stdlib_math_linspace.fypp Source File


This file depends on

sourcefile~~stdlib_math_linspace.fypp~~EfferentGraph sourcefile~stdlib_math_linspace.fypp stdlib_math_linspace.fypp sourcefile~stdlib_math.fypp stdlib_math.fypp sourcefile~stdlib_math_linspace.fypp->sourcefile~stdlib_math.fypp sourcefile~stdlib_kinds.fypp stdlib_kinds.fypp sourcefile~stdlib_math.fypp->sourcefile~stdlib_kinds.fypp sourcefile~stdlib_optval.fypp stdlib_optval.fypp sourcefile~stdlib_math.fypp->sourcefile~stdlib_optval.fypp sourcefile~stdlib_optval.fypp->sourcefile~stdlib_kinds.fypp

Contents


Source Code

#:include "common.fypp"
submodule (stdlib_math) stdlib_math_linspace

implicit none

contains

  #:for k1, t1 in REAL_KINDS_TYPES
    #:set RName = rname("linspace_default", 1, t1, k1)
    pure module function ${RName}$(start, end) result(res)
      ${t1}$, intent(in) :: start
      ${t1}$, intent(in) :: end

      ${t1}$ :: res(DEFAULT_LINSPACE_LENGTH)

      res = linspace(start, end, DEFAULT_LINSPACE_LENGTH)

    end function ${RName}$
  #:endfor

  #:for k1, t1 in REAL_KINDS_TYPES
    #:set RName = rname("linspace_n", 1, t1, k1)
    pure module function ${RName}$(start, end, n) result(res)
      ${t1}$, intent(in) :: start
      ${t1}$, intent(in) :: end
      integer, intent(in) :: n

      ${t1}$ :: res(max(n, 0))

      integer :: i    ! Looping index
      ${t1}$ :: interval ! Difference between adjacent elements


      if(n <= 0) return ! If passed length is less than or equal to 0, return an empty (allocated with length 0) array
      if(n == 1) then
        res(1) = end
        return
      end if

      interval = (end - start) / real((n - 1), ${k1}$)

      res(1) = start
      res(n) = end

      do i = 2, n - 1

        res(i) = real((i-1), ${k1}$) * interval + start

      end do

    end function ${RName}$
  #:endfor


    #:for k1, t1 in CMPLX_KINDS_TYPES
      #:set RName = rname("linspace_default", 1, t1, k1)
      module procedure ${RName}$

        res = linspace(start, end, DEFAULT_LINSPACE_LENGTH)

      end procedure ${RName}$
    #:endfor

    #:for k1, t1 in CMPLX_KINDS_TYPES
      #:set RName = rname("linspace_n", 1, t1, k1)
      module procedure ${RName}$

        real(${k1}$) :: x(max(n, 0)) ! array of the real part of complex number
        real(${k1}$) :: y(max(n, 0)) ! array of the imaginary part of the complex number

        x = linspace(start%re, end%re, n)
        y = linspace(start%im, end%im, n)

        res = cmplx(x, y, kind=${k1}$)

      end procedure ${RName}$
    #:endfor

    #:for k1, t1 in INT_KINDS_TYPES
      #:set RName = rname("linspace_default", 1, t1, k1)
      module procedure ${RName}$

        res = linspace(real(start, kind=dp), real(end, kind=dp), DEFAULT_LINSPACE_LENGTH)

      end procedure ${RName}$
    #:endfor

    #:for k1, t1 in INT_KINDS_TYPES
      #:set RName = rname("linspace_n", 1, t1, k1)
      module procedure ${RName}$

        res = linspace(real(start, kind=dp), real(end, kind=dp), n)

      end procedure ${RName}$
    #:endfor

end submodule