(in) :: alpha, beta integer(ilp), intent(in) :: lda, ldb, ldc, m, n character, intent(in) :: side, uplo ! Array Arguments complex(${ck}$), intent(in) :: a(lda,*), b(ldb,*) complex(${ck}$), intent(inout) :: c(ldc,*) ! ===================================================================== ! Intrinsic Functions intrinsic :: real,conjg,max ! Local Scalars complex(${ck}$) :: temp1, temp2 integer(ilp) :: i, info, j, k, nrowa logical(lk) :: upper ! set nrowa as the number of rows of a. if (stdlib_lsame(side,'L')) then nrowa = m else nrowa = n end if upper = stdlib_lsame(uplo,'U') ! test the input parameters. info = 0 if ((.not.stdlib_lsame(side,'L')) .and. (.not.stdlib_lsame(side,'R'))) then info = 1 else if ((.not.upper) .and. (.not.stdlib_lsame(uplo,'L'))) then info = 2 else if (m<0) then info = 3 else if (n<0) then info = 4 else if (lda<max(1,nrowa)) then info = 7 else if (ldb<max(1,m)) then info = 9 else if (ldc<max(1,m)) then info = 12 end if if (info/=0) then call stdlib_xerbla('ZHEMM ',info) return end if ! quick return if possible. if ((m==0) .or. (n==0) .or.((alpha==czero).and. (beta==cone))) return ! and when alpha.eq.czero. if (alpha==czero) then if (beta==czero) then do j = 1,n do i = 1,m c(i,j) = czero end do end do else do j = 1,n do i = 1,m c(i,j) = beta*c(i,j) end do end do end if return end if ! start the operations. if (stdlib_lsame(side,'L')) then ! form c := alpha*a*b + beta*c. if (upper) then do j = 1,n do i = 1,m temp1 = alpha*b(i,j) temp2 = czero do k = 1,i - 1 c(k,j) = c(k,j) + temp1*a(k,i) temp2 = temp2 + b(k,j)*conjg(a(k,i)) end do if (beta==czero) then c(i,j) = temp1*real(a(i,i),KIND=${ck}$) + alpha*temp2 else c(i,j) = beta*c(i,j) + temp1*real(a(i,i),KIND=${ck}$) +& alpha*temp2 end if end do end do else do j = 1,n do i = m,1,-1 temp1 = alpha*b(i,j) temp2 = czero do k = i + 1,m c(k,j) = c(k,j) + temp1*a(k,i) temp2 = temp2 + b(k,j)*conjg(a(k,i)) end do if (beta==czero) then c(i,j) = temp1*real(a(i,i),KIND=${ck}$) + alpha*temp2 else c(i,j) = beta*c(i,j) + temp1*real(a(i,i),KIND=${ck}$) +& alpha*temp2 end if end do end do end if else ! form c := alpha*b*a + beta*c. loop_170: do j = 1,n temp1 = alpha*real(a(j,j),KIND=${ck}$) if (beta==czero) then do i = 1,m c(i,j) = temp1*b(i,j) end do else do i = 1,m c(i,j) = beta*c(i,j) + temp1*b(i,j) end do end if do k = 1,j - 1 if (upper) then temp1 = alpha*a(k,j) else temp1 = alpha*conjg(a(j,k)) end if do i = 1,m c(i,j) = c(i,j) + temp1*b(i,k) end do end do do k = j + 1,n if (upper) then temp1 = alpha*conjg(a(j,k)) else temp1 = alpha*a(k,j) end if do i = 1,m c(i,j) = c(i,j) + temp1*b(i,k) end do end do end do loop_170 end if return end subroutine stdlib_${ci}$hemm pure subroutine stdlib_${ci}$hemv(uplo,n,alpha,a,lda,x,incx,beta,y,incy) !! ZHEMV: performs the matrix-vector operation !! y := alpha*A*x + beta*y, !! where alpha and beta are scalars, x and y are n element vectors and !! A is an n by n hermitian matrix. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments complex(${ck}$), intent(in) :: alpha, beta integer(ilp), intent(in) :: incx, incy, lda, n character, intent(in) :: uplo ! Array Arguments complex(${ck}$), intent(in) :: a(lda,*), x(*) complex(${ck}$), intent(inout) :: y(*) ! ===================================================================== ! Local Scalars complex(${ck}$) :: temp1, temp2 integer(ilp) :: i, info, ix, iy, j, jx, jy, kx, ky ! Intrinsic Functions intrinsic :: real,conjg,max ! test the input parameters. info = 0 if (.not.stdlib_lsame(uplo,'U') .and. .not.stdlib_lsame(uplo,'L')) then info = 1 else if (n<0) then info = 2 else if (lda<max(1,n)) then info = 5 else if (incx==0) then info = 7 else if (incy==0) then info = 10 end if if (info/=0) then call stdlib_xerbla('ZHEMV ',info) return end if ! quick return if possible. if ((n==0) .or. ((alpha==czero).and. (beta==cone))) return ! set up the start points in x and y. if (incx>0) then kx = 1 else kx = 1 - (n-1)*incx end if if (incy>0) then ky = 1 else ky = 1 - (n-1)*incy end if ! start the operations. in this version the elements of a are ! accessed sequentially with cone pass through the triangular part ! of a. ! first form y := beta*y. if (beta/=cone) then if (incy==1) then if (beta==czero) then do i = 1,n y(i) = czero end do else do i = 1,n y(i) = beta*y(i) end do end if else iy = ky if (beta==czero) then do i = 1,n y(iy) = czero iy = iy + incy end do else do i = 1,n y(iy) = beta*y(iy) iy = iy + incy end do end if end if end if if (alpha==czero) return if (stdlib_lsame(uplo,'U')) then ! form y when a is stored in upper triangle. if ((incx==1) .and. (incy==1)) then do j = 1,n temp1 = alpha*x(j) temp2 = czero do i = 1,j - 1 y(i) = y(i) + temp1*a(i,j) temp2 = temp2 + conjg(a(i,j))*x(i) end do y(j) = y(j) + temp1*real(a(j,j),KIND=${ck}$) + alpha*temp2 end do else jx = kx jy = ky do j = 1,n temp1 = alpha*x(jx) temp2 = czero ix = kx iy = ky do i = 1,j - 1 y(iy) = y(iy) + temp1*a(i,j) temp2 = temp2 + conjg(a(i,j))*x(ix) ix = ix + incx iy = iy + incy end do y(jy) = y(jy) + temp1*real(a(j,j),KIND=${ck}$) + alpha*temp2 jx = jx + incx jy = jy + incy end do end if else ! form y when a is stored in lower triangle. if ((incx==1) .and. (incy==1)) then do j = 1,n temp1 = alpha*x(j) temp2 = czero y(j) = y(j) + temp1*real(a(j,j),KIND=${ck}$) do i = j + 1,n y(i) = y(i) + temp1*a(i,j) temp2 = temp2 + conjg(a(i,j))*x(i) end do y(j) = y(j) + alpha*temp2 end do else jx = kx jy = ky do j = 1,n temp1 = alpha*x(jx) temp2 = czero y(jy) = y(jy) + temp1*real(a(j,j),KIND=${ck}$) ix = jx iy = jy do i = j + 1,n ix = ix + incx iy = iy + incy y(iy) = y(iy) + temp1*a(i,j) temp2 = temp2 + conjg(a(i,j))*x(ix) end do y(jy) = y(jy) + alpha*temp2 jx = jx + incx jy = jy + incy end do end if end if return end subroutine stdlib_${ci}$hemv pure subroutine stdlib_${ci}$her(uplo,n,alpha,x,incx,a,lda) !! ZHER: performs the hermitian rank 1 operation !! A := alpha*x*x**H + A, !! where alpha is a real scalar, x is an n element vector and A is an !! n by n hermitian matrix. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments real(${ck}$), intent(in) :: alpha integer(ilp), intent(in) :: incx, lda, n character, intent(in) :: uplo ! Array Arguments complex(${ck}$), intent(inout) :: a(lda,*) complex(${ck}$), intent(in) :: x(*) ! ===================================================================== ! Local Scalars complex(${ck}$) :: temp integer(ilp) :: i, info, ix, j, jx, kx ! Intrinsic Functions intrinsic :: real,conjg,max ! test the input parameters. info = 0 if (.not.stdlib_lsame(uplo,'U') .and. .not.stdlib_lsame(uplo,'L')) then info = 1 else if (n<0) then info = 2 else if (incx==0) then info = 5 else if (lda<max(1,n)) then info = 7 end if if (info/=0) then call stdlib_xerbla('ZHER ',info) return end if ! quick return if possible. if ((n==0) .or. (alpha==real(czero,KIND=${ck}$))) return ! set the start point in x if the increment is not unity. if (incx<=0) then kx = 1 - (n-1)*incx else if (incx/=1) then kx = 1 end if ! start the operations. in this version the elements of a are ! accessed sequentially with cone pass through the triangular part ! of a. if (stdlib_lsame(uplo,'U')) then ! form a when a is stored in upper triangle. if (incx==1) then do j = 1,n if (x(j)/=czero) then temp = alpha*conjg(x(j)) do i = 1,j - 1 a(i,j) = a(i,j) + x(i)*temp end do a(j,j) = real(a(j,j),KIND=${ck}$) + real(x(j)*temp,KIND=${ck}$) else a(j,j) = real(a(j,j),KIND=${ck}$) end if end do else jx = kx do j = 1,n if (x(jx)/=czero) then temp = alpha*conjg(x(jx)) ix = kx do i = 1,j - 1 a(i,j) = a(i,j) + x(ix)*temp ix = ix + incx end do a(j,j) = real(a(j,j),KIND=${ck}$) + real(x(jx)*temp,KIND=${ck}$) else a(j,j) = real(a(j,j),KIND=${ck}$) end if jx = jx + incx end do end if else ! form a when a is stored in lower triangle. if (incx==1) then do j = 1,n if (x(j)/=czero) then temp = alpha*conjg(x(j)) a(j,j) = real(a(j,j),KIND=${ck}$) + real(temp*x(j),KIND=${ck}$) do i = j + 1,n a(i,j) = a(i,j) + x(i)*temp end do else a(j,j) = real(a(j,j),KIND=${ck}$) end if end do else jx = kx do j = 1,n if (x(jx)/=czero) then temp = alpha*conjg(x(jx)) a(j,j) = real(a(j,j),KIND=${ck}$) + real(temp*x(jx),KIND=${ck}$) ix = jx do i = j + 1,n ix = ix + incx a(i,j) = a(i,j) + x(ix)*temp end do else a(j,j) = real(a(j,j),KIND=${ck}$) end if jx = jx + incx end do end if end if return end subroutine stdlib_${ci}$her pure subroutine stdlib_${ci}$her2(uplo,n,alpha,x,incx,y,incy,a,lda) !! ZHER2: performs the hermitian rank 2 operation !! A := alpha*x*y**H + conjg( alpha )*y*x**H + A, !! where alpha is a scalar, x and y are n element vectors and A is an n !! by n hermitian matrix. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments complex(${ck}$), intent(in) :: alpha integer(ilp), intent(in) :: incx, incy, lda, n character, intent(in) :: uplo ! Array Arguments complex(${ck}$), intent(inout) :: a(lda,*) complex(${ck}$), intent(in) :: x(*), y(*) ! ===================================================================== ! Local Scalars complex(${ck}$) :: temp1, temp2 integer(ilp) :: i, info, ix, iy, j, jx, jy, kx, ky ! Intrinsic Functions intrinsic :: real,conjg,max ! test the input parameters. info = 0 if (.not.stdlib_lsame(uplo,'U') .and. .not.stdlib_lsame(uplo,'L')) then info = 1 else if (n<0) then info = 2 else if (incx==0) then info = 5 else if (incy==0) then info = 7 else if (lda<max(1,n)) then info = 9 end if if (info/=0) then call stdlib_xerbla('ZHER2 ',info) return end if ! quick return if possible. if ((n==0) .or. (alpha==czero)) return ! set up the start points in x and y if the increments are not both ! unity. if ((incx/=1) .or. (incy/=1)) then if (incx>0) then kx = 1 else kx = 1 - (n-1)*incx end if if (incy>0) then ky = 1 else ky = 1 - (n-1)*incy end if jx = kx jy = ky end if ! start the operations. in this version the elements of a are ! accessed sequentially with cone pass through the triangular part ! of a. if (stdlib_lsame(uplo,'U')) then ! form a when a is stored in the upper triangle. if ((incx==1) .and. (incy==1)) then do j = 1,n if ((x(j)/=czero) .or. (y(j)/=czero)) then temp1 = alpha*conjg(y(j)) temp2 = conjg(alpha*x(j)) do i = 1,j - 1 a(i,j) = a(i,j) + x(i)*temp1 + y(i)*temp2 end do a(j,j) = real(a(j,j),KIND=${ck}$) +real(x(j)*temp1+y(j)*temp2,KIND=${ck}$) else a(j,j) = real(a(j,j),KIND=${ck}$) end if end do else do j = 1,n if ((x(jx)/=czero) .or. (y(jy)/=czero)) then temp1 = alpha*conjg(y(jy)) temp2 = conjg(alpha*x(jx)) ix = kx iy = ky do i = 1,j - 1 a(i,j) = a(i,j) + x(ix)*temp1 + y(iy)*temp2 ix = ix + incx iy = iy + incy end do a(j,j) = real(a(j,j),KIND=${ck}$) +real(x(jx)*temp1+y(jy)*temp2,KIND=${ck}$) else a(j,j) = real(a(j,j),KIND=${ck}$) end if jx = jx + incx jy = jy + incy end do end if else ! form a when a is stored in the lower triangle. if ((incx==1) .and. (incy==1)) then do j = 1,n if ((x(j)/=czero) .or. (y(j)/=czero)) then temp1 = alpha*conjg(y(j)) temp2 = conjg(alpha*x(j)) a(j,j) = real(a(j,j),KIND=${ck}$) +real(x(j)*temp1+y(j)*temp2,KIND=${ck}$) do i = j + 1,n a(i,j) = a(i,j) + x(i)*temp1 + y(i)*temp2 end do else a(j,j) = real(a(j,j),KIND=${ck}$) end if end do else do j = 1,n if ((x(jx)/=czero) .or. (y(jy)/=czero)) then temp1 = alpha*conjg(y(jy)) temp2 = conjg(alpha*x(jx)) a(j,j) = real(a(j,j),KIND=${ck}$) +real(x(jx)*temp1+y(jy)*temp2,KIND=${ck}$) ix = jx iy = jy do i = j + 1,n ix = ix + incx iy = iy + incy a(i,j) = a(i,j) + x(ix)*temp1 + y(iy)*temp2 end do else a(j,j) = real(a(j,j),KIND=${ck}$) end if jx = jx + incx jy = jy + incy end do end if end if return end subroutine stdlib_${ci}$her2 pure subroutine stdlib_${ci}$her2k(uplo,trans,n,k,alpha,a,lda,b,ldb,beta,c,ldc) !! ZHER2K: performs one of the hermitian rank 2k operations !! C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C, !! or !! C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C, !! where alpha and beta are scalars with beta real, C is an n by n !! hermitian matrix and A and B are n by k matrices in the first case !! and k by n matrices in the second case. ! -- reference blas level3 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments complex(${ck}$), intent(in) :: alpha real(${ck}$), intent(in) :: beta integer(ilp), intent(in) :: k, lda, ldb, ldc, n character, intent(in) :: trans, uplo ! Array Arguments complex(${ck}$), intent(in) :: a(lda,*), b(ldb,*) complex(${ck}$), intent(inout) :: c(ldc,*) ! ===================================================================== ! Intrinsic Functions intrinsic :: real,conjg,max ! Local Scalars complex(${ck}$) :: temp1, temp2 integer(ilp) :: i, info, j, l, nrowa logical(lk) :: upper ! test the input parameters. if (stdlib_lsame(trans,'N')) then nrowa = n else nrowa = k end if upper = stdlib_lsame(uplo,'U') info = 0 if ((.not.upper) .and. (.not.stdlib_lsame(uplo,'L'))) then info = 1 else if ((.not.stdlib_lsame(trans,'N')) .and.(.not.stdlib_lsame(trans,'C'))) & then info = 2 else if (n<0) then info = 3 else if (k<0) then info = 4 else if (lda<max(1,nrowa)) then info = 7 else if (ldb<max(1,nrowa)) then info = 9 else if (ldc<max(1,n)) then info = 12 end if if (info/=0) then call stdlib_xerbla('ZHER2K',info) return end if ! quick return if possible. if ((n==0) .or. (((alpha==czero).or.(k==0)).and. (beta==one))) return ! and when alpha.eq.czero. if (alpha==czero) then if (upper) then if (beta==real(czero,KIND=${ck}$)) then do j = 1,n do i = 1,j c(i,j) = czero end do end do else do j = 1,n do i = 1,j - 1 c(i,j) = beta*c(i,j) end do c(j,j) = beta*real(c(j,j),KIND=${ck}$) end do end if else if (beta==real(czero,KIND=${ck}$)) then do j = 1,n do i = j,n c(i,j) = czero end do end do else do j = 1,n c(j,j) = beta*real(c(j,j),KIND=${ck}$) do i = j + 1,n c(i,j) = beta*c(i,j) end do end do end if end if return end if ! start the operations. if (stdlib_lsame(trans,'N')) then ! form c := alpha*a*b**h + conjg( alpha )*b*a**h + ! c. if (upper) then do j = 1,n if (beta==real(czero,KIND=${ck}$)) then do i = 1,j c(i,j) = czero end do else if (beta/=one) then do i = 1,j - 1 c(i,j) = beta*c(i,j) end do c(j,j) = beta*real(c(j,j),KIND=${ck}$) else c(j,j) = real(c(j,j),KIND=${ck}$) end if do l = 1,k if ((a(j,l)/=czero) .or. (b(j,l)/=czero)) then temp1 = alpha*conjg(b(j,l)) temp2 = conjg(alpha*a(j,l)) do i = 1,j - 1 c(i,j) = c(i,j) + a(i,l)*temp1 +b(i,l)*temp2 end do c(j,j) = real(c(j,j),KIND=${ck}$) +real(a(j,l)*temp1+b(j,l)*temp2,& KIND=${ck}$) end if end do end do else do j = 1,n if (beta==real(czero,KIND=${ck}$)) then do i = j,n c(i,j) = czero end do else if (beta/=one) then do i = j + 1,n c(i,j) = beta*c(i,j) end do c(j,j) = beta*real(c(j,j),KIND=${ck}$) else c(j,j) = real(c(j,j),KIND=${ck}$) end if do l = 1,k if ((a(j,l)/=czero) .or. (b(j,l)/=czero)) then temp1 = alpha*conjg(b(j,l)) temp2 = conjg(alpha*a(j,l)) do i = j + 1,n c(i,j) = c(i,j) + a(i,l)*temp1 +b(i,l)*temp2 end do c(j,j) = real(c(j,j),KIND=${ck}$) +real(a(j,l)*temp1+b(j,l)*temp2,& KIND=${ck}$) end if end do end do end if else ! form c := alpha*a**h*b + conjg( alpha )*b**h*a + ! c. if (upper) then do j = 1,n do i = 1,j temp1 = czero temp2 = czero do l = 1,k temp1 = temp1 + conjg(a(l,i))*b(l,j) temp2 = temp2 + conjg(b(l,i))*a(l,j) end do if (i==j) then if (beta==real(czero,KIND=${ck}$)) then c(j,j) = real(alpha*temp1+conjg(alpha)*temp2,KIND=${ck}$) else c(j,j) = beta*real(c(j,j),KIND=${ck}$) +real(alpha*temp1+conjg(& alpha)*temp2,KIND=${ck}$) end if else if (beta==real(czero,KIND=${ck}$)) then c(i,j) = alpha*temp1 + conjg(alpha)*temp2 else c(i,j) = beta*c(i,j) + alpha*temp1 +conjg(alpha)*temp2 end if end if end do end do else do j = 1,n do i = j,n temp1 = czero temp2 = czero do l = 1,k temp1 = temp1 + conjg(a(l,i))*b(l,j) temp2 = temp2 + conjg(b(l,i))*a(l,j) end do if (i==j) then if (beta==real(czero,KIND=${ck}$)) then c(j,j) = real(alpha*temp1+conjg(alpha)*temp2,KIND=${ck}$) else c(j,j) = beta*real(c(j,j),KIND=${ck}$) +real(alpha*temp1+conjg(& alpha)*temp2,KIND=${ck}$) end if else if (beta==real(czero,KIND=${ck}$)) then c(i,j) = alpha*temp1 + conjg(alpha)*temp2 else c(i,j) = beta*c(i,j) + alpha*temp1 +conjg(alpha)*temp2 end if end if end do end do end if end if return end subroutine stdlib_${ci}$her2k pure subroutine stdlib_${ci}$herk(uplo,trans,n,k,alpha,a,lda,beta,c,ldc) !! ZHERK: performs one of the hermitian rank k operations !! C := alpha*A*A**H + beta*C, !! or !! C := alpha*A**H*A + beta*C, !! where alpha and beta are real scalars, C is an n by n hermitian !! matrix and A is an n by k matrix in the first case and a k by n !! matrix in the second case. ! -- reference blas level3 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments real(${ck}$), intent(in) :: alpha, beta integer(ilp), intent(in) :: k, lda, ldc, n character, intent(in) :: trans, uplo ! Array Arguments complex(${ck}$), intent(in) :: a(lda,*) complex(${ck}$), intent(inout) :: c(ldc,*) ! ===================================================================== ! Intrinsic Functions intrinsic :: real,cmplx,conjg,max ! Local Scalars complex(${ck}$) :: temp real(${ck}$) :: rtemp integer(ilp) :: i, info, j, l, nrowa logical(lk) :: upper ! test the input parameters. if (stdlib_lsame(trans,'N')) then nrowa = n else nrowa = k end if upper = stdlib_lsame(uplo,'U') info = 0 if ((.not.upper) .and. (.not.stdlib_lsame(uplo,'L'))) then info = 1 else if ((.not.stdlib_lsame(trans,'N')) .and.(.not.stdlib_lsame(trans,'C'))) & then info = 2 else if (n<0) then info = 3 else if (k<0) then info = 4 else if (lda<max(1,nrowa)) then info = 7 else if (ldc<max(1,n)) then info = 10 end if if (info/=0) then call stdlib_xerbla('ZHERK ',info) return end if ! quick return if possible. if ((n==0) .or. (((alpha==zero).or.(k==0)).and. (beta==one))) return ! and when alpha.eq.zero. if (alpha==zero) then if (upper) then if (beta==zero) then do j = 1,n do i = 1,j c(i,j) = zero end do end do else do j = 1,n do i = 1,j - 1 c(i,j) = beta*c(i,j) end do c(j,j) = beta*real(c(j,j),KIND=${ck}$) end do end if else if (beta==zero) then do j = 1,n do i = j,n c(i,j) = zero end do end do else do j = 1,n c(j,j) = beta*real(c(j,j),KIND=${ck}$) do i = j + 1,n c(i,j) = beta*c(i,j) end do end do end if end if return end if ! start the operations. if (stdlib_lsame(trans,'N')) then ! form c := alpha*a*a**h + beta*c. if (upper) then do j = 1,n if (beta==zero) then do i = 1,j c(i,j) = zero end do else if (beta/=one) then do i = 1,j - 1 c(i,j) = beta*c(i,j) end do c(j,j) = beta*real(c(j,j),KIND=${ck}$) else c(j,j) = real(c(j,j),KIND=${ck}$) end if do l = 1,k if (a(j,l)/=cmplx(zero,KIND=${ck}$)) then temp = alpha*conjg(a(j,l)) do i = 1,j - 1 c(i,j) = c(i,j) + temp*a(i,l) end do c(j,j) = real(c(j,j),KIND=${ck}$) + real(temp*a(i,l),KIND=${ck}$) end if end do end do else do j = 1,n if (beta==zero) then do i = j,n c(i,j) = zero end do else if (beta/=one) then c(j,j) = beta*real(c(j,j),KIND=${ck}$) do i = j + 1,n c(i,j) = beta*c(i,j) end do else c(j,j) = real(c(j,j),KIND=${ck}$) end if do l = 1,k if (a(j,l)/=cmplx(zero,KIND=${ck}$)) then temp = alpha*conjg(a(j,l)) c(j,j) = real(c(j,j),KIND=${ck}$) + real(temp*a(j,l),KIND=${ck}$) do i = j + 1,n c(i,j) = c(i,j) + temp*a(i,l) end do end if end do end do end if else ! form c := alpha*a**h*a + beta*c. if (upper) then do j = 1,n do i = 1,j - 1 temp = zero do l = 1,k temp = temp + conjg(a(l,i))*a(l,j) end do if (beta==zero) then c(i,j) = alpha*temp else c(i,j) = alpha*temp + beta*c(i,j) end if end do rtemp = zero do l = 1,k rtemp = rtemp + conjg(a(l,j))*a(l,j) end do if (beta==zero) then c(j,j) = alpha*rtemp else c(j,j) = alpha*rtemp + beta*real(c(j,j),KIND=${ck}$) end if end do else do j = 1,n rtemp = zero do l = 1,k rtemp = rtemp + conjg(a(l,j))*a(l,j) end do if (beta==zero) then c(j,j) = alpha*rtemp else c(j,j) = alpha*rtemp + beta*real(c(j,j),KIND=${ck}$) end if do i = j + 1,n temp = zero do l = 1,k temp = temp + conjg(a(l,i))*a(l,j) end do if (beta==zero) then c(i,j) = alpha*temp else c(i,j) = alpha*temp + beta*c(i,j) end if end do end do end if end if return end subroutine stdlib_${ci}$herk pure subroutine stdlib_${ci}$hpmv(uplo,n,alpha,ap,x,incx,beta,y,incy) !! ZHPMV: performs the matrix-vector operation !! y := alpha*A*x + beta*y, !! where alpha and beta are scalars, x and y are n element vectors and !! A is an n by n hermitian matrix, supplied in packed form. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments complex(${ck}$), intent(in) :: alpha, beta integer(ilp), intent(in) :: incx, incy, n character, intent(in) :: uplo ! Array Arguments complex(${ck}$), intent(in) :: ap(*), x(*) complex(${ck}$), intent(inout) :: y(*) ! ===================================================================== ! Local Scalars complex(${ck}$) :: temp1, temp2 integer(ilp) :: i, info, ix, iy, j, jx, jy, k, kk, kx, ky ! Intrinsic Functions intrinsic :: real,conjg ! test the input parameters. info = 0 if (.not.stdlib_lsame(uplo,'U') .and. .not.stdlib_lsame(uplo,'L')) then info = 1 else if (n<0) then info = 2 else if (incx==0) then info = 6 else if (incy==0) then info = 9 end if if (info/=0) then call stdlib_xerbla('ZHPMV ',info) return end if ! quick return if possible. if ((n==0) .or. ((alpha==czero).and. (beta==cone))) return ! set up the start points in x and y. if (incx>0) then kx = 1 else kx = 1 - (n-1)*incx end if if (incy>0) then ky = 1 else ky = 1 - (n-1)*incy end if ! start the operations. in this version the elements of the array ap ! are accessed sequentially with cone pass through ap. ! first form y := beta*y. if (beta/=cone) then if (incy==1) then if (beta==czero) then do i = 1,n y(i) = czero end do else do i = 1,n y(i) = beta*y(i) end do end if else iy = ky if (beta==czero) then do i = 1,n y(iy) = czero iy = iy + incy end do else do i = 1,n y(iy) = beta*y(iy) iy = iy + incy end do end if end if end if if (alpha==czero) return kk = 1 if (stdlib_lsame(uplo,'U')) then ! form y when ap contains the upper triangle. if ((incx==1) .and. (incy==1)) then do j = 1,n temp1 = alpha*x(j) temp2 = czero k = kk do i = 1,j - 1 y(i) = y(i) + temp1*ap(k) temp2 = temp2 + conjg(ap(k))*x(i) k = k + 1 end do y(j) = y(j) + temp1*real(ap(kk+j-1),KIND=${ck}$) + alpha*temp2 kk = kk + j end do else jx = kx jy = ky do j = 1,n temp1 = alpha*x(jx) temp2 = czero ix = kx iy = ky do k = kk,kk + j - 2 y(iy) = y(iy) + temp1*ap(k) temp2 = temp2 + conjg(ap(k))*x(ix) ix = ix + incx iy = iy + incy end do y(jy) = y(jy) + temp1*real(ap(kk+j-1),KIND=${ck}$) + alpha*temp2 jx = jx + incx jy = jy + incy kk = kk + j end do end if else ! form y when ap contains the lower triangle. if ((incx==1) .and. (incy==1)) then do j = 1,n temp1 = alpha*x(j) temp2 = czero y(j) = y(j) + temp1*real(ap(kk),KIND=${ck}$) k = kk + 1 do i = j + 1,n y(i) = y(i) + temp1*ap(k) temp2 = temp2 + conjg(ap(k))*x(i) k = k + 1 end do y(j) = y(j) + alpha*temp2 kk = kk + (n-j+1) end do else jx = kx jy = ky do j = 1,n temp1 = alpha*x(jx) temp2 = czero y(jy) = y(jy) + temp1*real(ap(kk),KIND=${ck}$) ix = jx iy = jy do k = kk + 1,kk + n - j ix = ix + incx iy = iy + incy y(iy) = y(iy) + temp1*ap(k) temp2 = temp2 + conjg(ap(k))*x(ix) end do y(jy) = y(jy) + alpha*temp2 jx = jx + incx jy = jy + incy kk = kk + (n-j+1) end do end if end if return end subroutine stdlib_${ci}$hpmv pure subroutine stdlib_${ci}$hpr(uplo,n,alpha,x,incx,ap) !! ZHPR: performs the hermitian rank 1 operation !! A := alpha*x*x**H + A, !! where alpha is a real scalar, x is an n element vector and A is an !! n by n hermitian matrix, supplied in packed form. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments real(${ck}$), intent(in) :: alpha integer(ilp), intent(in) :: incx, n character, intent(in) :: uplo ! Array Arguments complex(${ck}$), intent(inout) :: ap(*) complex(${ck}$), intent(in) :: x(*) ! ===================================================================== ! Local Scalars complex(${ck}$) :: temp integer(ilp) :: i, info, ix, j, jx, k, kk, kx ! Intrinsic Functions intrinsic :: real,conjg ! test the input parameters. info = 0 if (.not.stdlib_lsame(uplo,'U') .and. .not.stdlib_lsame(uplo,'L')) then info = 1 else if (n<0) then info = 2 else if (incx==0) then info = 5 end if if (info/=0) then call stdlib_xerbla('ZHPR ',info) return end if ! quick return if possible. if ((n==0) .or. (alpha==real(czero,KIND=${ck}$))) return ! set the start point in x if the increment is not unity. if (incx<=0) then kx = 1 - (n-1)*incx else if (incx/=1) then kx = 1 end if ! start the operations. in this version the elements of the array ap ! are accessed sequentially with cone pass through ap. kk = 1 if (stdlib_lsame(uplo,'U')) then ! form a when upper triangle is stored in ap. if (incx==1) then do j = 1,n if (x(j)/=czero) then temp = alpha*conjg(x(j)) k = kk do i = 1,j - 1 ap(k) = ap(k) + x(i)*temp k = k + 1 end do ap(kk+j-1) = real(ap(kk+j-1),KIND=${ck}$) + real(x(j)*temp,KIND=${ck}$) else ap(kk+j-1) = real(ap(kk+j-1),KIND=${ck}$) end if kk = kk + j end do else jx = kx do j = 1,n if (x(jx)/=czero) then temp = alpha*conjg(x(jx)) ix = kx do k = kk,kk + j - 2 ap(k) = ap(k) + x(ix)*temp ix = ix + incx end do ap(kk+j-1) = real(ap(kk+j-1),KIND=${ck}$) + real(x(jx)*temp,KIND=${ck}$) else ap(kk+j-1) = real(ap(kk+j-1),KIND=${ck}$) end if jx = jx + incx kk = kk + j end do end if else ! form a when lower triangle is stored in ap. if (incx==1) then do j = 1,n if (x(j)/=czero) then temp = alpha*conjg(x(j)) ap(kk) = real(ap(kk),KIND=${ck}$) + real(temp*x(j),KIND=${ck}$) k = kk + 1 do i = j + 1,n ap(k) = ap(k) + x(i)*temp k = k + 1 end do else ap(kk) = real(ap(kk),KIND=${ck}$) end if kk = kk + n - j + 1 end do else jx = kx do j = 1,n if (x(jx)/=czero) then temp = alpha*conjg(x(jx)) ap(kk) = real(ap(kk),KIND=${ck}$) + real(temp*x(jx),KIND=${ck}$) ix = jx do k = kk + 1,kk + n - j ix = ix + incx ap(k) = ap(k) + x(ix)*temp end do else ap(kk) = real(ap(kk),KIND=${ck}$) end if jx = jx + incx kk = kk + n - j + 1 end do end if end if return end subroutine stdlib_${ci}$hpr pure subroutine stdlib_${ci}$hpr2(uplo,n,alpha,x,incx,y,incy,ap) !! ZHPR2: performs the hermitian rank 2 operation !! A := alpha*x*y**H + conjg( alpha )*y*x**H + A, !! where alpha is a scalar, x and y are n element vectors and A is an !! n by n hermitian matrix, supplied in packed form. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments complex(${ck}$), intent(in) :: alpha integer(ilp), intent(in) :: incx, incy, n character, intent(in) :: uplo ! Array Arguments complex(${ck}$), intent(inout) :: ap(*) complex(${ck}$), intent(in) :: x(*), y(*) ! ===================================================================== ! Local Scalars complex(${ck}$) :: temp1, temp2 integer(ilp) :: i, info, ix, iy, j, jx, jy, k, kk, kx, ky ! Intrinsic Functions intrinsic :: real,conjg ! test the input parameters. info = 0 if (.not.stdlib_lsame(uplo,'U') .and. .not.stdlib_lsame(uplo,'L')) then info = 1 else if (n<0) then info = 2 else if (incx==0) then info = 5 else if (incy==0) then info = 7 end if if (info/=0) then call stdlib_xerbla('ZHPR2 ',info) return end if ! quick return if possible. if ((n==0) .or. (alpha==czero)) return ! set up the start points in x and y if the increments are not both ! unity. if ((incx/=1) .or. (incy/=1)) then if (incx>0) then kx = 1 else kx = 1 - (n-1)*incx end if if (incy>0) then ky = 1 else ky = 1 - (n-1)*incy end if jx = kx jy = ky end if ! start the operations. in this version the elements of the array ap ! are accessed sequentially with cone pass through ap. kk = 1 if (stdlib_lsame(uplo,'U')) then ! form a when upper triangle is stored in ap. if ((incx==1) .and. (incy==1)) then do j = 1,n if ((x(j)/=czero) .or. (y(j)/=czero)) then temp1 = alpha*conjg(y(j)) temp2 = conjg(alpha*x(j)) k = kk do i = 1,j - 1 ap(k) = ap(k) + x(i)*temp1 + y(i)*temp2 k = k + 1 end do ap(kk+j-1) = real(ap(kk+j-1),KIND=${ck}$) +real(x(j)*temp1+y(j)*temp2,& KIND=${ck}$) else ap(kk+j-1) = real(ap(kk+j-1),KIND=${ck}$) end if kk = kk + j end do else do j = 1,n if ((x(jx)/=czero) .or. (y(jy)/=czero)) then temp1 = alpha*conjg(y(jy)) temp2 = conjg(alpha*x(jx)) ix = kx iy = ky do k = kk,kk + j - 2 ap(k) = ap(k) + x(ix)*temp1 + y(iy)*temp2 ix = ix + incx iy = iy + incy end do ap(kk+j-1) = real(ap(kk+j-1),KIND=${ck}$) +real(x(jx)*temp1+y(jy)*temp2,& KIND=${ck}$) else ap(kk+j-1) = real(ap(kk+j-1),KIND=${ck}$) end if jx = jx + incx jy = jy + incy kk = kk + j end do end if else ! form a when lower triangle is stored in ap. if ((incx==1) .and. (incy==1)) then do j = 1,n if ((x(j)/=czero) .or. (y(j)/=czero)) then temp1 = alpha*conjg(y(j)) temp2 = conjg(alpha*x(j)) ap(kk) = real(ap(kk),KIND=${ck}$) +real(x(j)*temp1+y(j)*temp2,KIND=${ck}$) k = kk + 1 do i = j + 1,n ap(k) = ap(k) + x(i)*temp1 + y(i)*temp2 k = k + 1 end do else ap(kk) = real(ap(kk),KIND=${ck}$) end if kk = kk + n - j + 1 end do else do j = 1,n if ((x(jx)/=czero) .or. (y(jy)/=czero)) then temp1 = alpha*conjg(y(jy)) temp2 = conjg(alpha*x(jx)) ap(kk) = real(ap(kk),KIND=${ck}$) +real(x(jx)*temp1+y(jy)*temp2,KIND=${ck}$) ix = jx iy = jy do k = kk + 1,kk + n - j ix = ix + incx iy = iy + incy ap(k) = ap(k) + x(ix)*temp1 + y(iy)*temp2 end do else ap(kk) = real(ap(kk),KIND=${ck}$) end if jx = jx + incx jy = jy + incy kk = kk + n - j + 1 end do end if end if return end subroutine stdlib_${ci}$hpr2 pure subroutine stdlib_${ci}$rotg( a, b, c, s ) !! The computation uses the formulas !! |x| = sqrt( Re(x)**2 + Im(x)**2 ) !! sgn(x) = x / |x| if x /= 0 !! = 1 if x = 0 !! c = |a| / sqrt(|a|**2 + |b|**2) !! s = sgn(a) * conjg(b) / sqrt(|a|**2 + |b|**2) !! When a and b are real and r /= 0, the formulas simplify to !! r = sgn(a)*sqrt(|a|**2 + |b|**2) !! c = a / r !! s = b / r !! the same as in DROTG when |a| > |b|. When |b| >= |a|, the !! sign of c and s will be different from those computed by DROTG !! if the signs of a and b are not the same. ! -- reference blas level1 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Constants integer, parameter :: wp = kind(1._${ck}$) ! Scaling Constants ! Scalar Arguments real(${ck}$), intent(out) :: c complex(${ck}$), intent(inout) :: a complex(${ck}$), intent(in) :: b complex(${ck}$), intent(out) :: s ! Local Scalars real(${ck}$) :: d, f1, f2, g1, g2, h2, p, u, uu, v, vv, w complex(${ck}$) :: f, fs, g, gs, r, t ! Intrinsic Functions intrinsic :: abs,aimag,conjg,max,min,real,sqrt ! Statement Functions real(${ck}$) :: abssq ! Statement Function Definitions abssq( t ) = real( t,KIND=${ck}$)**2 + aimag( t )**2 ! Executable Statements f = a g = b if( g == czero ) then c = one s = czero r = f else if( f == czero ) then c = zero g1 = max( abs(real(g,KIND=${ck}$)), abs(aimag(g)) ) if( g1 > rtmin .and. g1 < rtmax ) then ! use unscaled algorithm g2 = abssq( g ) d = sqrt( g2 ) s = conjg( g ) / d r = d else ! use scaled algorithm u = min( safmax, max( safmin, g1 ) ) uu = one / u gs = g*uu g2 = abssq( gs ) d = sqrt( g2 ) s = conjg( gs ) / d r = d*u end if else f1 = max( abs(real(f,KIND=${ck}$)), abs(aimag(f)) ) g1 = max( abs(real(g,KIND=${ck}$)), abs(aimag(g)) ) if( f1 > rtmin .and. f1 < rtmax .and. g1 > rtmin .and. g1 < rtmax ) then ! use unscaled algorithm f2 = abssq( f ) g2 = abssq( g ) h2 = f2 + g2 if( f2 > rtmin .and. h2 < rtmax ) then d = sqrt( f2*h2 ) else d = sqrt( f2 )*sqrt( h2 ) end if p = 1 / d c = f2*p s = conjg( g )*( f*p ) r = f*( h2*p ) else ! use scaled algorithm u = min( safmax, max( safmin, f1, g1 ) ) uu = one / u gs = g*uu g2 = abssq( gs ) if( f1*uu < rtmin ) then ! f is not well-scaled when scaled by g1. ! use a different scaling for f. v = min( safmax, max( safmin, f1 ) ) vv = one / v w = v * uu fs = f*vv f2 = abssq( fs ) h2 = f2*w**2 + g2 else ! otherwise use the same scaling for f and g. w = one fs = f*uu f2 = abssq( fs ) h2 = f2 + g2 end if if( f2 > rtmin .and. h2 < rtmax ) then d = sqrt( f2*h2 ) else d = sqrt( f2 )*sqrt( h2 ) end if p = 1 / d c = ( f2*p )*w s = conjg( gs )*( fs*p ) r = ( fs*( h2*p ) )*u end if end if a = r return end subroutine stdlib_${ci}$rotg pure subroutine stdlib_${ci}$scal(n,za,zx,incx) !! ZSCAL: scales a vector by a constant. ! -- reference blas level1 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments complex(${ck}$), intent(in) :: za integer(ilp), intent(in) :: incx, n ! Array Arguments complex(${ck}$), intent(inout) :: zx(*) ! ===================================================================== ! Local Scalars integer(ilp) :: i, nincx if (n<=0 .or. incx<=0) return if (incx==1) then ! code for increment equal to 1 do i = 1,n zx(i) = za*zx(i) end do else ! code for increment not equal to 1 nincx = n*incx do i = 1,nincx,incx zx(i) = za*zx(i) end do end if return end subroutine stdlib_${ci}$scal pure subroutine stdlib_${ci}$swap(n,zx,incx,zy,incy) !! ZSWAP: interchanges two vectors. ! -- reference blas level1 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments integer(ilp), intent(in) :: incx, incy, n ! Array Arguments complex(${ck}$), intent(inout) :: zx(*), zy(*) ! ===================================================================== ! Local Scalars complex(${ck}$) :: ztemp integer(ilp) :: i, ix, iy if (n<=0) return if (incx==1 .and. incy==1) then ! code for both increments equal to 1 do i = 1,n ztemp = zx(i) zx(i) = zy(i) zy(i) = ztemp end do else ! code for unequal increments or equal increments not equal ! to 1 ix = 1 iy = 1 if (incx<0) ix = (-n+1)*incx + 1 if (incy<0) iy = (-n+1)*incy + 1 do i = 1,n ztemp = zx(ix) zx(ix) = zy(iy) zy(iy) = ztemp ix = ix + incx iy = iy + incy end do end if return end subroutine stdlib_${ci}$swap pure subroutine stdlib_${ci}$symm(side,uplo,m,n,alpha,a,lda,b,ldb,beta,c,ldc) !! ZSYMM: performs one of the matrix-matrix operations !! C := alpha*A*B + beta*C, !! or !! C := alpha*B*A + beta*C, !! where alpha and beta are scalars, A is a symmetric matrix and B and !! C are m by n matrices. ! -- reference blas level3 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments complex(${ck}$), intent(in) :: alpha, beta integer(ilp), intent(in) :: lda, ldb, ldc, m, n character, intent(in) :: side, uplo ! Array Arguments complex(${ck}$), intent(in) :: a(lda,*), b(ldb,*) complex(${ck}$), intent(inout) :: c(ldc,*) ! ===================================================================== ! Intrinsic Functions intrinsic :: max ! Local Scalars complex(${ck}$) :: temp1, temp2 integer(ilp) :: i, info, j, k, nrowa logical(lk) :: upper ! set nrowa as the number of rows of a. if (stdlib_lsame(side,'L')) then nrowa = m else nrowa = n end if upper = stdlib_lsame(uplo,'U') ! test the input parameters. info = 0 if ((.not.stdlib_lsame(side,'L')) .and. (.not.stdlib_lsame(side,'R'))) then info = 1 else if ((.not.upper) .and. (.not.stdlib_lsame(uplo,'L'))) then info = 2 else if (m<0) then info = 3 else if (n<0) then info = 4 else if (lda<max(1,nrowa)) then info = 7 else if (ldb<max(1,m)) then info = 9 else if (ldc<max(1,m)) then info = 12 end if if (info/=0) then call stdlib_xerbla('ZSYMM ',info) return end if ! quick return if possible. if ((m==0) .or. (n==0) .or.((alpha==czero).and. (beta==cone))) return ! and when alpha.eq.czero. if (alpha==czero) then if (beta==czero) then do j = 1,n do i = 1,m c(i,j) = czero end do end do else do j = 1,n do i = 1,m c(i,j) = beta*c(i,j) end do end do end if return end if ! start the operations. if (stdlib_lsame(side,'L')) then ! form c := alpha*a*b + beta*c. if (upper) then do j = 1,n do i = 1,m temp1 = alpha*b(i,j) temp2 = czero do k = 1,i - 1 c(k,j) = c(k,j) + temp1*a(k,i) temp2 = temp2 + b(k,j)*a(k,i) end do if (beta==czero) then c(i,j) = temp1*a(i,i) + alpha*temp2 else c(i,j) = beta*c(i,j) + temp1*a(i,i) +alpha*temp2 end if end do end do else do j = 1,n do i = m,1,-1 temp1 = alpha*b(i,j) temp2 = czero do k = i + 1,m c(k,j) = c(k,j) + temp1*a(k,i) temp2 = temp2 + b(k,j)*a(k,i) end do if (beta==czero) then c(i,j) = temp1*a(i,i) + alpha*temp2 else c(i,j) = beta*c(i,j) + temp1*a(i,i) +alpha*temp2 end if end do end do end if else ! form c := alpha*b*a + beta*c. loop_170: do j = 1,n temp1 = alpha*a(j,j) if (beta==czero) then do i = 1,m c(i,j) = temp1*b(i,j) end do else do i = 1,m c(i,j) = beta*c(i,j) + temp1*b(i,j) end do end if do k = 1,j - 1 if (upper) then temp1 = alpha*a(k,j) else temp1 = alpha*a(j,k) end if do i = 1,m c(i,j) = c(i,j) + temp1*b(i,k) end do end do do k = j + 1,n if (upper) then temp1 = alpha*a(j,k) else temp1 = alpha*a(k,j) end if do i = 1,m c(i,j) = c(i,j) + temp1*b(i,k) end do end do end do loop_170 end if return end subroutine stdlib_${ci}$symm pure subroutine stdlib_${ci}$syr2k(uplo,trans,n,k,alpha,a,lda,b,ldb,beta,c,ldc) !! ZSYR2K: performs one of the symmetric rank 2k operations !! C := alpha*A*B**T + alpha*B*A**T + beta*C, !! or !! C := alpha*A**T*B + alpha*B**T*A + beta*C, !! where alpha and beta are scalars, C is an n by n symmetric matrix !! and A and B are n by k matrices in the first case and k by n !! matrices in the second case. ! -- reference blas level3 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments complex(${ck}$), intent(in) :: alpha, beta integer(ilp), intent(in) :: k, lda, ldb, ldc, n character, intent(in) :: trans, uplo ! Array Arguments complex(${ck}$), intent(in) :: a(lda,*), b(ldb,*) complex(${ck}$), intent(inout) :: c(ldc,*) ! ===================================================================== ! Intrinsic Functions intrinsic :: max ! Local Scalars complex(${ck}$) :: temp1, temp2 integer(ilp) :: i, info, j, l, nrowa logical(lk) :: upper ! test the input parameters. if (stdlib_lsame(trans,'N')) then nrowa = n else nrowa = k end if upper = stdlib_lsame(uplo,'U') info = 0 if ((.not.upper) .and. (.not.stdlib_lsame(uplo,'L'))) then info = 1 else if ((.not.stdlib_lsame(trans,'N')) .and.(.not.stdlib_lsame(trans,'T'))) & then info = 2 else if (n<0) then info = 3 else if (k<0) then info = 4 else if (lda<max(1,nrowa)) then info = 7 else if (ldb<max(1,nrowa)) then info = 9 else if (ldc<max(1,n)) then info = 12 end if if (info/=0) then call stdlib_xerbla('ZSYR2K',info) return end if ! quick return if possible. if ((n==0) .or. (((alpha==czero).or.(k==0)).and. (beta==cone))) return ! and when alpha.eq.czero. if (alpha==czero) then if (upper) then if (beta==czero) then do j = 1,n do i = 1,j c(i,j) = czero end do end do else do j = 1,n do i = 1,j c(i,j) = beta*c(i,j) end do end do end if else if (beta==czero) then do j = 1,n do i = j,n c(i,j) = czero end do end do else do j = 1,n do i = j,n c(i,j) = beta*c(i,j) end do end do end if end if return end if ! start the operations. if (stdlib_lsame(trans,'N')) then ! form c := alpha*a*b**t + alpha*b*a**t + c. if (upper) then do j = 1,n if (beta==czero) then do i = 1,j c(i,j) = czero end do else if (beta/=cone) then do i = 1,j c(i,j) = beta*c(i,j) end do end if do l = 1,k if ((a(j,l)/=czero) .or. (b(j,l)/=czero)) then temp1 = alpha*b(j,l) temp2 = alpha*a(j,l) do i = 1,j c(i,j) = c(i,j) + a(i,l)*temp1 +b(i,l)*temp2 end do end if end do end do else do j = 1,n if (beta==czero) then do i = j,n c(i,j) = czero end do else if (beta/=cone) then do i = j,n c(i,j) = beta*c(i,j) end do end if do l = 1,k if ((a(j,l)/=czero) .or. (b(j,l)/=czero)) then temp1 = alpha*b(j,l) temp2 = alpha*a(j,l) do i = j,n c(i,j) = c(i,j) + a(i,l)*temp1 +b(i,l)*temp2 end do end if end do end do end if else ! form c := alpha*a**t*b + alpha*b**t*a + c. if (upper) then do j = 1,n do i = 1,j temp1 = czero temp2 = czero do l = 1,k temp1 = temp1 + a(l,i)*b(l,j) temp2 = temp2 + b(l,i)*a(l,j) end do if (beta==czero) then c(i,j) = alpha*temp1 + alpha*temp2 else c(i,j) = beta*c(i,j) + alpha*temp1 +alpha*temp2 end if end do end do else do j = 1,n do i = j,n temp1 = czero temp2 = czero do l = 1,k temp1 = temp1 + a(l,i)*b(l,j) temp2 = temp2 + b(l,i)*a(l,j) end do if (beta==czero) then c(i,j) = alpha*temp1 + alpha*temp2 else c(i,j) = beta*c(i,j) + alpha*temp1 +alpha*temp2 end if end do end do end if end if return end subroutine stdlib_${ci}$syr2k pure subroutine stdlib_${ci}$syrk(uplo,trans,n,k,alpha,a,lda,beta,c,ldc) !! ZSYRK: performs one of the symmetric rank k operations !! C := alpha*A*A**T + beta*C, !! or !! C := alpha*A**T*A + beta*C, !! where alpha and beta are scalars, C is an n by n symmetric matrix !! and A is an n by k matrix in the first case and a k by n matrix !! in the second case. ! -- reference blas level3 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments complex(${ck}$), intent(in) :: alpha, beta integer(ilp), intent(in) :: k, lda, ldc, n character, intent(in) :: trans, uplo ! Array Arguments complex(${ck}$), intent(in) :: a(lda,*) complex(${ck}$), intent(inout) :: c(ldc,*) ! ===================================================================== ! Intrinsic Functions intrinsic :: max ! Local Scalars complex(${ck}$) :: temp integer(ilp) :: i, info, j, l, nrowa logical(lk) :: upper ! test the input parameters. if (stdlib_lsame(trans,'N')) then nrowa = n else nrowa = k end if upper = stdlib_lsame(uplo,'U') info = 0 if ((.not.upper) .and. (.not.stdlib_lsame(uplo,'L'))) then info = 1 else if ((.not.stdlib_lsame(trans,'N')) .and.(.not.stdlib_lsame(trans,'T'))) & then info = 2 else if (n<0) then info = 3 else if (k<0) then info = 4 else if (lda<max(1,nrowa)) then info = 7 else if (ldc<max(1,n)) then info = 10 end if if (info/=0) then call stdlib_xerbla('ZSYRK ',info) return end if ! quick return if possible. if ((n==0) .or. (((alpha==czero).or.(k==0)).and. (beta==cone))) return ! and when alpha.eq.czero. if (alpha==czero) then if (upper) then if (beta==czero) then do j = 1,n do i = 1,j c(i,j) = czero end do end do else do j = 1,n do i = 1,j c(i,j) = beta*c(i,j) end do end do end if else if (beta==czero) then do j = 1,n do i = j,n c(i,j) = czero end do end do else do j = 1,n do i = j,n c(i,j) = beta*c(i,j) end do end do end if end if return end if ! start the operations. if (stdlib_lsame(trans,'N')) then ! form c := alpha*a*a**t + beta*c. if (upper) then do j = 1,n if (beta==czero) then do i = 1,j c(i,j) = czero end do else if (beta/=cone) then do i = 1,j c(i,j) = beta*c(i,j) end do end if do l = 1,k if (a(j,l)/=czero) then temp = alpha*a(j,l) do i = 1,j c(i,j) = c(i,j) + temp*a(i,l) end do end if end do end do else do j = 1,n if (beta==czero) then do i = j,n c(i,j) = czero end do else if (beta/=cone) then do i = j,n c(i,j) = beta*c(i,j) end do end if do l = 1,k if (a(j,l)/=czero) then temp = alpha*a(j,l) do i = j,n c(i,j) = c(i,j) + temp*a(i,l) end do end if end do end do end if else ! form c := alpha*a**t*a + beta*c. if (upper) then do j = 1,n do i = 1,j temp = czero do l = 1,k temp = temp + a(l,i)*a(l,j) end do if (beta==czero) then c(i,j) = alpha*temp else c(i,j) = alpha*temp + beta*c(i,j) end if end do end do else do j = 1,n do i = j,n temp = czero do l = 1,k temp = temp + a(l,i)*a(l,j) end do if (beta==czero) then c(i,j) = alpha*temp else c(i,j) = alpha*temp + beta*c(i,j) end if end do end do end if end if return end subroutine stdlib_${ci}$syrk pure subroutine stdlib_${ci}$tbmv(uplo,trans,diag,n,k,a,lda,x,incx) !! ZTBMV: performs one of the matrix-vector operations !! x := A*x, or x := A**T*x, or x := A**H*x, !! where x is an n element vector and A is an n by n unit, or non-unit, !! upper or lower triangular band matrix, with ( k + 1 ) diagonals. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments integer(ilp), intent(in) :: incx, k, lda, n character, intent(in) :: diag, trans, uplo ! Array Arguments complex(${ck}$), intent(in) :: a(lda,*) complex(${ck}$), intent(inout) :: x(*) ! ===================================================================== ! Local Scalars complex(${ck}$) :: temp integer(ilp) :: i, info, ix, j, jx, kplus1, kx, l logical(lk) :: noconj, nounit ! Intrinsic Functions intrinsic :: conjg,max,min ! test the input parameters. info = 0 if (.not.stdlib_lsame(uplo,'U') .and. .not.stdlib_lsame(uplo,'L')) then info = 1 else if (.not.stdlib_lsame(trans,'N') .and. .not.stdlib_lsame(trans,'T') & .and..not.stdlib_lsame(trans,'C')) then info = 2 else if (.not.stdlib_lsame(diag,'U') .and. .not.stdlib_lsame(diag,'N')) then info = 3 else if (n<0) then info = 4 else if (k<0) then info = 5 else if (lda< (k+1)) then info = 7 else if (incx==0) then info = 9 end if if (info/=0) then call stdlib_xerbla('ZTBMV ',info) return end if ! quick return if possible. if (n==0) return noconj = stdlib_lsame(trans,'T') nounit = stdlib_lsame(diag,'N') ! set up the start point in x if the increment is not unity. this ! will be ( n - 1 )*incx too small for descending loops. if (incx<=0) then kx = 1 - (n-1)*incx else if (incx/=1) then kx = 1 end if ! start the operations. in this version the elements of a are ! accessed sequentially with cone pass through a. if (stdlib_lsame(trans,'N')) then ! form x := a*x. if (stdlib_lsame(uplo,'U')) then kplus1 = k + 1 if (incx==1) then do j = 1,n if (x(j)/=czero) then temp = x(j) l = kplus1 - j do i = max(1,j-k),j - 1 x(i) = x(i) + temp*a(l+i,j) end do if (nounit) x(j) = x(j)*a(kplus1,j) end if end do else jx = kx do j = 1,n if (x(jx)/=czero) then temp = x(jx) ix = kx l = kplus1 - j do i = max(1,j-k),j - 1 x(ix) = x(ix) + temp*a(l+i,j) ix = ix + incx end do if (nounit) x(jx) = x(jx)*a(kplus1,j) end if jx = jx + incx if (j>k) kx = kx + incx end do end if else if (incx==1) then do j = n,1,-1 if (x(j)/=czero) then temp = x(j) l = 1 - j do i = min(n,j+k),j + 1,-1 x(i) = x(i) + temp*a(l+i,j) end do if (nounit) x(j) = x(j)*a(1,j) end if end do else kx = kx + (n-1)*incx jx = kx do j = n,1,-1 if (x(jx)/=czero) then temp = x(jx) ix = kx l = 1 - j do i = min(n,j+k),j + 1,-1 x(ix) = x(ix) + temp*a(l+i,j) ix = ix - incx end do if (nounit) x(jx) = x(jx)*a(1,j) end if jx = jx - incx if ((n-j)>=k) kx = kx - incx end do end if end if else ! form x := a**t*x or x := a**h*x. if (stdlib_lsame(uplo,'U')) then kplus1 = k + 1 if (incx==1) then do j = n,1,-1 temp = x(j) l = kplus1 - j if (noconj) then if (nounit) temp = temp*a(kplus1,j) do i = j - 1,max(1,j-k),-1 temp = temp + a(l+i,j)*x(i) end do else if (nounit) temp = temp*conjg(a(kplus1,j)) do i = j - 1,max(1,j-k),-1 temp = temp + conjg(a(l+i,j))*x(i) end do end if x(j) = temp end do else kx = kx + (n-1)*incx jx = kx do j = n,1,-1 temp = x(jx) kx = kx - incx ix = kx l = kplus1 - j if (noconj) then if (nounit) temp = temp*a(kplus1,j) do i = j - 1,max(1,j-k),-1 temp = temp + a(l+i,j)*x(ix) ix = ix - incx end do else if (nounit) temp = temp*conjg(a(kplus1,j)) do i = j - 1,max(1,j-k),-1 temp = temp + conjg(a(l+i,j))*x(ix) ix = ix - incx end do end if x(jx) = temp jx = jx - incx end do end if else if (incx==1) then do j = 1,n temp = x(j) l = 1 - j if (noconj) then if (nounit) temp = temp*a(1,j) do i = j + 1,min(n,j+k) temp = temp + a(l+i,j)*x(i) end do else if (nounit) temp = temp*conjg(a(1,j)) do i = j + 1,min(n,j+k) temp = temp + conjg(a(l+i,j))*x(i) end do end if x(j) = temp end do else jx = kx do j = 1,n temp = x(jx) kx = kx + incx ix = kx l = 1 - j if (noconj) then if (nounit) temp = temp*a(1,j) do i = j + 1,min(n,j+k) temp = temp + a(l+i,j)*x(ix) ix = ix + incx end do else if (nounit) temp = temp*conjg(a(1,j)) do i = j + 1,min(n,j+k) temp = temp + conjg(a(l+i,j))*x(ix) ix = ix + incx end do end if x(jx) = temp jx = jx + incx end do end if end if end if return end subroutine stdlib_${ci}$tbmv pure subroutine stdlib_${ci}$tbsv(uplo,trans,diag,n,k,a,lda,x,incx) !! ZTBSV: solves one of the systems of equations !! A*x = b, or A**T*x = b, or A**H*x = b, !! where b and x are n element vectors and A is an n by n unit, or !! non-unit, upper or lower triangular band matrix, with ( k + 1 ) !! diagonals. !! No test for singularity or near-singularity is included in this !! routine. Such tests must be performed before calling this routine. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments integer(ilp), intent(in) :: incx, k, lda, n character, intent(in) :: diag, trans, uplo ! Array Arguments complex(${ck}$), intent(in) :: a(lda,*) complex(${ck}$), intent(inout) :: x(*) ! ===================================================================== ! Local Scalars complex(${ck}$) :: temp integer(ilp) :: i, info, ix, j, jx, kplus1, kx, l logical(lk) :: noconj, nounit ! Intrinsic Functions intrinsic :: conjg,max,min ! test the input parameters. info = 0 if (.not.stdlib_lsame(uplo,'U') .and. .not.stdlib_lsame(uplo,'L')) then info = 1 else if (.not.stdlib_lsame(trans,'N') .and. .not.stdlib_lsame(trans,'T') & .and..not.stdlib_lsame(trans,'C')) then info = 2 else if (.not.stdlib_lsame(diag,'U') .and. .not.stdlib_lsame(diag,'N')) then info = 3 else if (n<0) then info = 4 else if (k<0) then info = 5 else if (lda< (k+1)) then info = 7 else if (incx==0) then info = 9 end if if (info/=0) then call stdlib_xerbla('ZTBSV ',info) return end if ! quick return if possible. if (n==0) return noconj = stdlib_lsame(trans,'T') nounit = stdlib_lsame(diag,'N') ! set up the start point in x if the increment is not unity. this ! will be ( n - 1 )*incx too small for descending loops. if (incx<=0) then kx = 1 - (n-1)*incx else if (incx/=1) then kx = 1 end if ! start the operations. in this version the elements of a are ! accessed by sequentially with cone pass through a. if (stdlib_lsame(trans,'N')) then ! form x := inv( a )*x. if (stdlib_lsame(uplo,'U')) then kplus1 = k + 1 if (incx==1) then do j = n,1,-1 if (x(j)/=czero)<