#:include "common.fypp" #:set RC_KINDS_TYPES = REAL_KINDS_TYPES + CMPLX_KINDS_TYPES submodule (stdlib_linalg) stdlib_linalg_inverse !! Compute inverse of a square matrix use stdlib_linalg_constants use stdlib_linalg_lapack, only: getri,getrf,stdlib_ilaenv use stdlib_linalg_state, only: linalg_state_type, linalg_error_handling, LINALG_ERROR, & LINALG_INTERNAL_ERROR, LINALG_VALUE_ERROR use ieee_arithmetic, only: ieee_value, ieee_quiet_nan implicit none(type,external) character(*), parameter :: this = 'inverse' contains elemental subroutine handle_getri_info(info,lda,n,err) integer(ilp), intent(in) :: info,lda,n type(linalg_state_type), intent(out) :: err ! Process output select case (info) case (0) ! Success case (:-1) err = linalg_state_type(this,LINALG_ERROR,'invalid matrix size a=',[lda,n]) case (1:) ! Matrix is singular err = linalg_state_type(this,LINALG_ERROR,'singular matrix') case default err = linalg_state_type(this,LINALG_INTERNAL_ERROR,'catastrophic error') end select end subroutine handle_getri_info #:for rk,rt,ri in RC_KINDS_TYPES ! Compute the in-place square matrix inverse of a module subroutine stdlib_linalg_invert_inplace_${ri}$(a,pivot,err) !> Input matrix a[n,n]. On return, A is destroyed and replaced by the inverse ${rt}$, intent(inout) :: a(:,:) !> [optional] Storage array for the diagonal pivot indices integer(ilp), optional, intent(inout), target :: pivot(:) !> [optional] state return flag. On error if not requested, the code will stop type(linalg_state_type), optional, intent(out) :: err !> Local variables type(linalg_state_type) :: err0 integer(ilp) :: lda,n,info,nb,lwork,npiv integer(ilp), pointer :: ipiv(:) ${rt}$, allocatable :: work(:) !> Problem sizes lda = size(a,1,kind=ilp) n = size(a,2,kind=ilp) ! Has a pre-allocated pivots storage array been provided? if (present(pivot)) then ipiv => pivot else allocate(ipiv(n)) endif npiv = size(ipiv,kind=ilp) if (lda<1 .or. n<1 .or. lda/=n .or. npiv<n) then err0 = linalg_state_type(this,LINALG_VALUE_ERROR,'invalid matrix size: a=',[lda,n], & ', pivot=',npiv) if (.not.present(pivot)) deallocate(ipiv) call linalg_error_handling(err0,err) return end if ! Factorize matrix (overwrite result) call getrf(lda,n,a,lda,ipiv,info) ! Return codes from getrf and getri are identical if (info==0) then ! Get optimal worksize (returned in work(1)) (inflate by a 5% safety margin) nb = stdlib_ilaenv(1,'${ri}$getri',' ',n,-1,-1,-1) lwork = max(1,min(huge(0_ilp),ceiling(1.05_${rk}$*real(n,${rk}$)*nb,kind=ilp))) allocate(work(lwork)) ! Invert matrix call getri(n,a,lda,ipiv,work,lwork,info) endif ! Process output call handle_getri_info(info,lda,n,err0) ! Process output and return if (.not.present(pivot)) deallocate(ipiv) call linalg_error_handling(err0,err) end subroutine stdlib_linalg_invert_inplace_${ri}$ ! Compute the square matrix inverse of a module subroutine stdlib_linalg_invert_split_${ri}$(a,inva,pivot,err) !> Input matrix a[n,n]. ${rt}$, intent(in) :: a(:,:) !> Inverse matrix a[n,n]. ${rt}$, intent(out) :: inva(:,:) !> [optional] Storage array for the diagonal pivot indices integer(ilp), optional, intent(inout), target :: pivot(:) !> [optional] state return flag. On error if not requested, the code will stop type(linalg_state_type), optional, intent(out) :: err type(linalg_state_type) :: err0 integer(ilp) :: sa(2),sinva(2) sa = shape(a,kind=ilp) sinva = shape(inva,kind=ilp) if (any(sa/=sinva)) then err0 = linalg_state_type(this,LINALG_VALUE_ERROR,'invalid matrix size: a=',sa,' inva=',sinva) else !> Copy data in inva = a !> Compute matrix inverse call stdlib_linalg_invert_inplace_${ri}$(inva,err=err0) end if ! Process output and return call linalg_error_handling(err0,err) end subroutine stdlib_linalg_invert_split_${ri}$ ! Invert matrix in place module function stdlib_linalg_inverse_${ri}$(a,err) result(inva) !> Input matrix a[n,n] ${rt}$, intent(in) :: a(:,:) !> Output matrix inverse ${rt}$, allocatable :: inva(:,:) !> [optional] state return flag. On error if not requested, the code will stop type(linalg_state_type), optional, intent(out) :: err !> Allocate with copy allocate(inva,source=a) !> Compute matrix inverse call stdlib_linalg_invert_inplace_${ri}$(inva,err=err) end function stdlib_linalg_inverse_${ri}$ ! Inverse matrix operator module function stdlib_linalg_inverse_${ri}$_operator(a) result(inva) !> Input matrix a[n,n] ${rt}$, intent(in) :: a(:,:) !> Result matrix ${rt}$, allocatable :: inva(:,:) type(linalg_state_type) :: err ! Provide an error handler to return NaNs on issues inva = stdlib_linalg_inverse_${ri}$(a,err=err) ! Return NaN on issues if (err%error()) then if (allocated(inva)) deallocate(inva) allocate(inva(size(a,1,kind=ilp),size(a,2,kind=ilp))) #:if rt.startswith('complex') inva = ieee_value(1.0_${rk}$,ieee_quiet_nan) #:else inva = cmplx(ieee_value(1.0_${rk}$,ieee_quiet_nan), & ieee_value(1.0_${rk}$,ieee_quiet_nan), kind=${rk}$) #:endif endif end function stdlib_linalg_inverse_${ri}$_operator #:endfor end submodule stdlib_linalg_inverse