SSYR2 performs the symmetric rank 2 operation A := alphaxyT + alphayxT + A, where alpha is a scalar, x and y are n element vectors and A is an n by n symmetric matrix.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | uplo | |||
integer(kind=ilp), | intent(in) | :: | n | |||
real(kind=sp), | intent(in) | :: | alpha | |||
real(kind=sp), | intent(in) | :: | x(*) | |||
integer(kind=ilp), | intent(in) | :: | incx | |||
real(kind=sp), | intent(in) | :: | y(*) | |||
integer(kind=ilp), | intent(in) | :: | incy | |||
real(kind=sp), | intent(inout) | :: | a(lda,*) | |||
integer(kind=ilp), | intent(in) | :: | lda |
pure subroutine stdlib_ssyr2(uplo,n,alpha,x,incx,y,incy,a,lda) !! SSYR2 performs the symmetric rank 2 operation !! A := alpha*x*y**T + alpha*y*x**T + A, !! where alpha is a scalar, x and y are n element vectors and A is an n !! by n symmetric matrix. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments real(sp), intent(in) :: alpha integer(ilp), intent(in) :: incx, incy, lda, n character, intent(in) :: uplo ! Array Arguments real(sp), intent(inout) :: a(lda,*) real(sp), intent(in) :: x(*), y(*) ! ===================================================================== ! Local Scalars real(sp) :: temp1, temp2 integer(ilp) :: i, info, ix, iy, j, jx, jy, kx, ky ! Intrinsic Functions intrinsic :: max ! test the input parameters. info = 0 if (.not.stdlib_lsame(uplo,'U') .and. .not.stdlib_lsame(uplo,'L')) then info = 1 else if (n<0) then info = 2 else if (incx==0) then info = 5 else if (incy==0) then info = 7 else if (lda<max(1,n)) then info = 9 end if if (info/=0) then call stdlib_xerbla('SSYR2 ',info) return end if ! quick return if possible. if ((n==0) .or. (alpha==zero)) return ! set up the start points in x and y if the increments are not both ! unity. if ((incx/=1) .or. (incy/=1)) then if (incx>0) then kx = 1 else kx = 1 - (n-1)*incx end if if (incy>0) then ky = 1 else ky = 1 - (n-1)*incy end if jx = kx jy = ky end if ! start the operations. in this version the elements of a are ! accessed sequentially with one pass through the triangular part ! of a. if (stdlib_lsame(uplo,'U')) then ! form a when a is stored in the upper triangle. if ((incx==1) .and. (incy==1)) then do j = 1,n if ((x(j)/=zero) .or. (y(j)/=zero)) then temp1 = alpha*y(j) temp2 = alpha*x(j) do i = 1,j a(i,j) = a(i,j) + x(i)*temp1 + y(i)*temp2 end do end if end do else do j = 1,n if ((x(jx)/=zero) .or. (y(jy)/=zero)) then temp1 = alpha*y(jy) temp2 = alpha*x(jx) ix = kx iy = ky do i = 1,j a(i,j) = a(i,j) + x(ix)*temp1 + y(iy)*temp2 ix = ix + incx iy = iy + incy end do end if jx = jx + incx jy = jy + incy end do end if else ! form a when a is stored in the lower triangle. if ((incx==1) .and. (incy==1)) then do j = 1,n if ((x(j)/=zero) .or. (y(j)/=zero)) then temp1 = alpha*y(j) temp2 = alpha*x(j) do i = j,n a(i,j) = a(i,j) + x(i)*temp1 + y(i)*temp2 end do end if end do else do j = 1,n if ((x(jx)/=zero) .or. (y(jy)/=zero)) then temp1 = alpha*y(jy) temp2 = alpha*x(jx) ix = jx iy = jy do i = j,n a(i,j) = a(i,j) + x(ix)*temp1 + y(iy)*temp2 ix = ix + incx iy = iy + incy end do end if jx = jx + incx jy = jy + incy end do end if end if return end subroutine stdlib_ssyr2