SASUM takes the sum of the absolute values. uses unrolled loops for increment equal to one.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer(kind=ilp), | intent(in) | :: | n | |||
real(kind=sp), | intent(in) | :: | sx(*) | |||
integer(kind=ilp), | intent(in) | :: | incx |
SCASUM takes the sum of the (|Re(.)| + |Im(.)|)'s of a complex vector and returns a single precision result.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer(kind=ilp), | intent(in) | :: | n | |||
complex(kind=sp), | intent(in) | :: | cx(*) | |||
integer(kind=ilp), | intent(in) | :: | incx |
SCNRM2 returns the euclidean norm of a vector via the function name, so that SCNRM2 := sqrt( x*Hx )
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer(kind=ilp), | intent(in) | :: | n | |||
complex(kind=sp), | intent(in) | :: | x(*) | |||
integer(kind=ilp), | intent(in) | :: | incx |
SDOT forms the dot product of two vectors. uses unrolled loops for increments equal to one.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer(kind=ilp), | intent(in) | :: | n | |||
real(kind=sp), | intent(in) | :: | sx(*) | |||
integer(kind=ilp), | intent(in) | :: | incx | |||
real(kind=sp), | intent(in) | :: | sy(*) | |||
integer(kind=ilp), | intent(in) | :: | incy |
Compute the inner product of two vectors with extended precision accumulation. Returns S.P. result with dot product accumulated in D.P. SDSDOT = SB + sum for I = 0 to N-1 of SX(LX+IINCX)SY(LY+IINCY), where LX = 1 if INCX >= 0, else LX = 1+(1-N)INCX, and LY is defined in a similar way using INCY.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer(kind=ilp), | intent(in) | :: | n | |||
real(kind=sp), | intent(in) | :: | sb | |||
real(kind=sp), | intent(in) | :: | sx(*) | |||
integer(kind=ilp), | intent(in) | :: | incx | |||
real(kind=sp), | intent(in) | :: | sy(*) | |||
integer(kind=ilp), | intent(in) | :: | incy |
SNRM2 returns the euclidean norm of a vector via the function name, so that SNRM2 := sqrt( x'*x ).
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer(kind=ilp), | intent(in) | :: | n | |||
real(kind=sp), | intent(in) | :: | x(*) | |||
integer(kind=ilp), | intent(in) | :: | incx |
SAXPY constant times a vector plus a vector. uses unrolled loops for increments equal to one.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer(kind=ilp), | intent(in) | :: | n | |||
real(kind=sp), | intent(in) | :: | sa | |||
real(kind=sp), | intent(in) | :: | sx(*) | |||
integer(kind=ilp), | intent(in) | :: | incx | |||
real(kind=sp), | intent(inout) | :: | sy(*) | |||
integer(kind=ilp), | intent(in) | :: | incy |
SCOPY copies a vector, x, to a vector, y. uses unrolled loops for increments equal to 1.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer(kind=ilp), | intent(in) | :: | n | |||
real(kind=sp), | intent(in) | :: | sx(*) | |||
integer(kind=ilp), | intent(in) | :: | incx | |||
real(kind=sp), | intent(out) | :: | sy(*) | |||
integer(kind=ilp), | intent(in) | :: | incy |
SGBMV performs one of the matrix-vector operations y := alphaAx + betay, or y := alphaATx + betay, where alpha and beta are scalars, x and y are vectors and A is an m by n band matrix, with kl sub-diagonals and ku super-diagonals.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | trans | |||
integer(kind=ilp), | intent(in) | :: | m | |||
integer(kind=ilp), | intent(in) | :: | n | |||
integer(kind=ilp), | intent(in) | :: | kl | |||
integer(kind=ilp), | intent(in) | :: | ku | |||
real(kind=sp), | intent(in) | :: | alpha | |||
real(kind=sp), | intent(in) | :: | a(lda,*) | |||
integer(kind=ilp), | intent(in) | :: | lda | |||
real(kind=sp), | intent(in) | :: | x(*) | |||
integer(kind=ilp), | intent(in) | :: | incx | |||
real(kind=sp), | intent(in) | :: | beta | |||
real(kind=sp), | intent(inout) | :: | y(*) | |||
integer(kind=ilp), | intent(in) | :: | incy |
SGEMM performs one of the matrix-matrix operations C := alphaop( A )op( B ) + betaC, where op( X ) is one of op( X ) = X or op( X ) = X*T, alpha and beta are scalars, and A, B and C are matrices, with op( A ) an m by k matrix, op( B ) a k by n matrix and C an m by n matrix.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | transa | |||
character(len=1), | intent(in) | :: | transb | |||
integer(kind=ilp), | intent(in) | :: | m | |||
integer(kind=ilp), | intent(in) | :: | n | |||
integer(kind=ilp), | intent(in) | :: | k | |||
real(kind=sp), | intent(in) | :: | alpha | |||
real(kind=sp), | intent(in) | :: | a(lda,*) | |||
integer(kind=ilp), | intent(in) | :: | lda | |||
real(kind=sp), | intent(in) | :: | b(ldb,*) | |||
integer(kind=ilp), | intent(in) | :: | ldb | |||
real(kind=sp), | intent(in) | :: | beta | |||
real(kind=sp), | intent(inout) | :: | c(ldc,*) | |||
integer(kind=ilp), | intent(in) | :: | ldc |
SGEMV performs one of the matrix-vector operations y := alphaAx + betay, or y := alphaATx + betay, where alpha and beta are scalars, x and y are vectors and A is an m by n matrix.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | trans | |||
integer(kind=ilp), | intent(in) | :: | m | |||
integer(kind=ilp), | intent(in) | :: | n | |||
real(kind=sp), | intent(in) | :: | alpha | |||
real(kind=sp), | intent(in) | :: | a(lda,*) | |||
integer(kind=ilp), | intent(in) | :: | lda | |||
real(kind=sp), | intent(in) | :: | x(*) | |||
integer(kind=ilp), | intent(in) | :: | incx | |||
real(kind=sp), | intent(in) | :: | beta | |||
real(kind=sp), | intent(inout) | :: | y(*) | |||
integer(kind=ilp), | intent(in) | :: | incy |
SGER performs the rank 1 operation A := alphaxy**T + A, where alpha is a scalar, x is an m element vector, y is an n element vector and A is an m by n matrix.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer(kind=ilp), | intent(in) | :: | m | |||
integer(kind=ilp), | intent(in) | :: | n | |||
real(kind=sp), | intent(in) | :: | alpha | |||
real(kind=sp), | intent(in) | :: | x(*) | |||
integer(kind=ilp), | intent(in) | :: | incx | |||
real(kind=sp), | intent(in) | :: | y(*) | |||
integer(kind=ilp), | intent(in) | :: | incy | |||
real(kind=sp), | intent(inout) | :: | a(lda,*) | |||
integer(kind=ilp), | intent(in) | :: | lda |
applies a plane rotation.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer(kind=ilp), | intent(in) | :: | n | |||
real(kind=sp), | intent(inout) | :: | sx(*) | |||
integer(kind=ilp), | intent(in) | :: | incx | |||
real(kind=sp), | intent(inout) | :: | sy(*) | |||
integer(kind=ilp), | intent(in) | :: | incy | |||
real(kind=sp), | intent(in) | :: | c | |||
real(kind=sp), | intent(in) | :: | s |
The computation uses the formulas sigma = sgn(a) if |a| > |b| = sgn(b) if |b| >= |a| r = sigmasqrt( a2 + b2 ) c = 1; s = 0 if r = 0 c = a/r; s = b/r if r != 0 The subroutine also computes z = s if |a| > |b|, = 1/c if |b| >= |a| and c != 0 = 1 if c = 0 This allows c and s to be reconstructed from z as follows: If z = 1, set c = 0, s = 1. If |z| < 1, set c = sqrt(1 - z2) and s = z. If |z| > 1, set c = 1/z and s = sqrt( 1 - c*2).
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=sp), | intent(inout) | :: | a | |||
real(kind=sp), | intent(inout) | :: | b | |||
real(kind=sp), | intent(out) | :: | c | |||
real(kind=sp), | intent(out) | :: | s |
SROTM applies the modified Givens transformation, , to the 2-by-N matrix
where indicates transpose. The elements of are in
SX(LX+IINCX), I = 0:N-1, where LX = 1 if INCX >= 0, else LX = (-INCX)N,
and similarly for SY using LY and INCY.
With SPARAM(1)=SFLAG, has one of the following forms:
See SROTMG for a description of data storage in SPARAM.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer(kind=ilp), | intent(in) | :: | n | |||
real(kind=sp), | intent(inout) | :: | sx(*) | |||
integer(kind=ilp), | intent(in) | :: | incx | |||
real(kind=sp), | intent(inout) | :: | sy(*) | |||
integer(kind=ilp), | intent(in) | :: | incy | |||
real(kind=sp), | intent(in) | :: | sparam(5) |
SROTMG Constructs the modified Givens transformation matrix which zeros the
second component of the 2-vector
With SPARAM(1)=SFLAG, has one of the following forms:
Locations 2-4 of SPARAM contain SH11, SH21, SH12 and SH22 respectively.
(Values of 1.0, -1.0, or 0.0 implied by the value of SPARAM(1) are not stored in SPARAM.)
The values of parameters GAMSQ and RGAMSQ may be inexact. This is OK as they are only
used for testing the size of DD1 and DD2. All actual scaling of data is done using GAM.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=sp), | intent(inout) | :: | sd1 | |||
real(kind=sp), | intent(inout) | :: | sd2 | |||
real(kind=sp), | intent(inout) | :: | sx1 | |||
real(kind=sp), | intent(in) | :: | sy1 | |||
real(kind=sp), | intent(out) | :: | sparam(5) |
SSBMV performs the matrix-vector operation y := alphaAx + beta*y, where alpha and beta are scalars, x and y are n element vectors and A is an n by n symmetric band matrix, with k super-diagonals.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | uplo | |||
integer(kind=ilp), | intent(in) | :: | n | |||
integer(kind=ilp), | intent(in) | :: | k | |||
real(kind=sp), | intent(in) | :: | alpha | |||
real(kind=sp), | intent(in) | :: | a(lda,*) | |||
integer(kind=ilp), | intent(in) | :: | lda | |||
real(kind=sp), | intent(in) | :: | x(*) | |||
integer(kind=ilp), | intent(in) | :: | incx | |||
real(kind=sp), | intent(in) | :: | beta | |||
real(kind=sp), | intent(inout) | :: | y(*) | |||
integer(kind=ilp), | intent(in) | :: | incy |
SSCAL scales a vector by a constant. uses unrolled loops for increment equal to 1.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer(kind=ilp), | intent(in) | :: | n | |||
real(kind=sp), | intent(in) | :: | sa | |||
real(kind=sp), | intent(inout) | :: | sx(*) | |||
integer(kind=ilp), | intent(in) | :: | incx |
SSPMV performs the matrix-vector operation y := alphaAx + beta*y, where alpha and beta are scalars, x and y are n element vectors and A is an n by n symmetric matrix, supplied in packed form.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | uplo | |||
integer(kind=ilp), | intent(in) | :: | n | |||
real(kind=sp), | intent(in) | :: | alpha | |||
real(kind=sp), | intent(in) | :: | ap(*) | |||
real(kind=sp), | intent(in) | :: | x(*) | |||
integer(kind=ilp), | intent(in) | :: | incx | |||
real(kind=sp), | intent(in) | :: | beta | |||
real(kind=sp), | intent(inout) | :: | y(*) | |||
integer(kind=ilp), | intent(in) | :: | incy |
SSPR performs the symmetric rank 1 operation A := alphaxx**T + A, where alpha is a real scalar, x is an n element vector and A is an n by n symmetric matrix, supplied in packed form.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | uplo | |||
integer(kind=ilp), | intent(in) | :: | n | |||
real(kind=sp), | intent(in) | :: | alpha | |||
real(kind=sp), | intent(in) | :: | x(*) | |||
integer(kind=ilp), | intent(in) | :: | incx | |||
real(kind=sp), | intent(inout) | :: | ap(*) |
SSPR2 performs the symmetric rank 2 operation A := alphaxyT + alphayxT + A, where alpha is a scalar, x and y are n element vectors and A is an n by n symmetric matrix, supplied in packed form.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | uplo | |||
integer(kind=ilp), | intent(in) | :: | n | |||
real(kind=sp), | intent(in) | :: | alpha | |||
real(kind=sp), | intent(in) | :: | x(*) | |||
integer(kind=ilp), | intent(in) | :: | incx | |||
real(kind=sp), | intent(in) | :: | y(*) | |||
integer(kind=ilp), | intent(in) | :: | incy | |||
real(kind=sp), | intent(inout) | :: | ap(*) |
SSWAP interchanges two vectors. uses unrolled loops for increments equal to 1.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
integer(kind=ilp), | intent(in) | :: | n | |||
real(kind=sp), | intent(inout) | :: | sx(*) | |||
integer(kind=ilp), | intent(in) | :: | incx | |||
real(kind=sp), | intent(inout) | :: | sy(*) | |||
integer(kind=ilp), | intent(in) | :: | incy |
SSYMM performs one of the matrix-matrix operations C := alphaAB + betaC, or C := alphaBA + betaC, where alpha and beta are scalars, A is a symmetric matrix and B and C are m by n matrices.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | side | |||
character(len=1), | intent(in) | :: | uplo | |||
integer(kind=ilp), | intent(in) | :: | m | |||
integer(kind=ilp), | intent(in) | :: | n | |||
real(kind=sp), | intent(in) | :: | alpha | |||
real(kind=sp), | intent(in) | :: | a(lda,*) | |||
integer(kind=ilp), | intent(in) | :: | lda | |||
real(kind=sp), | intent(in) | :: | b(ldb,*) | |||
integer(kind=ilp), | intent(in) | :: | ldb | |||
real(kind=sp), | intent(in) | :: | beta | |||
real(kind=sp), | intent(inout) | :: | c(ldc,*) | |||
integer(kind=ilp), | intent(in) | :: | ldc |
SSYMV performs the matrix-vector operation y := alphaAx + beta*y, where alpha and beta are scalars, x and y are n element vectors and A is an n by n symmetric matrix.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | uplo | |||
integer(kind=ilp), | intent(in) | :: | n | |||
real(kind=sp), | intent(in) | :: | alpha | |||
real(kind=sp), | intent(in) | :: | a(lda,*) | |||
integer(kind=ilp), | intent(in) | :: | lda | |||
real(kind=sp), | intent(in) | :: | x(*) | |||
integer(kind=ilp), | intent(in) | :: | incx | |||
real(kind=sp), | intent(in) | :: | beta | |||
real(kind=sp), | intent(inout) | :: | y(*) | |||
integer(kind=ilp), | intent(in) | :: | incy |
SSYR performs the symmetric rank 1 operation A := alphaxx**T + A, where alpha is a real scalar, x is an n element vector and A is an n by n symmetric matrix.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | uplo | |||
integer(kind=ilp), | intent(in) | :: | n | |||
real(kind=sp), | intent(in) | :: | alpha | |||
real(kind=sp), | intent(in) | :: | x(*) | |||
integer(kind=ilp), | intent(in) | :: | incx | |||
real(kind=sp), | intent(inout) | :: | a(lda,*) | |||
integer(kind=ilp), | intent(in) | :: | lda |
SSYR2 performs the symmetric rank 2 operation A := alphaxyT + alphayxT + A, where alpha is a scalar, x and y are n element vectors and A is an n by n symmetric matrix.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | uplo | |||
integer(kind=ilp), | intent(in) | :: | n | |||
real(kind=sp), | intent(in) | :: | alpha | |||
real(kind=sp), | intent(in) | :: | x(*) | |||
integer(kind=ilp), | intent(in) | :: | incx | |||
real(kind=sp), | intent(in) | :: | y(*) | |||
integer(kind=ilp), | intent(in) | :: | incy | |||
real(kind=sp), | intent(inout) | :: | a(lda,*) | |||
integer(kind=ilp), | intent(in) | :: | lda |
SSYR2K performs one of the symmetric rank 2k operations C := alphaABT + alphaBAT + betaC, or C := alphaATB + alphaBTA + betaC, where alpha and beta are scalars, C is an n by n symmetric matrix and A and B are n by k matrices in the first case and k by n matrices in the second case.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | uplo | |||
character(len=1), | intent(in) | :: | trans | |||
integer(kind=ilp), | intent(in) | :: | n | |||
integer(kind=ilp), | intent(in) | :: | k | |||
real(kind=sp), | intent(in) | :: | alpha | |||
real(kind=sp), | intent(in) | :: | a(lda,*) | |||
integer(kind=ilp), | intent(in) | :: | lda | |||
real(kind=sp), | intent(in) | :: | b(ldb,*) | |||
integer(kind=ilp), | intent(in) | :: | ldb | |||
real(kind=sp), | intent(in) | :: | beta | |||
real(kind=sp), | intent(inout) | :: | c(ldc,*) | |||
integer(kind=ilp), | intent(in) | :: | ldc |
SSYRK performs one of the symmetric rank k operations C := alphaAAT + betaC, or C := alphaATA + betaC, where alpha and beta are scalars, C is an n by n symmetric matrix and A is an n by k matrix in the first case and a k by n matrix in the second case.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | uplo | |||
character(len=1), | intent(in) | :: | trans | |||
integer(kind=ilp), | intent(in) | :: | n | |||
integer(kind=ilp), | intent(in) | :: | k | |||
real(kind=sp), | intent(in) | :: | alpha | |||
real(kind=sp), | intent(in) | :: | a(lda,*) | |||
integer(kind=ilp), | intent(in) | :: | lda | |||
real(kind=sp), | intent(in) | :: | beta | |||
real(kind=sp), | intent(inout) | :: | c(ldc,*) | |||
integer(kind=ilp), | intent(in) | :: | ldc |
STBMV performs one of the matrix-vector operations x := Ax, or x := ATx, where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular band matrix, with ( k + 1 ) diagonals.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | uplo | |||
character(len=1), | intent(in) | :: | trans | |||
character(len=1), | intent(in) | :: | diag | |||
integer(kind=ilp), | intent(in) | :: | n | |||
integer(kind=ilp), | intent(in) | :: | k | |||
real(kind=sp), | intent(in) | :: | a(lda,*) | |||
integer(kind=ilp), | intent(in) | :: | lda | |||
real(kind=sp), | intent(inout) | :: | x(*) | |||
integer(kind=ilp), | intent(in) | :: | incx |
STBSV solves one of the systems of equations Ax = b, or ATx = b, where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular band matrix, with ( k + 1 ) diagonals. No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | uplo | |||
character(len=1), | intent(in) | :: | trans | |||
character(len=1), | intent(in) | :: | diag | |||
integer(kind=ilp), | intent(in) | :: | n | |||
integer(kind=ilp), | intent(in) | :: | k | |||
real(kind=sp), | intent(in) | :: | a(lda,*) | |||
integer(kind=ilp), | intent(in) | :: | lda | |||
real(kind=sp), | intent(inout) | :: | x(*) | |||
integer(kind=ilp), | intent(in) | :: | incx |
STPMV performs one of the matrix-vector operations x := Ax, or x := ATx, where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in packed form.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | uplo | |||
character(len=1), | intent(in) | :: | trans | |||
character(len=1), | intent(in) | :: | diag | |||
integer(kind=ilp), | intent(in) | :: | n | |||
real(kind=sp), | intent(in) | :: | ap(*) | |||
real(kind=sp), | intent(inout) | :: | x(*) | |||
integer(kind=ilp), | intent(in) | :: | incx |
STPSV solves one of the systems of equations Ax = b, or ATx = b, where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in packed form. No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | uplo | |||
character(len=1), | intent(in) | :: | trans | |||
character(len=1), | intent(in) | :: | diag | |||
integer(kind=ilp), | intent(in) | :: | n | |||
real(kind=sp), | intent(in) | :: | ap(*) | |||
real(kind=sp), | intent(inout) | :: | x(*) | |||
integer(kind=ilp), | intent(in) | :: | incx |
STRMM performs one of the matrix-matrix operations B := alphaop( A )B, or B := alphaBop( A ), where alpha is a scalar, B is an m by n matrix, A is a unit, or non-unit, upper or lower triangular matrix and op( A ) is one of op( A ) = A or op( A ) = A**T.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | side | |||
character(len=1), | intent(in) | :: | uplo | |||
character(len=1), | intent(in) | :: | transa | |||
character(len=1), | intent(in) | :: | diag | |||
integer(kind=ilp), | intent(in) | :: | m | |||
integer(kind=ilp), | intent(in) | :: | n | |||
real(kind=sp), | intent(in) | :: | alpha | |||
real(kind=sp), | intent(in) | :: | a(lda,*) | |||
integer(kind=ilp), | intent(in) | :: | lda | |||
real(kind=sp), | intent(inout) | :: | b(ldb,*) | |||
integer(kind=ilp), | intent(in) | :: | ldb |
STRMV performs one of the matrix-vector operations x := Ax, or x := ATx, where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular matrix.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | uplo | |||
character(len=1), | intent(in) | :: | trans | |||
character(len=1), | intent(in) | :: | diag | |||
integer(kind=ilp), | intent(in) | :: | n | |||
real(kind=sp), | intent(in) | :: | a(lda,*) | |||
integer(kind=ilp), | intent(in) | :: | lda | |||
real(kind=sp), | intent(inout) | :: | x(*) | |||
integer(kind=ilp), | intent(in) | :: | incx |
STRSM solves one of the matrix equations op( A )X = alphaB, or Xop( A ) = alphaB, where alpha is a scalar, X and B are m by n matrices, A is a unit, or non-unit, upper or lower triangular matrix and op( A ) is one of op( A ) = A or op( A ) = A**T. The matrix X is overwritten on B.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | side | |||
character(len=1), | intent(in) | :: | uplo | |||
character(len=1), | intent(in) | :: | transa | |||
character(len=1), | intent(in) | :: | diag | |||
integer(kind=ilp), | intent(in) | :: | m | |||
integer(kind=ilp), | intent(in) | :: | n | |||
real(kind=sp), | intent(in) | :: | alpha | |||
real(kind=sp), | intent(in) | :: | a(lda,*) | |||
integer(kind=ilp), | intent(in) | :: | lda | |||
real(kind=sp), | intent(inout) | :: | b(ldb,*) | |||
integer(kind=ilp), | intent(in) | :: | ldb |
STRSV solves one of the systems of equations Ax = b, or ATx = b, where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular matrix. No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
character(len=1), | intent(in) | :: | uplo | |||
character(len=1), | intent(in) | :: | trans | |||
character(len=1), | intent(in) | :: | diag | |||
integer(kind=ilp), | intent(in) | :: | n | |||
real(kind=sp), | intent(in) | :: | a(lda,*) | |||
integer(kind=ilp), | intent(in) | :: | lda | |||
real(kind=sp), | intent(inout) | :: | x(*) | |||
integer(kind=ilp), | intent(in) | :: | incx |