#:include "common.fypp" #:set RC_KINDS_TYPES = REAL_KINDS_TYPES + CMPLX_KINDS_TYPES ! Cholesky factorization of a matrix, based on LAPACK *POTRF functions submodule (stdlib_linalg) stdlib_linalg_cholesky use stdlib_linalg_constants use stdlib_linalg_lapack, only: potrf use stdlib_linalg_state, only: linalg_state_type, linalg_error_handling, LINALG_ERROR, & LINALG_INTERNAL_ERROR, LINALG_VALUE_ERROR implicit none(type,external) character(*), parameter :: this = 'cholesky' contains elemental subroutine handle_potrf_info(info,triangle,lda,n,err) character, intent(in) :: triangle integer(ilp), intent(in) :: info,lda,n type(linalg_state_type), intent(out) :: err ! Process output select case (info) case (0) ! Success case (-1) err = linalg_state_type(this,LINALG_INTERNAL_ERROR,'invalid triangle selection: ', & triangle,'. should be U/L') case (-2) err = linalg_state_type(this,LINALG_VALUE_ERROR,'invalid matrix size n=',n) case (-4) err = linalg_state_type(this,LINALG_VALUE_ERROR,'invalid lda=',lda,': is < n = ',n) case (1:) err = linalg_state_type(this,LINALG_ERROR,'cannot complete factorization:',info, & '-th order leading minor is not positive definite') case default err = linalg_state_type(this,LINALG_INTERNAL_ERROR,'catastrophic error') end select end subroutine handle_potrf_info #:for rk,rt,ri in RC_KINDS_TYPES ! Compute the Cholesky factorization of a symmetric / Hermitian matrix, A = L*L^T = U^T*U. ! The factorization is returned in-place, overwriting matrix A pure module subroutine stdlib_linalg_${ri}$_cholesky_inplace(a,lower,other_zeroed,err) !> Input matrix a[m,n] ${rt}$, intent(inout), target :: a(:,:) !> [optional] is the lower or upper triangular factor required? Default = lower logical(lk), optional, intent(in) :: lower !> [optional] should the unused half of the return matrix be zeroed out? Default: yes logical(lk), optional, intent(in) :: other_zeroed !> [optional] state return flag. On error if not requested, the code will stop type(linalg_state_type), optional, intent(out) :: err !> Local variables type(linalg_state_type) :: err0 integer(ilp) :: lda,n,info,i,j logical(lk) :: lower_,other_zeroed_ character :: triangle ${rt}$, parameter :: zero = 0.0_${rk}$ !> Check if the lower or upper factor is required. !> Default: use lower factor lower_ = .true. if (present(lower)) lower_ = lower triangle = merge('L','U',lower_) !> Check if the unused half of the return matrix should be zeroed out (default). !> Otherwise it is unused and will contain garbage. other_zeroed_ = .true. if (present(other_zeroed)) other_zeroed_ = other_zeroed !> Problem size lda = size(a,1,kind=ilp) n = size(a,2,kind=ilp) ! Check sizes if (n<1 .or. lda<1 .or. lda<n) then err0 = linalg_state_type(this,LINALG_VALUE_ERROR, & 'invalid matrix size: a(m,n)=',[lda,n]) else ! Compute factorization call potrf(triangle,n,a,lda,info) call handle_potrf_info(info,triangle,lda,n,err0) ! Zero-out the unused part of matrix A clean_unused: if (other_zeroed_ .and. err0%ok()) then if (lower_) then forall (j=2:n) a(:j-1,j) = zero else forall (j=1:n-1) a(j+1:,j) = zero endif endif clean_unused endif ! Process output and return call linalg_error_handling(err0,err) end subroutine stdlib_linalg_${ri}$_cholesky_inplace ! Compute the Cholesky factorization of a symmetric / Hermitian matrix, A = L*L^T = U^T*U. ! The factorization is returned as a separate matrix pure module subroutine stdlib_linalg_${ri}$_cholesky(a,c,lower,other_zeroed,err) !> Input matrix a[n,n] ${rt}$, intent(in) :: a(:,:) !> Output matrix with Cholesky factors c[n,n] ${rt}$, intent(out) :: c(:,:) !> [optional] is the lower or upper triangular factor required? Default = lower logical(lk), optional, intent(in) :: lower !> [optional] should the unused half of the return matrix be zeroed out? Default: yes logical(lk), optional, intent(in) :: other_zeroed !> [optional] state return flag. On error if not requested, the code will stop type(linalg_state_type), optional, intent(out) :: err type(linalg_state_type) :: err0 integer(ilp) :: lda,n,ldc,nc ! Check C sizes lda = size(a,1,kind=ilp) n = size(a,2,kind=ilp) ldc = size(c,1,kind=ilp) nc = size(c,2,kind=ilp) if (lda<1 .or. n<1 .or. lda<n .or. ldc<n .or. nc<n) then err0 = linalg_state_type(this,LINALG_VALUE_ERROR, & 'invalid matrix sizes: a=',[lda,n], & ' c=',[ldc,nc]) else ! Copy data in c(:n,:n) = a(:n,:n) ! Get cholesky factors call stdlib_linalg_${ri}$_cholesky_inplace(c,lower,other_zeroed,err0) end if ! Process output and return call linalg_error_handling(err0,err) end subroutine stdlib_linalg_${ri}$_cholesky ! Compute the Cholesky factorization of a symmetric / Hermitian matrix, A = L*L^T = U^T*U. ! Function interface pure module function stdlib_linalg_${ri}$_cholesky_fun(a,lower,other_zeroed) result(c) !> Input matrix a[n,n] ${rt}$, intent(in) :: a(:,:) !> Output matrix with Cholesky factors c[n,n] ${rt}$ :: c(size(a, 1),size(a, 2)) !> [optional] is the lower or upper triangular factor required? Default = lower logical(lk), optional, intent(in) :: lower !> [optional] should the unused half of the return matrix be zeroed out? Default: yes logical(lk), optional, intent(in) :: other_zeroed c = a call stdlib_linalg_${ri}$_cholesky_inplace(c,lower,other_zeroed) end function stdlib_linalg_${ri}$_cholesky_fun #:endfor end submodule stdlib_linalg_cholesky