#:include "common.fypp" module stdlib_linalg_blas_s use stdlib_linalg_constants use stdlib_linalg_blas_aux implicit none(type,external) private public :: sp,dp,qp,lk,ilp,ilp64 #:for ik,it,ii in LINALG_INT_KINDS_TYPES public :: stdlib${ii}$_sasum public :: stdlib${ii}$_saxpy public :: stdlib${ii}$_scasum public :: stdlib${ii}$_scnrm2 public :: stdlib${ii}$_scopy public :: stdlib${ii}$_sdot public :: stdlib${ii}$_sdsdot public :: stdlib${ii}$_sgbmv public :: stdlib${ii}$_sgemm public :: stdlib${ii}$_sgemv public :: stdlib${ii}$_sger public :: stdlib${ii}$_snrm2 public :: stdlib${ii}$_srot public :: stdlib${ii}$_srotg public :: stdlib${ii}$_srotm public :: stdlib${ii}$_srotmg public :: stdlib${ii}$_ssbmv public :: stdlib${ii}$_sscal public :: stdlib${ii}$_sspmv public :: stdlib${ii}$_sspr public :: stdlib${ii}$_sspr2 public :: stdlib${ii}$_sswap public :: stdlib${ii}$_ssymm public :: stdlib${ii}$_ssymv public :: stdlib${ii}$_ssyr public :: stdlib${ii}$_ssyr2 public :: stdlib${ii}$_ssyr2k public :: stdlib${ii}$_ssyrk public :: stdlib${ii}$_stbmv public :: stdlib${ii}$_stbsv public :: stdlib${ii}$_stpmv public :: stdlib${ii}$_stpsv public :: stdlib${ii}$_strmm public :: stdlib${ii}$_strmv public :: stdlib${ii}$_strsm public :: stdlib${ii}$_strsv #:endfor ! 32-bit real constants real(sp), parameter, private :: negone = -1.00_sp real(sp), parameter, private :: zero = 0.00_sp real(sp), parameter, private :: half = 0.50_sp real(sp), parameter, private :: one = 1.00_sp real(sp), parameter, private :: two = 2.00_sp real(sp), parameter, private :: three = 3.00_sp real(sp), parameter, private :: four = 4.00_sp real(sp), parameter, private :: eight = 8.00_sp real(sp), parameter, private :: ten = 10.00_sp ! 32-bit complex constants complex(sp), parameter, private :: czero = ( 0.0_sp,0.0_sp) complex(sp), parameter, private :: chalf = ( 0.5_sp,0.0_sp) complex(sp), parameter, private :: cone = ( 1.0_sp,0.0_sp) complex(sp), parameter, private :: cnegone = (-1.0_sp,0.0_sp) ! 32-bit scaling constants integer, parameter, private :: maxexp = maxexponent(zero) integer, parameter, private :: minexp = minexponent(zero) real(sp), parameter, private :: rradix = real(radix(zero),sp) real(sp), parameter, private :: ulp = epsilon(zero) real(sp), parameter, private :: eps = ulp*half real(sp), parameter, private :: safmin = rradix**max(minexp-1,1-maxexp) real(sp), parameter, private :: safmax = one/safmin real(sp), parameter, private :: smlnum = safmin/ulp real(sp), parameter, private :: bignum = safmax*ulp real(sp), parameter, private :: rtmin = sqrt(smlnum) real(sp), parameter, private :: rtmax = sqrt(bignum) ! 32-bit Blue's scaling constants ! ssml>=1/s and sbig==1/S with s,S as defined in https://doi.org/10.1145/355769.355771 real(sp), parameter, private :: tsml = rradix**ceiling((minexp-1)*half) real(sp), parameter, private :: tbig = rradix**floor((maxexp-digits(zero)+1)*half) real(sp), parameter, private :: ssml = rradix**(-floor((minexp-digits(zero))*half)) real(sp), parameter, private :: sbig = rradix**(-ceiling((maxexp+digits(zero)-1)*half)) contains #:for ik,it,ii in LINALG_INT_KINDS_TYPES pure real(sp) function stdlib${ii}$_sasum(n,sx,incx) !! SASUM takes the sum of the absolute values. !! uses unrolled loops for increment equal to one. ! -- reference blas level1 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments integer(${ik}$), intent(in) :: incx, n ! Array Arguments real(sp), intent(in) :: sx(*) ! ===================================================================== ! Local Scalars real(sp) :: stemp integer(${ik}$) :: i, m, mp1, nincx ! Intrinsic Functions intrinsic :: abs,mod stdlib${ii}$_sasum = zero stemp = zero if (n<=0 .or. incx<=0) return if (incx==1) then ! code for increment equal to 1 ! clean-up loop m = mod(n,6) if (m/=0) then do i = 1,m stemp = stemp + abs(sx(i)) end do if (n<6) then stdlib${ii}$_sasum = stemp return end if end if mp1 = m + 1 do i = mp1,n,6 stemp = stemp + abs(sx(i)) + abs(sx(i+1)) +abs(sx(i+2)) + abs(sx(i+3)) +abs(sx(i+& 4)) + abs(sx(i+5)) end do else ! code for increment not equal to 1 nincx = n*incx do i = 1,nincx,incx stemp = stemp + abs(sx(i)) end do end if stdlib${ii}$_sasum = stemp return end function stdlib${ii}$_sasum pure subroutine stdlib${ii}$_saxpy(n,sa,sx,incx,sy,incy) !! SAXPY constant times a vector plus a vector. !! uses unrolled loops for increments equal to one. ! -- reference blas level1 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments real(sp), intent(in) :: sa integer(${ik}$), intent(in) :: incx, incy, n ! Array Arguments real(sp), intent(in) :: sx(*) real(sp), intent(inout) :: sy(*) ! ===================================================================== ! Local Scalars integer(${ik}$) :: i, ix, iy, m, mp1 ! Intrinsic Functions intrinsic :: mod if (n<=0) return if (sa==0.0_sp) return if (incx==1 .and. incy==1) then ! code for both increments equal to 1 ! clean-up loop m = mod(n,4) if (m/=0) then do i = 1,m sy(i) = sy(i) + sa*sx(i) end do end if if (n<4) return mp1 = m + 1 do i = mp1,n,4 sy(i) = sy(i) + sa*sx(i) sy(i+1) = sy(i+1) + sa*sx(i+1) sy(i+2) = sy(i+2) + sa*sx(i+2) sy(i+3) = sy(i+3) + sa*sx(i+3) end do else ! code for unequal increments or equal increments ! not equal to 1 ix = 1 iy = 1 if (incx<0) ix = (-n+1)*incx + 1 if (incy<0) iy = (-n+1)*incy + 1 do i = 1,n sy(iy) = sy(iy) + sa*sx(ix) ix = ix + incx iy = iy + incy end do end if return end subroutine stdlib${ii}$_saxpy pure real(sp) function stdlib${ii}$_scasum(n,cx,incx) !! SCASUM takes the sum of the (|Re(.)| + |Im(.)|)'s of a complex vector and !! returns a single precision result. ! -- reference blas level1 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments integer(${ik}$), intent(in) :: incx, n ! Array Arguments complex(sp), intent(in) :: cx(*) ! ===================================================================== ! Local Scalars real(sp) :: stemp integer(${ik}$) :: i, nincx ! Intrinsic Functions intrinsic :: abs,aimag,real stdlib${ii}$_scasum = zero stemp = zero if (n<=0 .or. incx<=0) return if (incx==1) then ! code for increment equal to 1 do i = 1,n stemp = stemp + abs(real(cx(i),KIND=sp)) + abs(aimag(cx(i))) end do else ! code for increment not equal to 1 nincx = n*incx do i = 1,nincx,incx stemp = stemp + abs(real(cx(i),KIND=sp)) + abs(aimag(cx(i))) end do end if stdlib${ii}$_scasum = stemp return end function stdlib${ii}$_scasum pure function stdlib${ii}$_scnrm2( n, x, incx ) !! SCNRM2 returns the euclidean norm of a vector via the function !! name, so that !! SCNRM2 := sqrt( x**H*x ) real(sp) :: stdlib${ii}$_scnrm2 ! -- reference blas level1 routine (version 3.9.1_sp) -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! march 2021 ! Constants real(sp), parameter :: maxn = huge(0.0_sp) ! .. blue's scaling constants .. ! Scalar Arguments integer(${ik}$), intent(in) :: incx, n ! Array Arguments complex(sp), intent(in) :: x(*) ! Local Scalars integer(${ik}$) :: i, ix logical(lk) :: notbig real(sp) :: abig, amed, asml, ax, scl, sumsq, ymax, ymin ! quick return if possible stdlib${ii}$_scnrm2 = zero if( n <= 0 ) return scl = one sumsq = zero ! compute the sum of squares in 3 accumulators: ! abig -- sums of squares scaled down to avoid overflow ! asml -- sums of squares scaled up to avoid underflow ! amed -- sums of squares that do not require scaling ! the thresholds and multipliers are ! tbig -- values bigger than this are scaled down by sbig ! tsml -- values smaller than this are scaled up by ssml notbig = .true. asml = zero amed = zero abig = zero ix = 1 if( incx < 0 ) ix = 1 - (n-1)*incx do i = 1, n ax = abs(real(x(ix),KIND=sp)) if (ax > tbig) then abig = abig + (ax*sbig)**2 notbig = .false. else if (ax < tsml) then if (notbig) asml = asml + (ax*ssml)**2 else amed = amed + ax**2 end if ax = abs(aimag(x(ix))) if (ax > tbig) then abig = abig + (ax*sbig)**2 notbig = .false. else if (ax < tsml) then if (notbig) asml = asml + (ax*ssml)**2 else amed = amed + ax**2 end if ix = ix + incx end do ! combine abig and amed or amed and asml if more than one ! accumulator was used. if (abig > zero) then ! combine abig and amed if abig > 0. if ( (amed > zero) .or. (amed > maxn) .or. (amed /= amed) ) then abig = abig + (amed*sbig)*sbig end if scl = one / sbig sumsq = abig else if (asml > zero) then ! combine amed and asml if asml > 0. if ( (amed > zero) .or. (amed > maxn) .or. (amed /= amed) ) then amed = sqrt(amed) asml = sqrt(asml) / ssml if (asml > amed) then ymin = amed ymax = asml else ymin = asml ymax = amed end if scl = one sumsq = ymax**2*( one + (ymin/ymax)**2 ) else scl = one / ssml sumsq = asml end if else ! otherwise all values are mid-range scl = one sumsq = amed end if stdlib${ii}$_scnrm2 = scl*sqrt( sumsq ) return end function stdlib${ii}$_scnrm2 pure subroutine stdlib${ii}$_scopy(n,sx,incx,sy,incy) !! SCOPY copies a vector, x, to a vector, y. !! uses unrolled loops for increments equal to 1. ! -- reference blas level1 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments integer(${ik}$), intent(in) :: incx, incy, n ! Array Arguments real(sp), intent(in) :: sx(*) real(sp), intent(out) :: sy(*) ! ===================================================================== ! Local Scalars integer(${ik}$) :: i, ix, iy, m, mp1 ! Intrinsic Functions intrinsic :: mod if (n<=0) return if (incx==1 .and. incy==1) then ! code for both increments equal to 1 ! clean-up loop m = mod(n,7) if (m/=0) then do i = 1,m sy(i) = sx(i) end do if (n<7) return end if mp1 = m + 1 do i = mp1,n,7 sy(i) = sx(i) sy(i+1) = sx(i+1) sy(i+2) = sx(i+2) sy(i+3) = sx(i+3) sy(i+4) = sx(i+4) sy(i+5) = sx(i+5) sy(i+6) = sx(i+6) end do else ! code for unequal increments or equal increments ! not equal to 1 ix = 1 iy = 1 if (incx<0) ix = (-n+1)*incx + 1 if (incy<0) iy = (-n+1)*incy + 1 do i = 1,n sy(iy) = sx(ix) ix = ix + incx iy = iy + incy end do end if return end subroutine stdlib${ii}$_scopy pure real(sp) function stdlib${ii}$_sdot(n,sx,incx,sy,incy) !! SDOT forms the dot product of two vectors. !! uses unrolled loops for increments equal to one. ! -- reference blas level1 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments integer(${ik}$), intent(in) :: incx, incy, n ! Array Arguments real(sp), intent(in) :: sx(*), sy(*) ! ===================================================================== ! Local Scalars real(sp) :: stemp integer(${ik}$) :: i, ix, iy, m, mp1 ! Intrinsic Functions intrinsic :: mod stemp = zero stdlib${ii}$_sdot = zero if (n<=0) return if (incx==1 .and. incy==1) then ! code for both increments equal to 1 ! clean-up loop m = mod(n,5) if (m/=0) then do i = 1,m stemp = stemp + sx(i)*sy(i) end do if (n<5) then stdlib${ii}$_sdot=stemp return end if end if mp1 = m + 1 do i = mp1,n,5 stemp = stemp + sx(i)*sy(i) + sx(i+1)*sy(i+1) +sx(i+2)*sy(i+2) + sx(i+3)*sy(i+3) + & sx(i+4)*sy(i+4) end do else ! code for unequal increments or equal increments ! not equal to 1 ix = 1 iy = 1 if (incx<0) ix = (-n+1)*incx + 1 if (incy<0) iy = (-n+1)*incy + 1 do i = 1,n stemp = stemp + sx(ix)*sy(iy) ix = ix + incx iy = iy + incy end do end if stdlib${ii}$_sdot = stemp return end function stdlib${ii}$_sdot pure real(sp) function stdlib${ii}$_sdsdot(n,sb,sx,incx,sy,incy) !! Compute the inner product of two vectors with extended !! precision accumulation. !! Returns S.P. result with dot product accumulated in D.P. !! SDSDOT = SB + sum for I = 0 to N-1 of SX(LX+I*INCX)*SY(LY+I*INCY), !! where LX = 1 if INCX >= 0, else LX = 1+(1-N)*INCX, and LY is !! defined in a similar way using INCY. ! -- reference blas level1 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments real(sp), intent(in) :: sb integer(${ik}$), intent(in) :: incx, incy, n ! Array Arguments real(sp), intent(in) :: sx(*), sy(*) ! Local Scalars real(dp) :: dsdot integer(${ik}$) :: i, kx, ky, ns ! Intrinsic Functions intrinsic :: real dsdot = sb if (n<=0) then stdlib${ii}$_sdsdot = dsdot return end if if (incx==incy .and. incx>0) then ! code for equal and positive increments. ns = n*incx do i = 1,ns,incx dsdot = dsdot + real(sx(i),KIND=sp)*real(sy(i),KIND=sp) end do else ! code for unequal or nonpositive increments. kx = 1 ky = 1 if (incx<0) kx = 1 + (1-n)*incx if (incy<0) ky = 1 + (1-n)*incy do i = 1,n dsdot = dsdot + real(sx(kx),KIND=sp)*real(sy(ky),KIND=sp) kx = kx + incx ky = ky + incy end do end if stdlib${ii}$_sdsdot = dsdot return end function stdlib${ii}$_sdsdot pure subroutine stdlib${ii}$_sgbmv(trans,m,n,kl,ku,alpha,a,lda,x,incx,beta,y,incy) !! SGBMV performs one of the matrix-vector operations !! y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, !! where alpha and beta are scalars, x and y are vectors and A is an !! m by n band matrix, with kl sub-diagonals and ku super-diagonals. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments real(sp), intent(in) :: alpha, beta integer(${ik}$), intent(in) :: incx, incy, kl, ku, lda, m, n character, intent(in) :: trans ! Array Arguments real(sp), intent(in) :: a(lda,*), x(*) real(sp), intent(inout) :: y(*) ! ===================================================================== ! Local Scalars real(sp) :: temp integer(${ik}$) :: i, info, ix, iy, j, jx, jy, k, kup1, kx, ky, lenx, leny ! Intrinsic Functions intrinsic :: max,min ! test the input parameters. info = 0 if (.not.stdlib_lsame(trans,'N') .and. .not.stdlib_lsame(trans,'T') & .and..not.stdlib_lsame(trans,'C')) then info = 1 else if (m<0) then info = 2 else if (n<0) then info = 3 else if (kl<0) then info = 4 else if (ku<0) then info = 5 else if (lda< (kl+ku+1)) then info = 8 else if (incx==0) then info = 10 else if (incy==0) then info = 13 end if if (info/=0) then call stdlib${ii}$_xerbla('SGBMV ',info) return end if ! quick return if possible. if ((m==0) .or. (n==0) .or.((alpha==zero).and. (beta==one))) return ! set lenx and leny, the lengths of the vectors x and y, and set ! up the start points in x and y. if (stdlib_lsame(trans,'N')) then lenx = n leny = m else lenx = m leny = n end if if (incx>0) then kx = 1 else kx = 1 - (lenx-1)*incx end if if (incy>0) then ky = 1 else ky = 1 - (leny-1)*incy end if ! start the operations. in this version the elements of a are ! accessed sequentially with one pass through the band part of a. ! first form y := beta*y. if (beta/=one) then if (incy==1) then if (beta==zero) then do i = 1,leny y(i) = zero end do else do i = 1,leny y(i) = beta*y(i) end do end if else iy = ky if (beta==zero) then do i = 1,leny y(iy) = zero iy = iy + incy end do else do i = 1,leny y(iy) = beta*y(iy) iy = iy + incy end do end if end if end if if (alpha==zero) return kup1 = ku + 1 if (stdlib_lsame(trans,'N')) then ! form y := alpha*a*x + y. jx = kx if (incy==1) then do j = 1,n temp = alpha*x(jx) k = kup1 - j do i = max(1,j-ku),min(m,j+kl) y(i) = y(i) + temp*a(k+i,j) end do jx = jx + incx end do else do j = 1,n temp = alpha*x(jx) iy = ky k = kup1 - j do i = max(1,j-ku),min(m,j+kl) y(iy) = y(iy) + temp*a(k+i,j) iy = iy + incy end do jx = jx + incx if (j>ku) ky = ky + incy end do end if else ! form y := alpha*a**t*x + y. jy = ky if (incx==1) then do j = 1,n temp = zero k = kup1 - j do i = max(1,j-ku),min(m,j+kl) temp = temp + a(k+i,j)*x(i) end do y(jy) = y(jy) + alpha*temp jy = jy + incy end do else do j = 1,n temp = zero ix = kx k = kup1 - j do i = max(1,j-ku),min(m,j+kl) temp = temp + a(k+i,j)*x(ix) ix = ix + incx end do y(jy) = y(jy) + alpha*temp jy = jy + incy if (j>ku) kx = kx + incx end do end if end if return end subroutine stdlib${ii}$_sgbmv pure subroutine stdlib${ii}$_sgemm(transa,transb,m,n,k,alpha,a,lda,b,ldb,beta,c,ldc) !! SGEMM performs one of the matrix-matrix operations !! C := alpha*op( A )*op( B ) + beta*C, !! where op( X ) is one of !! op( X ) = X or op( X ) = X**T, !! alpha and beta are scalars, and A, B and C are matrices, with op( A ) !! an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. ! -- reference blas level3 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments real(sp), intent(in) :: alpha, beta integer(${ik}$), intent(in) :: k, lda, ldb, ldc, m, n character, intent(in) :: transa, transb ! Array Arguments real(sp), intent(in) :: a(lda,*), b(ldb,*) real(sp), intent(inout) :: c(ldc,*) ! ===================================================================== ! Intrinsic Functions intrinsic :: max ! Local Scalars real(sp) :: temp integer(${ik}$) :: i, info, j, l, nrowa, nrowb logical(lk) :: nota, notb ! set nota and notb as true if a and b respectively are not ! transposed and set nrowa and nrowb as the number of rows of a ! and b respectively. nota = stdlib_lsame(transa,'N') notb = stdlib_lsame(transb,'N') if (nota) then nrowa = m else nrowa = k end if if (notb) then nrowb = k else nrowb = n end if ! test the input parameters. info = 0 if ((.not.nota) .and. (.not.stdlib_lsame(transa,'C')) .and.(.not.stdlib_lsame(transa,& 'T'))) then info = 1 else if ((.not.notb) .and. (.not.stdlib_lsame(transb,'C')) .and.(.not.stdlib_lsame(& transb,'T'))) then info = 2 else if (m<0) then info = 3 else if (n<0) then info = 4 else if (k<0) then info = 5 else if (lda<max(1,nrowa)) then info = 8 else if (ldb<max(1,nrowb)) then info = 10 else if (ldc<max(1,m)) then info = 13 end if if (info/=0) then call stdlib${ii}$_xerbla('SGEMM ',info) return end if ! quick return if possible. if ((m==0) .or. (n==0) .or.(((alpha==zero).or. (k==0)).and. (beta==one))) & return ! and if alpha.eq.zero. if (alpha==zero) then if (beta==zero) then do j = 1,n do i = 1,m c(i,j) = zero end do end do else do j = 1,n do i = 1,m c(i,j) = beta*c(i,j) end do end do end if return end if ! start the operations. if (notb) then if (nota) then ! form c := alpha*a*b + beta*c. do j = 1,n if (beta==zero) then do i = 1,m c(i,j) = zero end do else if (beta/=one) then do i = 1,m c(i,j) = beta*c(i,j) end do end if do l = 1,k temp = alpha*b(l,j) do i = 1,m c(i,j) = c(i,j) + temp*a(i,l) end do end do end do else ! form c := alpha*a**t*b + beta*c do j = 1,n do i = 1,m temp = zero do l = 1,k temp = temp + a(l,i)*b(l,j) end do if (beta==zero) then c(i,j) = alpha*temp else c(i,j) = alpha*temp + beta*c(i,j) end if end do end do end if else if (nota) then ! form c := alpha*a*b**t + beta*c do j = 1,n if (beta==zero) then do i = 1,m c(i,j) = zero end do else if (beta/=one) then do i = 1,m c(i,j) = beta*c(i,j) end do end if do l = 1,k temp = alpha*b(j,l) do i = 1,m c(i,j) = c(i,j) + temp*a(i,l) end do end do end do else ! form c := alpha*a**t*b**t + beta*c do j = 1,n do i = 1,m temp = zero do l = 1,k temp = temp + a(l,i)*b(j,l) end do if (beta==zero) then c(i,j) = alpha*temp else c(i,j) = alpha*temp + beta*c(i,j) end if end do end do end if end if return end subroutine stdlib${ii}$_sgemm pure subroutine stdlib${ii}$_sgemv(trans,m,n,alpha,a,lda,x,incx,beta,y,incy) !! SGEMV performs one of the matrix-vector operations !! y := alpha*A*x + beta*y, or y := alpha*A**T*x + beta*y, !! where alpha and beta are scalars, x and y are vectors and A is an !! m by n matrix. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments real(sp), intent(in) :: alpha, beta integer(${ik}$), intent(in) :: incx, incy, lda, m, n character, intent(in) :: trans ! Array Arguments real(sp), intent(in) :: a(lda,*), x(*) real(sp), intent(inout) :: y(*) ! ===================================================================== ! Local Scalars real(sp) :: temp integer(${ik}$) :: i, info, ix, iy, j, jx, jy, kx, ky, lenx, leny ! Intrinsic Functions intrinsic :: max ! test the input parameters. info = 0 if (.not.stdlib_lsame(trans,'N') .and. .not.stdlib_lsame(trans,'T') & .and..not.stdlib_lsame(trans,'C')) then info = 1 else if (m<0) then info = 2 else if (n<0) then info = 3 else if (lda<max(1,m)) then info = 6 else if (incx==0) then info = 8 else if (incy==0) then info = 11 end if if (info/=0) then call stdlib${ii}$_xerbla('SGEMV ',info) return end if ! quick return if possible. if ((m==0) .or. (n==0) .or.((alpha==zero).and. (beta==one))) return ! set lenx and leny, the lengths of the vectors x and y, and set ! up the start points in x and y. if (stdlib_lsame(trans,'N')) then lenx = n leny = m else lenx = m leny = n end if if (incx>0) then kx = 1 else kx = 1 - (lenx-1)*incx end if if (incy>0) then ky = 1 else ky = 1 - (leny-1)*incy end if ! start the operations. in this version the elements of a are ! accessed sequentially with one pass through a. ! first form y := beta*y. if (beta/=one) then if (incy==1) then if (beta==zero) then do i = 1,leny y(i) = zero end do else do i = 1,leny y(i) = beta*y(i) end do end if else iy = ky if (beta==zero) then do i = 1,leny y(iy) = zero iy = iy + incy end do else do i = 1,leny y(iy) = beta*y(iy) iy = iy + incy end do end if end if end if if (alpha==zero) return if (stdlib_lsame(trans,'N')) then ! form y := alpha*a*x + y. jx = kx if (incy==1) then do j = 1,n temp = alpha*x(jx) do i = 1,m y(i) = y(i) + temp*a(i,j) end do jx = jx + incx end do else do j = 1,n temp = alpha*x(jx) iy = ky do i = 1,m y(iy) = y(iy) + temp*a(i,j) iy = iy + incy end do jx = jx + incx end do end if else ! form y := alpha*a**t*x + y. jy = ky if (incx==1) then do j = 1,n temp = zero do i = 1,m temp = temp + a(i,j)*x(i) end do y(jy) = y(jy) + alpha*temp jy = jy + incy end do else do j = 1,n temp = zero ix = kx do i = 1,m temp = temp + a(i,j)*x(ix) ix = ix + incx end do y(jy) = y(jy) + alpha*temp jy = jy + incy end do end if end if return end subroutine stdlib${ii}$_sgemv pure subroutine stdlib${ii}$_sger(m,n,alpha,x,incx,y,incy,a,lda) !! SGER performs the rank 1 operation !! A := alpha*x*y**T + A, !! where alpha is a scalar, x is an m element vector, y is an n element !! vector and A is an m by n matrix. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments real(sp), intent(in) :: alpha integer(${ik}$), intent(in) :: incx, incy, lda, m, n ! Array Arguments real(sp), intent(inout) :: a(lda,*) real(sp), intent(in) :: x(*), y(*) ! ===================================================================== ! Local Scalars real(sp) :: temp integer(${ik}$) :: i, info, ix, j, jy, kx ! Intrinsic Functions intrinsic :: max ! test the input parameters. info = 0 if (m<0) then info = 1 else if (n<0) then info = 2 else if (incx==0) then info = 5 else if (incy==0) then info = 7 else if (lda<max(1,m)) then info = 9 end if if (info/=0) then call stdlib${ii}$_xerbla('SGER ',info) return end if ! quick return if possible. if ((m==0) .or. (n==0) .or. (alpha==zero)) return ! start the operations. in this version the elements of a are ! accessed sequentially with one pass through a. if (incy>0) then jy = 1 else jy = 1 - (n-1)*incy end if if (incx==1) then do j = 1,n if (y(jy)/=zero) then temp = alpha*y(jy) do i = 1,m a(i,j) = a(i,j) + x(i)*temp end do end if jy = jy + incy end do else if (incx>0) then kx = 1 else kx = 1 - (m-1)*incx end if do j = 1,n if (y(jy)/=zero) then temp = alpha*y(jy) ix = kx do i = 1,m a(i,j) = a(i,j) + x(ix)*temp ix = ix + incx end do end if jy = jy + incy end do end if return end subroutine stdlib${ii}$_sger pure function stdlib${ii}$_snrm2( n, x, incx ) !! SNRM2 returns the euclidean norm of a vector via the function !! name, so that !! SNRM2 := sqrt( x'*x ). real(sp) :: stdlib${ii}$_snrm2 ! -- reference blas level1 routine (version 3.9.1_sp) -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! march 2021 ! Constants real(sp), parameter :: maxn = huge(0.0_sp) ! .. blue's scaling constants .. ! Scalar Arguments integer(${ik}$), intent(in) :: incx, n ! Array Arguments real(sp), intent(in) :: x(*) ! Local Scalars integer(${ik}$) :: i, ix logical(lk) :: notbig real(sp) :: abig, amed, asml, ax, scl, sumsq, ymax, ymin ! quick return if possible stdlib${ii}$_snrm2 = zero if( n <= 0 ) return scl = one sumsq = zero ! compute the sum of squares in 3 accumulators: ! abig -- sums of squares scaled down to avoid overflow ! asml -- sums of squares scaled up to avoid underflow ! amed -- sums of squares that do not require scaling ! the thresholds and multipliers are ! tbig -- values bigger than this are scaled down by sbig ! tsml -- values smaller than this are scaled up by ssml notbig = .true. asml = zero amed = zero abig = zero ix = 1 if( incx < 0 ) ix = 1 - (n-1)*incx do i = 1, n ax = abs(x(ix)) if (ax > tbig) then abig = abig + (ax*sbig)**2 notbig = .false. else if (ax < tsml) then if (notbig) asml = asml + (ax*ssml)**2 else amed = amed + ax**2 end if ix = ix + incx end do ! combine abig and amed or amed and asml if more than one ! accumulator was used. if (abig > zero) then ! combine abig and amed if abig > 0. if ( (amed > zero) .or. (amed > maxn) .or. (amed /= amed) ) then abig = abig + (amed*sbig)*sbig end if scl = one / sbig sumsq = abig else if (asml > zero) then ! combine amed and asml if asml > 0. if ( (amed > zero) .or. (amed > maxn) .or. (amed /= amed) ) then amed = sqrt(amed) asml = sqrt(asml) / ssml if (asml > amed) then ymin = amed ymax = asml else ymin = asml ymax = amed end if scl = one sumsq = ymax**2*( one + (ymin/ymax)**2 ) else scl = one / ssml sumsq = asml end if else ! otherwise all values are mid-range scl = one sumsq = amed end if stdlib${ii}$_snrm2 = scl*sqrt( sumsq ) return end function stdlib${ii}$_snrm2 pure subroutine stdlib${ii}$_srot(n,sx,incx,sy,incy,c,s) !! applies a plane rotation. ! -- reference blas level1 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments real(sp), intent(in) :: c, s integer(${ik}$), intent(in) :: incx, incy, n ! Array Arguments real(sp), intent(inout) :: sx(*), sy(*) ! ===================================================================== ! Local Scalars real(sp) :: stemp integer(${ik}$) :: i, ix, iy if (n<=0) return if (incx==1 .and. incy==1) then ! code for both increments equal to 1 do i = 1,n stemp = c*sx(i) + s*sy(i) sy(i) = c*sy(i) - s*sx(i) sx(i) = stemp end do else ! code for unequal increments or equal increments not equal ! to 1 ix = 1 iy = 1 if (incx<0) ix = (-n+1)*incx + 1 if (incy<0) iy = (-n+1)*incy + 1 do i = 1,n stemp = c*sx(ix) + s*sy(iy) sy(iy) = c*sy(iy) - s*sx(ix) sx(ix) = stemp ix = ix + incx iy = iy + incy end do end if return end subroutine stdlib${ii}$_srot pure subroutine stdlib${ii}$_srotg( a, b, c, s ) !! The computation uses the formulas !! sigma = sgn(a) if |a| > |b| !! = sgn(b) if |b| >= |a| !! r = sigma*sqrt( a**2 + b**2 ) !! c = 1; s = 0 if r = 0 !! c = a/r; s = b/r if r != 0 !! The subroutine also computes !! z = s if |a| > |b|, !! = 1/c if |b| >= |a| and c != 0 !! = 1 if c = 0 !! This allows c and s to be reconstructed from z as follows: !! If z = 1, set c = 0, s = 1. !! If |z| < 1, set c = sqrt(1 - z**2) and s = z. !! If |z| > 1, set c = 1/z and s = sqrt( 1 - c**2). ! -- reference blas level1 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Constants ! Scaling Constants ! Scalar Arguments real(sp), intent(inout) :: a, b real(sp), intent(out) :: c, s ! Local Scalars real(sp) :: anorm, bnorm, scl, sigma, r, z anorm = abs(a) bnorm = abs(b) if( bnorm == zero ) then c = one s = zero b = zero else if( anorm == zero ) then c = zero s = one a = b b = one else scl = min( safmax, max( safmin, anorm, bnorm ) ) if( anorm > bnorm ) then sigma = sign(one,a) else sigma = sign(one,b) end if r = sigma*( scl*sqrt((a/scl)**2 + (b/scl)**2) ) c = a/r s = b/r if( anorm > bnorm ) then z = s else if( c /= zero ) then z = one/c else z = one end if a = r b = z end if return end subroutine stdlib${ii}$_srotg pure subroutine stdlib${ii}$_srotm(n,sx,incx,sy,incy,sparam) !! SROTM applies the modified Givens transformation, \(H\), to the 2-by-N matrix !! $$ \left[ \begin{array}{c}SX^T\\SY^T\\ \end{array} \right], $$ !! where \(^T\) indicates transpose. The elements of \(SX\) are in !! SX(LX+I*INCX), I = 0:N-1, where LX = 1 if INCX >= 0, else LX = (-INCX)*N, !! and similarly for SY using LY and INCY. !! With SPARAM(1)=SFLAG, \(H\) has one of the following forms: !! $$ H=\underbrace{\begin{bmatrix}SH_{11} & SH_{12}\\SH_{21} & SH_{22}\end{bmatrix}}_{SFLAG=-1}, !! \underbrace{\begin{bmatrix}1 & SH_{12}\\SH_{21} & 1\end{bmatrix}}_{SFLAG=0}, !! \underbrace{\begin{bmatrix}SH_{11} & 1\\-1 & SH_{22}\end{bmatrix}}_{SFLAG=1}, !! \underbrace{\begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}}_{SFLAG=-2}. $$ !! See SROTMG for a description of data storage in SPARAM. ! -- reference blas level1 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments integer(${ik}$), intent(in) :: incx, incy, n ! Array Arguments real(sp), intent(in) :: sparam(5) real(sp), intent(inout) :: sx(*), sy(*) ! ===================================================================== ! Local Scalars real(sp) :: sflag, sh11, sh12, sh21, sh22, two, w, z, zero integer(${ik}$) :: i, kx, ky, nsteps ! Data Statements zero = 0.0_sp two = 2.0_sp sflag = sparam(1) if (n<=0 .or. (sflag+two==zero)) return if (incx==incy.and.incx>0) then nsteps = n*incx if (sflag<zero) then sh11 = sparam(2) sh12 = sparam(4) sh21 = sparam(3) sh22 = sparam(5) do i = 1,nsteps,incx w = sx(i) z = sy(i) sx(i) = w*sh11 + z*sh12 sy(i) = w*sh21 + z*sh22 end do else if (sflag==zero) then sh12 = sparam(4) sh21 = sparam(3) do i = 1,nsteps,incx w = sx(i) z = sy(i) sx(i) = w + z*sh12 sy(i) = w*sh21 + z end do else sh11 = sparam(2) sh22 = sparam(5) do i = 1,nsteps,incx w = sx(i) z = sy(i) sx(i) = w*sh11 + z sy(i) = -w + sh22*z end do end if else kx = 1 ky = 1 if (incx<0) kx = 1 + (1-n)*incx if (incy<0) ky = 1 + (1-n)*incy if (sflag<zero) then sh11 = sparam(2) sh12 = sparam(4) sh21 = sparam(3) sh22 = sparam(5) do i = 1,n w = sx(kx) z = sy(ky) sx(kx) = w*sh11 + z*sh12 sy(ky) = w*sh21 + z*sh22 kx = kx + incx ky = ky + incy end do else if (sflag==zero) then sh12 = sparam(4) sh21 = sparam(3) do i = 1,n w = sx(kx) z = sy(ky) sx(kx) = w + z*sh12 sy(ky) = w*sh21 + z kx = kx + incx ky = ky + incy end do else sh11 = sparam(2) sh22 = sparam(5) do i = 1,n w = sx(kx) z = sy(ky) sx(kx) = w*sh11 + z sy(ky) = -w + sh22*z kx = kx + incx ky = ky + incy end do end if end if return end subroutine stdlib${ii}$_srotm pure subroutine stdlib${ii}$_srotmg(sd1,sd2,sx1,sy1,sparam) !! SROTMG Constructs the modified Givens transformation matrix \(H\) which zeros the !! second component of the 2-vector !! $$ \left[ {\sqrt{SD_1}\cdot SX_1,\sqrt{SD_2}\cdot SY_2} \right]^T. $$ !! With SPARAM(1)=SFLAG, \(H\) has one of the following forms: !! $$ H=\underbrace{\begin{bmatrix}SH_{11} & SD_{12}\\SH_{21} & SH_{22}\end{bmatrix}}_{SFLAG=-1}, !! \underbrace{\begin{bmatrix}1 & SH_{12}\\SH_{21} & 1\end{bmatrix}}_{SFLAG=0}, !! \underbrace{\begin{bmatrix}SH_{11} & 1\\-1 & SH_{22}\end{bmatrix}}_{SFLAG=1}, !! \underbrace{\begin{bmatrix}1 & 0\\0 & 1\end{bmatrix}}_{SFLAG=2}. $$ !! Locations 2-4 of SPARAM contain SH11, SH21, SH12 and SH22 respectively. !! (Values of 1.0, -1.0, or 0.0 implied by the value of SPARAM(1) are not stored in SPARAM.) !! The values of parameters GAMSQ and RGAMSQ may be inexact. This is OK as they are only !! used for testing the size of DD1 and DD2. All actual scaling of data is done using GAM. ! -- reference blas level1 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments real(sp), intent(inout) :: sd1, sd2, sx1 real(sp), intent(in) :: sy1 ! Array Arguments real(sp), intent(out) :: sparam(5) ! ===================================================================== ! Local Scalars real(sp) :: gam, gamsq, one, rgamsq, sflag, sh11, sh12, sh21, sh22, sp1, sp2, sq1, sq2,& stemp, su, two, zero ! Intrinsic Functions intrinsic :: abs ! Data Statements zero = 0.0_sp one = 1.0_sp two = 2.0_sp gam = 4096.0_sp gamsq = 1.67772e7_sp rgamsq = 5.96046e-8_sp if (sd1<zero) then ! go zero-h-d-and-sx1.. sflag = -one sh11 = zero sh12 = zero sh21 = zero sh22 = zero sd1 = zero sd2 = zero sx1 = zero else ! case-sd1-nonnegative sp2 = sd2*sy1 if (sp2==zero) then sflag = -two sparam(1) = sflag return end if ! regular-case.. sp1 = sd1*sx1 sq2 = sp2*sy1 sq1 = sp1*sx1 if (abs(sq1)>abs(sq2)) then sh21 = -sy1/sx1 sh12 = sp2/sp1 su = one - sh12*sh21 if (su>zero) then sflag = zero sd1 = sd1/su sd2 = sd2/su sx1 = sx1*su else ! this code path if here for safety. we do not expect this ! condition to ever hold except in edge cases with rounding ! errors. see doi: 10.1145/355841.355847 sflag = -one sh11 = zero sh12 = zero sh21 = zero sh22 = zero sd1 = zero sd2 = zero sx1 = zero end if else if (sq2<zero) then ! go zero-h-d-and-sx1.. sflag = -one sh11 = zero sh12 = zero sh21 = zero sh22 = zero sd1 = zero sd2 = zero sx1 = zero else sflag = one sh11 = sp1/sp2 sh22 = sx1/sy1 su = one + sh11*sh22 stemp = sd2/su sd2 = sd1/su sd1 = stemp sx1 = sy1*su end if end if ! procedure..scale-check if (sd1/=zero) then do while ((sd1<=rgamsq) .or. (sd1>=gamsq)) if (sflag==zero) then sh11 = one sh22 = one sflag = -one else sh21 = -one sh12 = one sflag = -one end if if (sd1<=rgamsq) then sd1 = sd1*gam**2 sx1 = sx1/gam sh11 = sh11/gam sh12 = sh12/gam else sd1 = sd1/gam**2 sx1 = sx1*gam sh11 = sh11*gam sh12 = sh12*gam end if enddo end if if (sd2/=zero) then do while ( (abs(sd2)<=rgamsq) .or. (abs(sd2)>=gamsq) ) if (sflag==zero) then sh11 = one sh22 = one sflag = -one else sh21 = -one sh12 = one sflag = -one end if if (abs(sd2)<=rgamsq) then sd2 = sd2*gam**2 sh21 = sh21/gam sh22 = sh22/gam else sd2 = sd2/gam**2 sh21 = sh21*gam sh22 = sh22*gam end if end do end if end if if (sflag<zero) then sparam(2) = sh11 sparam(3) = sh21 sparam(4) = sh12 sparam(5) = sh22 else if (sflag==zero) then sparam(3) = sh21 sparam(4) = sh12 else sparam(2) = sh11 sparam(5) = sh22 end if sparam(1) = sflag return end subroutine stdlib${ii}$_srotmg pure subroutine stdlib${ii}$_ssbmv(uplo,n,k,alpha,a,lda,x,incx,beta,y,incy) !! SSBMV performs the matrix-vector operation !! y := alpha*A*x + beta*y, !! where alpha and beta are scalars, x and y are n element vectors and !! A is an n by n symmetric band matrix, with k super-diagonals. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments real(sp), intent(in) :: alpha, beta integer(${ik}$), intent(in) :: incx, incy, k, lda, n character, intent(in) :: uplo ! Array Arguments real(sp), intent(in) :: a(lda,*), x(*) real(sp), intent(inout) :: y(*) ! ===================================================================== ! Local Scalars real(sp) :: temp1, temp2 integer(${ik}$) :: i, info, ix, iy, j, jx, jy, kplus1, kx, ky, l ! Intrinsic Functions intrinsic :: max,min ! test the input parameters. info = 0 if (.not.stdlib_lsame(uplo,'U') .and. .not.stdlib_lsame(uplo,'L')) then info = 1 else if (n<0) then info = 2 else if (k<0) then info = 3 else if (lda< (k+1)) then info = 6 else if (incx==0) then info = 8 else if (incy==0) then info = 11 end if if (info/=0) then call stdlib${ii}$_xerbla('SSBMV ',info) return end if ! quick return if possible. if ((n==0) .or. ((alpha==zero).and. (beta==one))) return ! set up the start points in x and y. if (incx>0) then kx = 1 else kx = 1 - (n-1)*incx end if if (incy>0) then ky = 1 else ky = 1 - (n-1)*incy end if ! start the operations. in this version the elements of the array a ! are accessed sequentially with one pass through a. ! first form y := beta*y. if (beta/=one) then if (incy==1) then if (beta==zero) then do i = 1,n y(i) = zero end do else do i = 1,n y(i) = beta*y(i) end do end if else iy = ky if (beta==zero) then do i = 1,n y(iy) = zero iy = iy + incy end do else do i = 1,n y(iy) = beta*y(iy) iy = iy + incy end do end if end if end if if (alpha==zero) return if (stdlib_lsame(uplo,'U')) then ! form y when upper triangle of a is stored. kplus1 = k + 1 if ((incx==1) .and. (incy==1)) then do j = 1,n temp1 = alpha*x(j) temp2 = zero l = kplus1 - j do i = max(1,j-k),j - 1 y(i) = y(i) + temp1*a(l+i,j) temp2 = temp2 + a(l+i,j)*x(i) end do y(j) = y(j) + temp1*a(kplus1,j) + alpha*temp2 end do else jx = kx jy = ky do j = 1,n temp1 = alpha*x(jx) temp2 = zero ix = kx iy = ky l = kplus1 - j do i = max(1,j-k),j - 1 y(iy) = y(iy) + temp1*a(l+i,j) temp2 = temp2 + a(l+i,j)*x(ix) ix = ix + incx iy = iy + incy end do y(jy) = y(jy) + temp1*a(kplus1,j) + alpha*temp2 jx = jx + incx jy = jy + incy if (j>k) then kx = kx + incx ky = ky + incy end if end do end if else ! form y when lower triangle of a is stored. if ((incx==1) .and. (incy==1)) then do j = 1,n temp1 = alpha*x(j) temp2 = zero y(j) = y(j) + temp1*a(1,j) l = 1 - j do i = j + 1,min(n,j+k) y(i) = y(i) + temp1*a(l+i,j) temp2 = temp2 + a(l+i,j)*x(i) end do y(j) = y(j) + alpha*temp2 end do else jx = kx jy = ky do j = 1,n temp1 = alpha*x(jx) temp2 = zero y(jy) = y(jy) + temp1*a(1,j) l = 1 - j ix = jx iy = jy do i = j + 1,min(n,j+k) ix = ix + incx iy = iy + incy y(iy) = y(iy) + temp1*a(l+i,j) temp2 = temp2 + a(l+i,j)*x(ix) end do y(jy) = y(jy) + alpha*temp2 jx = jx + incx jy = jy + incy end do end if end if return end subroutine stdlib${ii}$_ssbmv pure subroutine stdlib${ii}$_sscal(n,sa,sx,incx) !! SSCAL scales a vector by a constant. !! uses unrolled loops for increment equal to 1. ! -- reference blas level1 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments real(sp), intent(in) :: sa integer(${ik}$), intent(in) :: incx, n ! Array Arguments real(sp), intent(inout) :: sx(*) ! ===================================================================== ! Local Scalars integer(${ik}$) :: i, m, mp1, nincx ! Intrinsic Functions intrinsic :: mod if (n<=0 .or. incx<=0) return if (incx==1) then ! code for increment equal to 1 ! clean-up loop m = mod(n,5) if (m/=0) then do i = 1,m sx(i) = sa*sx(i) end do if (n<5) return end if mp1 = m + 1 do i = mp1,n,5 sx(i) = sa*sx(i) sx(i+1) = sa*sx(i+1) sx(i+2) = sa*sx(i+2) sx(i+3) = sa*sx(i+3) sx(i+4) = sa*sx(i+4) end do else ! code for increment not equal to 1 nincx = n*incx do i = 1,nincx,incx sx(i) = sa*sx(i) end do end if return end subroutine stdlib${ii}$_sscal pure subroutine stdlib${ii}$_sspmv(uplo,n,alpha,ap,x,incx,beta,y,incy) !! SSPMV performs the matrix-vector operation !! y := alpha*A*x + beta*y, !! where alpha and beta are scalars, x and y are n element vectors and !! A is an n by n symmetric matrix, supplied in packed form. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments real(sp), intent(in) :: alpha, beta integer(${ik}$), intent(in) :: incx, incy, n character, intent(in) :: uplo ! Array Arguments real(sp), intent(in) :: ap(*), x(*) real(sp), intent(inout) :: y(*) ! ===================================================================== ! Local Scalars real(sp) :: temp1, temp2 integer(${ik}$) :: i, info, ix, iy, j, jx, jy, k, kk, kx, ky ! test the input parameters. info = 0 if (.not.stdlib_lsame(uplo,'U') .and. .not.stdlib_lsame(uplo,'L')) then info = 1 else if (n<0) then info = 2 else if (incx==0) then info = 6 else if (incy==0) then info = 9 end if if (info/=0) then call stdlib${ii}$_xerbla('SSPMV ',info) return end if ! quick return if possible. if ((n==0) .or. ((alpha==zero).and. (beta==one))) return ! set up the start points in x and y. if (incx>0) then kx = 1 else kx = 1 - (n-1)*incx end if if (incy>0) then ky = 1 else ky = 1 - (n-1)*incy end if ! start the operations. in this version the elements of the array ap ! are accessed sequentially with one pass through ap. ! first form y := beta*y. if (beta/=one) then if (incy==1) then if (beta==zero) then do i = 1,n y(i) = zero end do else do i = 1,n y(i) = beta*y(i) end do end if else iy = ky if (beta==zero) then do i = 1,n y(iy) = zero iy = iy + incy end do else do i = 1,n y(iy) = beta*y(iy) iy = iy + incy end do end if end if end if if (alpha==zero) return kk = 1 if (stdlib_lsame(uplo,'U')) then ! form y when ap contains the upper triangle. if ((incx==1) .and. (incy==1)) then do j = 1,n temp1 = alpha*x(j) temp2 = zero k = kk do i = 1,j - 1 y(i) = y(i) + temp1*ap(k) temp2 = temp2 + ap(k)*x(i) k = k + 1 end do y(j) = y(j) + temp1*ap(kk+j-1) + alpha*temp2 kk = kk + j end do else jx = kx jy = ky do j = 1,n temp1 = alpha*x(jx) temp2 = zero ix = kx iy = ky do k = kk,kk + j - 2 y(iy) = y(iy) + temp1*ap(k) temp2 = temp2 + ap(k)*x(ix) ix = ix + incx iy = iy + incy end do y(jy) = y(jy) + temp1*ap(kk+j-1) + alpha*temp2 jx = jx + incx jy = jy + incy kk = kk + j end do end if else ! form y when ap contains the lower triangle. if ((incx==1) .and. (incy==1)) then do j = 1,n temp1 = alpha*x(j) temp2 = zero y(j) = y(j) + temp1*ap(kk) k = kk + 1 do i = j + 1,n y(i) = y(i) + temp1*ap(k) temp2 = temp2 + ap(k)*x(i) k = k + 1 end do y(j) = y(j) + alpha*temp2 kk = kk + (n-j+1) end do else jx = kx jy = ky do j = 1,n temp1 = alpha*x(jx) temp2 = zero y(jy) = y(jy) + temp1*ap(kk) ix = jx iy = jy do k = kk + 1,kk + n - j ix = ix + incx iy = iy + incy y(iy) = y(iy) + temp1*ap(k) temp2 = temp2 + ap(k)*x(ix) end do y(jy) = y(jy) + alpha*temp2 jx = jx + incx jy = jy + incy kk = kk + (n-j+1) end do end if end if return end subroutine stdlib${ii}$_sspmv pure subroutine stdlib${ii}$_sspr(uplo,n,alpha,x,incx,ap) !! SSPR performs the symmetric rank 1 operation !! A := alpha*x*x**T + A, !! where alpha is a real scalar, x is an n element vector and A is an !! n by n symmetric matrix, supplied in packed form. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments real(sp), intent(in) :: alpha integer(${ik}$), intent(in) :: incx, n character, intent(in) :: uplo ! Array Arguments real(sp), intent(inout) :: ap(*) real(sp), intent(in) :: x(*) ! ===================================================================== ! Local Scalars real(sp) :: temp integer(${ik}$) :: i, info, ix, j, jx, k, kk, kx ! test the input parameters. info = 0 if (.not.stdlib_lsame(uplo,'U') .and. .not.stdlib_lsame(uplo,'L')) then info = 1 else if (n<0) then info = 2 else if (incx==0) then info = 5 end if if (info/=0) then call stdlib${ii}$_xerbla('SSPR ',info) return end if ! quick return if possible. if ((n==0) .or. (alpha==zero)) return ! set the start point in x if the increment is not unity. if (incx<=0) then kx = 1 - (n-1)*incx else if (incx/=1) then kx = 1 end if ! start the operations. in this version the elements of the array ap ! are accessed sequentially with one pass through ap. kk = 1 if (stdlib_lsame(uplo,'U')) then ! form a when upper triangle is stored in ap. if (incx==1) then do j = 1,n if (x(j)/=zero) then temp = alpha*x(j) k = kk do i = 1,j ap(k) = ap(k) + x(i)*temp k = k + 1 end do end if kk = kk + j end do else jx = kx do j = 1,n if (x(jx)/=zero) then temp = alpha*x(jx) ix = kx do k = kk,kk + j - 1 ap(k) = ap(k) + x(ix)*temp ix = ix + incx end do end if jx = jx + incx kk = kk + j end do end if else ! form a when lower triangle is stored in ap. if (incx==1) then do j = 1,n if (x(j)/=zero) then temp = alpha*x(j) k = kk do i = j,n ap(k) = ap(k) + x(i)*temp k = k + 1 end do end if kk = kk + n - j + 1 end do else jx = kx do j = 1,n if (x(jx)/=zero) then temp = alpha*x(jx) ix = jx do k = kk,kk + n - j ap(k) = ap(k) + x(ix)*temp ix = ix + incx end do end if jx = jx + incx kk = kk + n - j + 1 end do end if end if return end subroutine stdlib${ii}$_sspr pure subroutine stdlib${ii}$_sspr2(uplo,n,alpha,x,incx,y,incy,ap) !! SSPR2 performs the symmetric rank 2 operation !! A := alpha*x*y**T + alpha*y*x**T + A, !! where alpha is a scalar, x and y are n element vectors and A is an !! n by n symmetric matrix, supplied in packed form. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments real(sp), intent(in) :: alpha integer(${ik}$), intent(in) :: incx, incy, n character, intent(in) :: uplo ! Array Arguments real(sp), intent(inout) :: ap(*) real(sp), intent(in) :: x(*), y(*) ! ===================================================================== ! Local Scalars real(sp) :: temp1, temp2 integer(${ik}$) :: i, info, ix, iy, j, jx, jy, k, kk, kx, ky ! test the input parameters. info = 0 if (.not.stdlib_lsame(uplo,'U') .and. .not.stdlib_lsame(uplo,'L')) then info = 1 else if (n<0) then info = 2 else if (incx==0) then info = 5 else if (incy==0) then info = 7 end if if (info/=0) then call stdlib${ii}$_xerbla('SSPR2 ',info) return end if ! quick return if possible. if ((n==0) .or. (alpha==zero)) return ! set up the start points in x and y if the increments are not both ! unity. if ((incx/=1) .or. (incy/=1)) then if (incx>0) then kx = 1 else kx = 1 - (n-1)*incx end if if (incy>0) then ky = 1 else ky = 1 - (n-1)*incy end if jx = kx jy = ky end if ! start the operations. in this version the elements of the array ap ! are accessed sequentially with one pass through ap. kk = 1 if (stdlib_lsame(uplo,'U')) then ! form a when upper triangle is stored in ap. if ((incx==1) .and. (incy==1)) then do j = 1,n if ((x(j)/=zero) .or. (y(j)/=zero)) then temp1 = alpha*y(j) temp2 = alpha*x(j) k = kk do i = 1,j ap(k) = ap(k) + x(i)*temp1 + y(i)*temp2 k = k + 1 end do end if kk = kk + j end do else do j = 1,n if ((x(jx)/=zero) .or. (y(jy)/=zero)) then temp1 = alpha*y(jy) temp2 = alpha*x(jx) ix = kx iy = ky do k = kk,kk + j - 1 ap(k) = ap(k) + x(ix)*temp1 + y(iy)*temp2 ix = ix + incx iy = iy + incy end do end if jx = jx + incx jy = jy + incy kk = kk + j end do end if else ! form a when lower triangle is stored in ap. if ((incx==1) .and. (incy==1)) then do j = 1,n if ((x(j)/=zero) .or. (y(j)/=zero)) then temp1 = alpha*y(j) temp2 = alpha*x(j) k = kk do i = j,n ap(k) = ap(k) + x(i)*temp1 + y(i)*temp2 k = k + 1 end do end if kk = kk + n - j + 1 end do else do j = 1,n if ((x(jx)/=zero) .or. (y(jy)/=zero)) then temp1 = alpha*y(jy) temp2 = alpha*x(jx) ix = jx iy = jy do k = kk,kk + n - j ap(k) = ap(k) + x(ix)*temp1 + y(iy)*temp2 ix = ix + incx iy = iy + incy end do end if jx = jx + incx jy = jy + incy kk = kk + n - j + 1 end do end if end if return end subroutine stdlib${ii}$_sspr2 pure subroutine stdlib${ii}$_sswap(n,sx,incx,sy,incy) !! SSWAP interchanges two vectors. !! uses unrolled loops for increments equal to 1. ! -- reference blas level1 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments integer(${ik}$), intent(in) :: incx, incy, n ! Array Arguments real(sp), intent(inout) :: sx(*), sy(*) ! ===================================================================== ! Local Scalars real(sp) :: stemp integer(${ik}$) :: i, ix, iy, m, mp1 ! Intrinsic Functions intrinsic :: mod if (n<=0) return if (incx==1 .and. incy==1) then ! code for both increments equal to 1 ! clean-up loop m = mod(n,3) if (m/=0) then do i = 1,m stemp = sx(i) sx(i) = sy(i) sy(i) = stemp end do if (n<3) return end if mp1 = m + 1 do i = mp1,n,3 stemp = sx(i) sx(i) = sy(i) sy(i) = stemp stemp = sx(i+1) sx(i+1) = sy(i+1) sy(i+1) = stemp stemp = sx(i+2) sx(i+2) = sy(i+2) sy(i+2) = stemp end do else ! code for unequal increments or equal increments not equal ! to 1 ix = 1 iy = 1 if (incx<0) ix = (-n+1)*incx + 1 if (incy<0) iy = (-n+1)*incy + 1 do i = 1,n stemp = sx(ix) sx(ix) = sy(iy) sy(iy) = stemp ix = ix + incx iy = iy + incy end do end if return end subroutine stdlib${ii}$_sswap pure subroutine stdlib${ii}$_ssymm(side,uplo,m,n,alpha,a,lda,b,ldb,beta,c,ldc) !! SSYMM performs one of the matrix-matrix operations !! C := alpha*A*B + beta*C, !! or !! C := alpha*B*A + beta*C, !! where alpha and beta are scalars, A is a symmetric matrix and B and !! C are m by n matrices. ! -- reference blas level3 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments real(sp), intent(in) :: alpha, beta integer(${ik}$), intent(in) :: lda, ldb, ldc, m, n character, intent(in) :: side, uplo ! Array Arguments real(sp), intent(in) :: a(lda,*), b(ldb,*) real(sp), intent(inout) :: c(ldc,*) ! ===================================================================== ! Intrinsic Functions intrinsic :: max ! Local Scalars real(sp) :: temp1, temp2 integer(${ik}$) :: i, info, j, k, nrowa logical(lk) :: upper ! set nrowa as the number of rows of a. if (stdlib_lsame(side,'L')) then nrowa = m else nrowa = n end if upper = stdlib_lsame(uplo,'U') ! test the input parameters. info = 0 if ((.not.stdlib_lsame(side,'L')) .and. (.not.stdlib_lsame(side,'R'))) then info = 1 else if ((.not.upper) .and. (.not.stdlib_lsame(uplo,'L'))) then info = 2 else if (m<0) then info = 3 else if (n<0) then info = 4 else if (lda<max(1,nrowa)) then info = 7 else if (ldb<max(1,m)) then info = 9 else if (ldc<max(1,m)) then info = 12 end if if (info/=0) then call stdlib${ii}$_xerbla('SSYMM ',info) return end if ! quick return if possible. if ((m==0) .or. (n==0) .or.((alpha==zero).and. (beta==one))) return ! and when alpha.eq.zero. if (alpha==zero) then if (beta==zero) then do j = 1,n do i = 1,m c(i,j) = zero end do end do else do j = 1,n do i = 1,m c(i,j) = beta*c(i,j) end do end do end if return end if ! start the operations. if (stdlib_lsame(side,'L')) then ! form c := alpha*a*b + beta*c. if (upper) then do j = 1,n do i = 1,m temp1 = alpha*b(i,j) temp2 = zero do k = 1,i - 1 c(k,j) = c(k,j) + temp1*a(k,i) temp2 = temp2 + b(k,j)*a(k,i) end do if (beta==zero) then c(i,j) = temp1*a(i,i) + alpha*temp2 else c(i,j) = beta*c(i,j) + temp1*a(i,i) +alpha*temp2 end if end do end do else do j = 1,n do i = m,1,-1 temp1 = alpha*b(i,j) temp2 = zero do k = i + 1,m c(k,j) = c(k,j) + temp1*a(k,i) temp2 = temp2 + b(k,j)*a(k,i) end do if (beta==zero) then c(i,j) = temp1*a(i,i) + alpha*temp2 else c(i,j) = beta*c(i,j) + temp1*a(i,i) +alpha*temp2 end if end do end do end if else ! form c := alpha*b*a + beta*c. loop_170: do j = 1,n temp1 = alpha*a(j,j) if (beta==zero) then do i = 1,m c(i,j) = temp1*b(i,j) end do else do i = 1,m c(i,j) = beta*c(i,j) + temp1*b(i,j) end do end if do k = 1,j - 1 if (upper) then temp1 = alpha*a(k,j) else temp1 = alpha*a(j,k) end if do i = 1,m c(i,j) = c(i,j) + temp1*b(i,k) end do end do do k = j + 1,n if (upper) then temp1 = alpha*a(j,k) else temp1 = alpha*a(k,j) end if do i = 1,m c(i,j) = c(i,j) + temp1*b(i,k) end do end do end do loop_170 end if return end subroutine stdlib${ii}$_ssymm pure subroutine stdlib${ii}$_ssymv(uplo,n,alpha,a,lda,x,incx,beta,y,incy) !! SSYMV performs the matrix-vector operation !! y := alpha*A*x + beta*y, !! where alpha and beta are scalars, x and y are n element vectors and !! A is an n by n symmetric matrix. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments real(sp), intent(in) :: alpha, beta integer(${ik}$), intent(in) :: incx, incy, lda, n character, intent(in) :: uplo ! Array Arguments real(sp), intent(in) :: a(lda,*), x(*) real(sp), intent(inout) :: y(*) ! ===================================================================== ! Local Scalars real(sp) :: temp1, temp2 integer(${ik}$) :: i, info, ix, iy, j, jx, jy, kx, ky ! Intrinsic Functions intrinsic :: max ! test the input parameters. info = 0 if (.not.stdlib_lsame(uplo,'U') .and. .not.stdlib_lsame(uplo,'L')) then info = 1 else if (n<0) then info = 2 else if (lda<max(1,n)) then info = 5 else if (incx==0) then info = 7 else if (incy==0) then info = 10 end if if (info/=0) then call stdlib${ii}$_xerbla('SSYMV ',info) return end if ! quick return if possible. if ((n==0) .or. ((alpha==zero).and. (beta==one))) return ! set up the start points in x and y. if (incx>0) then kx = 1 else kx = 1 - (n-1)*incx end if if (incy>0) then ky = 1 else ky = 1 - (n-1)*incy end if ! start the operations. in this version the elements of a are ! accessed sequentially with one pass through the triangular part ! of a. ! first form y := beta*y. if (beta/=one) then if (incy==1) then if (beta==zero) then do i = 1,n y(i) = zero end do else do i = 1,n y(i) = beta*y(i) end do end if else iy = ky if (beta==zero) then do i = 1,n y(iy) = zero iy = iy + incy end do else do i = 1,n y(iy) = beta*y(iy) iy = iy + incy end do end if end if end if if (alpha==zero) return if (stdlib_lsame(uplo,'U')) then ! form y when a is stored in upper triangle. if ((incx==1) .and. (incy==1)) then do j = 1,n temp1 = alpha*x(j) temp2 = zero do i = 1,j - 1 y(i) = y(i) + temp1*a(i,j) temp2 = temp2 + a(i,j)*x(i) end do y(j) = y(j) + temp1*a(j,j) + alpha*temp2 end do else jx = kx jy = ky do j = 1,n temp1 = alpha*x(jx) temp2 = zero ix = kx iy = ky do i = 1,j - 1 y(iy) = y(iy) + temp1*a(i,j) temp2 = temp2 + a(i,j)*x(ix) ix = ix + incx iy = iy + incy end do y(jy) = y(jy) + temp1*a(j,j) + alpha*temp2 jx = jx + incx jy = jy + incy end do end if else ! form y when a is stored in lower triangle. if ((incx==1) .and. (incy==1)) then do j = 1,n temp1 = alpha*x(j) temp2 = zero y(j) = y(j) + temp1*a(j,j) do i = j + 1,n y(i) = y(i) + temp1*a(i,j) temp2 = temp2 + a(i,j)*x(i) end do y(j) = y(j) + alpha*temp2 end do else jx = kx jy = ky do j = 1,n temp1 = alpha*x(jx) temp2 = zero y(jy) = y(jy) + temp1*a(j,j) ix = jx iy = jy do i = j + 1,n ix = ix + incx iy = iy + incy y(iy) = y(iy) + temp1*a(i,j) temp2 = temp2 + a(i,j)*x(ix) end do y(jy) = y(jy) + alpha*temp2 jx = jx + incx jy = jy + incy end do end if end if return end subroutine stdlib${ii}$_ssymv pure subroutine stdlib${ii}$_ssyr(uplo,n,alpha,x,incx,a,lda) !! SSYR performs the symmetric rank 1 operation !! A := alpha*x*x**T + A, !! where alpha is a real scalar, x is an n element vector and A is an !! n by n symmetric matrix. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments real(sp), intent(in) :: alpha integer(${ik}$), intent(in) :: incx, lda, n character, intent(in) :: uplo ! Array Arguments real(sp), intent(inout) :: a(lda,*) real(sp), intent(in) :: x(*) ! ===================================================================== ! Local Scalars real(sp) :: temp integer(${ik}$) :: i, info, ix, j, jx, kx ! Intrinsic Functions intrinsic :: max ! test the input parameters. info = 0 if (.not.stdlib_lsame(uplo,'U') .and. .not.stdlib_lsame(uplo,'L')) then info = 1 else if (n<0) then info = 2 else if (incx==0) then info = 5 else if (lda<max(1,n)) then info = 7 end if if (info/=0) then call stdlib${ii}$_xerbla('SSYR ',info) return end if ! quick return if possible. if ((n==0) .or. (alpha==zero)) return ! set the start point in x if the increment is not unity. if (incx<=0) then kx = 1 - (n-1)*incx else if (incx/=1) then kx = 1 end if ! start the operations. in this version the elements of a are ! accessed sequentially with one pass through the triangular part ! of a. if (stdlib_lsame(uplo,'U')) then ! form a when a is stored in upper triangle. if (incx==1) then do j = 1,n if (x(j)/=zero) then temp = alpha*x(j) do i = 1,j a(i,j) = a(i,j) + x(i)*temp end do end if end do else jx = kx do j = 1,n if (x(jx)/=zero) then temp = alpha*x(jx) ix = kx do i = 1,j a(i,j) = a(i,j) + x(ix)*temp ix = ix + incx end do end if jx = jx + incx end do end if else ! form a when a is stored in lower triangle. if (incx==1) then do j = 1,n if (x(j)/=zero) then temp = alpha*x(j) do i = j,n a(i,j) = a(i,j) + x(i)*temp end do end if end do else jx = kx do j = 1,n if (x(jx)/=zero) then temp = alpha*x(jx) ix = jx do i = j,n a(i,j) = a(i,j) + x(ix)*temp ix = ix + incx end do end if jx = jx + incx end do end if end if return end subroutine stdlib${ii}$_ssyr pure subroutine stdlib${ii}$_ssyr2(uplo,n,alpha,x,incx,y,incy,a,lda) !! SSYR2 performs the symmetric rank 2 operation !! A := alpha*x*y**T + alpha*y*x**T + A, !! where alpha is a scalar, x and y are n element vectors and A is an n !! by n symmetric matrix. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments real(sp), intent(in) :: alpha integer(${ik}$), intent(in) :: incx, incy, lda, n character, intent(in) :: uplo ! Array Arguments real(sp), intent(inout) :: a(lda,*) real(sp), intent(in) :: x(*), y(*) ! ===================================================================== ! Local Scalars real(sp) :: temp1, temp2 integer(${ik}$) :: i, info, ix, iy, j, jx, jy, kx, ky ! Intrinsic Functions intrinsic :: max ! test the input parameters. info = 0 if (.not.stdlib_lsame(uplo,'U') .and. .not.stdlib_lsame(uplo,'L')) then info = 1 else if (n<0) then info = 2 else if (incx==0) then info = 5 else if (incy==0) then info = 7 else if (lda<max(1,n)) then info = 9 end if if (info/=0) then call stdlib${ii}$_xerbla('SSYR2 ',info) return end if ! quick return if possible. if ((n==0) .or. (alpha==zero)) return ! set up the start points in x and y if the increments are not both ! unity. if ((incx/=1) .or. (incy/=1)) then if (incx>0) then kx = 1 else kx = 1 - (n-1)*incx end if if (incy>0) then ky = 1 else ky = 1 - (n-1)*incy end if jx = kx jy = ky end if ! start the operations. in this version the elements of a are ! accessed sequentially with one pass through the triangular part ! of a. if (stdlib_lsame(uplo,'U')) then ! form a when a is stored in the upper triangle. if ((incx==1) .and. (incy==1)) then do j = 1,n if ((x(j)/=zero) .or. (y(j)/=zero)) then temp1 = alpha*y(j) temp2 = alpha*x(j) do i = 1,j a(i,j) = a(i,j) + x(i)*temp1 + y(i)*temp2 end do end if end do else do j = 1,n if ((x(jx)/=zero) .or. (y(jy)/=zero)) then temp1 = alpha*y(jy) temp2 = alpha*x(jx) ix = kx iy = ky do i = 1,j a(i,j) = a(i,j) + x(ix)*temp1 + y(iy)*temp2 ix = ix + incx iy = iy + incy end do end if jx = jx + incx jy = jy + incy end do end if else ! form a when a is stored in the lower triangle. if ((incx==1) .and. (incy==1)) then do j = 1,n if ((x(j)/=zero) .or. (y(j)/=zero)) then temp1 = alpha*y(j) temp2 = alpha*x(j) do i = j,n a(i,j) = a(i,j) + x(i)*temp1 + y(i)*temp2 end do end if end do else do j = 1,n if ((x(jx)/=zero) .or. (y(jy)/=zero)) then temp1 = alpha*y(jy) temp2 = alpha*x(jx) ix = jx iy = jy do i = j,n a(i,j) = a(i,j) + x(ix)*temp1 + y(iy)*temp2 ix = ix + incx iy = iy + incy end do end if jx = jx + incx jy = jy + incy end do end if end if return end subroutine stdlib${ii}$_ssyr2 pure subroutine stdlib${ii}$_ssyr2k(uplo,trans,n,k,alpha,a,lda,b,ldb,beta,c,ldc) !! SSYR2K performs one of the symmetric rank 2k operations !! C := alpha*A*B**T + alpha*B*A**T + beta*C, !! or !! C := alpha*A**T*B + alpha*B**T*A + beta*C, !! where alpha and beta are scalars, C is an n by n symmetric matrix !! and A and B are n by k matrices in the first case and k by n !! matrices in the second case. ! -- reference blas level3 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments real(sp), intent(in) :: alpha, beta integer(${ik}$), intent(in) :: k, lda, ldb, ldc, n character, intent(in) :: trans, uplo ! Array Arguments real(sp), intent(in) :: a(lda,*), b(ldb,*) real(sp), intent(inout) :: c(ldc,*) ! ===================================================================== ! Intrinsic Functions intrinsic :: max ! Local Scalars real(sp) :: temp1, temp2 integer(${ik}$) :: i, info, j, l, nrowa logical(lk) :: upper ! test the input parameters. if (stdlib_lsame(trans,'N')) then nrowa = n else nrowa = k end if upper = stdlib_lsame(uplo,'U') info = 0 if ((.not.upper) .and. (.not.stdlib_lsame(uplo,'L'))) then info = 1 else if ((.not.stdlib_lsame(trans,'N')) .and.(.not.stdlib_lsame(trans,'T')) .and.(& .not.stdlib_lsame(trans,'C'))) then info = 2 else if (n<0) then info = 3 else if (k<0) then info = 4 else if (lda<max(1,nrowa)) then info = 7 else if (ldb<max(1,nrowa)) then info = 9 else if (ldc<max(1,n)) then info = 12 end if if (info/=0) then call stdlib${ii}$_xerbla('SSYR2K',info) return end if ! quick return if possible. if ((n==0) .or. (((alpha==zero).or.(k==0)).and. (beta==one))) return ! and when alpha.eq.zero. if (alpha==zero) then if (upper) then if (beta==zero) then do j = 1,n do i = 1,j c(i,j) = zero end do end do else do j = 1,n do i = 1,j c(i,j) = beta*c(i,j) end do end do end if else if (beta==zero) then do j = 1,n do i = j,n c(i,j) = zero end do end do else do j = 1,n do i = j,n c(i,j) = beta*c(i,j) end do end do end if end if return end if ! start the operations. if (stdlib_lsame(trans,'N')) then ! form c := alpha*a*b**t + alpha*b*a**t + c. if (upper) then do j = 1,n if (beta==zero) then do i = 1,j c(i,j) = zero end do else if (beta/=one) then do i = 1,j c(i,j) = beta*c(i,j) end do end if do l = 1,k if ((a(j,l)/=zero) .or. (b(j,l)/=zero)) then temp1 = alpha*b(j,l) temp2 = alpha*a(j,l) do i = 1,j c(i,j) = c(i,j) + a(i,l)*temp1 +b(i,l)*temp2 end do end if end do end do else do j = 1,n if (beta==zero) then do i = j,n c(i,j) = zero end do else if (beta/=one) then do i = j,n c(i,j) = beta*c(i,j) end do end if do l = 1,k if ((a(j,l)/=zero) .or. (b(j,l)/=zero)) then temp1 = alpha*b(j,l) temp2 = alpha*a(j,l) do i = j,n c(i,j) = c(i,j) + a(i,l)*temp1 +b(i,l)*temp2 end do end if end do end do end if else ! form c := alpha*a**t*b + alpha*b**t*a + c. if (upper) then do j = 1,n do i = 1,j temp1 = zero temp2 = zero do l = 1,k temp1 = temp1 + a(l,i)*b(l,j) temp2 = temp2 + b(l,i)*a(l,j) end do if (beta==zero) then c(i,j) = alpha*temp1 + alpha*temp2 else c(i,j) = beta*c(i,j) + alpha*temp1 +alpha*temp2 end if end do end do else do j = 1,n do i = j,n temp1 = zero temp2 = zero do l = 1,k temp1 = temp1 + a(l,i)*b(l,j) temp2 = temp2 + b(l,i)*a(l,j) end do if (beta==zero) then c(i,j) = alpha*temp1 + alpha*temp2 else c(i,j) = beta*c(i,j) + alpha*temp1 +alpha*temp2 end if end do end do end if end if return end subroutine stdlib${ii}$_ssyr2k pure subroutine stdlib${ii}$_ssyrk(uplo,trans,n,k,alpha,a,lda,beta,c,ldc) !! SSYRK performs one of the symmetric rank k operations !! C := alpha*A*A**T + beta*C, !! or !! C := alpha*A**T*A + beta*C, !! where alpha and beta are scalars, C is an n by n symmetric matrix !! and A is an n by k matrix in the first case and a k by n matrix !! in the second case. ! -- reference blas level3 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments real(sp), intent(in) :: alpha, beta integer(${ik}$), intent(in) :: k, lda, ldc, n character, intent(in) :: trans, uplo ! Array Arguments real(sp), intent(in) :: a(lda,*) real(sp), intent(inout) :: c(ldc,*) ! ===================================================================== ! Intrinsic Functions intrinsic :: max ! Local Scalars real(sp) :: temp integer(${ik}$) :: i, info, j, l, nrowa logical(lk) :: upper ! test the input parameters. if (stdlib_lsame(trans,'N')) then nrowa = n else nrowa = k end if upper = stdlib_lsame(uplo,'U') info = 0 if ((.not.upper) .and. (.not.stdlib_lsame(uplo,'L'))) then info = 1 else if ((.not.stdlib_lsame(trans,'N')) .and.(.not.stdlib_lsame(trans,'T')) .and.(& .not.stdlib_lsame(trans,'C'))) then info = 2 else if (n<0) then info = 3 else if (k<0) then info = 4 else if (lda<max(1,nrowa)) then info = 7 else if (ldc<max(1,n)) then info = 10 end if if (info/=0) then call stdlib${ii}$_xerbla('SSYRK ',info) return end if ! quick return if possible. if ((n==0) .or. (((alpha==zero).or.(k==0)).and. (beta==one))) return ! and when alpha.eq.zero. if (alpha==zero) then if (upper) then if (beta==zero) then do j = 1,n do i = 1,j c(i,j) = zero end do end do else do j = 1,n do i = 1,j c(i,j) = beta*c(i,j) end do end do end if else if (beta==zero) then do j = 1,n do i = j,n c(i,j) = zero end do end do else do j = 1,n do i = j,n c(i,j) = beta*c(i,j) end do end do end if end if return end if ! start the operations. if (stdlib_lsame(trans,'N')) then ! form c := alpha*a*a**t + beta*c. if (upper) then do j = 1,n if (beta==zero) then do i = 1,j c(i,j) = zero end do else if (beta/=one) then do i = 1,j c(i,j) = beta*c(i,j) end do end if do l = 1,k if (a(j,l)/=zero) then temp = alpha*a(j,l) do i = 1,j c(i,j) = c(i,j) + temp*a(i,l) end do end if end do end do else do j = 1,n if (beta==zero) then do i = j,n c(i,j) = zero end do else if (beta/=one) then do i = j,n c(i,j) = beta*c(i,j) end do end if do l = 1,k if (a(j,l)/=zero) then temp = alpha*a(j,l) do i = j,n c(i,j) = c(i,j) + temp*a(i,l) end do end if end do end do end if else ! form c := alpha*a**t*a + beta*c. if (upper) then do j = 1,n do i = 1,j temp = zero do l = 1,k temp = temp + a(l,i)*a(l,j) end do if (beta==zero) then c(i,j) = alpha*temp else c(i,j) = alpha*temp + beta*c(i,j) end if end do end do else do j = 1,n do i = j,n temp = zero do l = 1,k temp = temp + a(l,i)*a(l,j) end do if (beta==zero) then c(i,j) = alpha*temp else c(i,j) = alpha*temp + beta*c(i,j) end if end do end do end if end if return end subroutine stdlib${ii}$_ssyrk pure subroutine stdlib${ii}$_stbmv(uplo,trans,diag,n,k,a,lda,x,incx) !! STBMV performs one of the matrix-vector operations !! x := A*x, or x := A**T*x, !! where x is an n element vector and A is an n by n unit, or non-unit, !! upper or lower triangular band matrix, with ( k + 1 ) diagonals. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments integer(${ik}$), intent(in) :: incx, k, lda, n character, intent(in) :: diag, trans, uplo ! Array Arguments real(sp), intent(in) :: a(lda,*) real(sp), intent(inout) :: x(*) ! ===================================================================== ! Local Scalars real(sp) :: temp integer(${ik}$) :: i, info, ix, j, jx, kplus1, kx, l logical(lk) :: nounit ! Intrinsic Functions intrinsic :: max,min ! test the input parameters. info = 0 if (.not.stdlib_lsame(uplo,'U') .and. .not.stdlib_lsame(uplo,'L')) then info = 1 else if (.not.stdlib_lsame(trans,'N') .and. .not.stdlib_lsame(trans,'T') & .and..not.stdlib_lsame(trans,'C')) then info = 2 else if (.not.stdlib_lsame(diag,'U') .and. .not.stdlib_lsame(diag,'N')) then info = 3 else if (n<0) then info = 4 else if (k<0) then info = 5 else if (lda< (k+1)) then info = 7 else if (incx==0) then info = 9 end if if (info/=0) then call stdlib${ii}$_xerbla('STBMV ',info) return end if ! quick return if possible. if (n==0) return nounit = stdlib_lsame(diag,'N') ! set up the start point in x if the increment is not unity. this ! will be ( n - 1 )*incx too small for descending loops. if (incx<=0) then kx = 1 - (n-1)*incx else if (incx/=1) then kx = 1 end if ! start the operations. in this version the elements of a are ! accessed sequentially with one pass through a. if (stdlib_lsame(trans,'N')) then ! form x := a*x. if (stdlib_lsame(uplo,'U')) then kplus1 = k + 1 if (incx==1) then do j = 1,n if (x(j)/=zero) then temp = x(j) l = kplus1 - j do i = max(1,j-k),j - 1 x(i) = x(i) + temp*a(l+i,j) end do if (nounit) x(j) = x(j)*a(kplus1,j) end if end do else jx = kx do j = 1,n if (x(jx)/=zero) then temp = x(jx) ix = kx l = kplus1 - j do i = max(1,j-k),j - 1 x(ix) = x(ix) + temp*a(l+i,j) ix = ix + incx end do if (nounit) x(jx) = x(jx)*a(kplus1,j) end if jx = jx + incx if (j>k) kx = kx + incx end do end if else if (incx==1) then do j = n,1,-1 if (x(j)/=zero) then temp = x(j) l = 1 - j do i = min(n,j+k),j + 1,-1 x(i) = x(i) + temp*a(l+i,j) end do if (nounit) x(j) = x(j)*a(1,j) end if end do else kx = kx + (n-1)*incx jx = kx do j = n,1,-1 if (x(jx)/=zero) then temp = x(jx) ix = kx l = 1 - j do i = min(n,j+k),j + 1,-1 x(ix) = x(ix) + temp*a(l+i,j) ix = ix - incx end do if (nounit) x(jx) = x(jx)*a(1,j) end if jx = jx - incx if ((n-j)>=k) kx = kx - incx end do end if end if else ! form x := a**t*x. if (stdlib_lsame(uplo,'U')) then kplus1 = k + 1 if (incx==1) then do j = n,1,-1 temp = x(j) l = kplus1 - j if (nounit) temp = temp*a(kplus1,j) do i = j - 1,max(1,j-k),-1 temp = temp + a(l+i,j)*x(i) end do x(j) = temp end do else kx = kx + (n-1)*incx jx = kx do j = n,1,-1 temp = x(jx) kx = kx - incx ix = kx l = kplus1 - j if (nounit) temp = temp*a(kplus1,j) do i = j - 1,max(1,j-k),-1 temp = temp + a(l+i,j)*x(ix) ix = ix - incx end do x(jx) = temp jx = jx - incx end do end if else if (incx==1) then do j = 1,n temp = x(j) l = 1 - j if (nounit) temp = temp*a(1,j) do i = j + 1,min(n,j+k) temp = temp + a(l+i,j)*x(i) end do x(j) = temp end do else jx = kx do j = 1,n temp = x(jx) kx = kx + incx ix = kx l = 1 - j if (nounit) temp = temp*a(1,j) do i = j + 1,min(n,j+k) temp = temp + a(l+i,j)*x(ix) ix = ix + incx end do x(jx) = temp jx = jx + incx end do end if end if end if return end subroutine stdlib${ii}$_stbmv pure subroutine stdlib${ii}$_stbsv(uplo,trans,diag,n,k,a,lda,x,incx) !! STBSV solves one of the systems of equations !! A*x = b, or A**T*x = b, !! where b and x are n element vectors and A is an n by n unit, or !! non-unit, upper or lower triangular band matrix, with ( k + 1 ) !! diagonals. !! No test for singularity or near-singularity is included in this !! routine. Such tests must be performed before calling this routine. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments integer(${ik}$), intent(in) :: incx, k, lda, n character, intent(in) :: diag, trans, uplo ! Array Arguments real(sp), intent(in) :: a(lda,*) real(sp), intent(inout) :: x(*) ! ===================================================================== ! Local Scalars real(sp) :: temp integer(${ik}$) :: i, info, ix, j, jx, kplus1, kx, l logical(lk) :: nounit ! Intrinsic Functions intrinsic :: max,min ! test the input parameters. info = 0 if (.not.stdlib_lsame(uplo,'U') .and. .not.stdlib_lsame(uplo,'L')) then info = 1 else if (.not.stdlib_lsame(trans,'N') .and. .not.stdlib_lsame(trans,'T') & .and..not.stdlib_lsame(trans,'C')) then info = 2 else if (.not.stdlib_lsame(diag,'U') .and. .not.stdlib_lsame(diag,'N')) then info = 3 else if (n<0) then info = 4 else if (k<0) then info = 5 else if (lda< (k+1)) then info = 7 else if (incx==0) then info = 9 end if if (info/=0) then call stdlib${ii}$_xerbla('STBSV ',info) return end if ! quick return if possible. if (n==0) return nounit = stdlib_lsame(diag,'N') ! set up the start point in x if the increment is not unity. this ! will be ( n - 1 )*incx too small for descending loops. if (incx<=0) then kx = 1 - (n-1)*incx else if (incx/=1) then kx = 1 end if ! start the operations. in this version the elements of a are ! accessed by sequentially with one pass through a. if (stdlib_lsame(trans,'N')) then ! form x := inv( a )*x. if (stdlib_lsame(uplo,'U')) then kplus1 = k + 1 if (incx==1) then do j = n,1,-1 if (x(j)/=zero) then l = kplus1 - j if (nounit) x(j) = x(j)/a(kplus1,j) temp = x(j) do i = j - 1,max(1,j-k),-1 x(i) = x(i) - temp*a(l+i,j) end do end if end do else kx = kx + (n-1)*incx jx = kx do j = n,1,-1 kx = kx - incx if (x(jx)/=zero) then ix = kx l = kplus1 - j if (nounit) x(jx) = x(jx)/a(kplus1,j) temp = x(jx) do i = j - 1,max(1,j-k),-1 x(ix) = x(ix) - temp*a(l+i,j) ix = ix - incx end do end if jx = jx - incx end do end if else if (incx==1) then do j = 1,n if (x(j)/=zero) then l = 1 - j if (nounit) x(j) = x(j)/a(1,j) temp = x(j) do i = j + 1,min(n,j+k) x(i) = x(i) - temp*a(l+i,j) end do end if end do else jx = kx do j = 1,n kx = kx + incx if (x(jx)/=zero) then ix = kx l = 1 - j if (nounit) x(jx) = x(jx)/a(1,j) temp = x(jx) do i = j + 1,min(n,j+k) x(ix) = x(ix) - temp*a(l+i,j) ix = ix + incx end do end if jx = jx + incx end do end if end if else ! form x := inv( a**t)*x. if (stdlib_lsame(uplo,'U')) then kplus1 = k + 1 if (incx==1) then do j = 1,n temp = x(j) l = kplus1 - j do i = max(1,j-k),j - 1 temp = temp - a(l+i,j)*x(i) end do if (nounit) temp = temp/a(kplus1,j) x(j) = temp end do else jx = kx do j = 1,n temp = x(jx) ix = kx l = kplus1 - j do i = max(1,j-k),j - 1 temp = temp - a(l+i,j)*x(ix) ix = ix + incx end do if (nounit) temp = temp/a(kplus1,j) x(jx) = temp jx = jx + incx if (j>k) kx = kx + incx end do end if else if (incx==1) then do j = n,1,-1 temp = x(j) l = 1 - j do i = min(n,j+k),j + 1,-1 temp = temp - a(l+i,j)*x(i) end do if (nounit) temp = temp/a(1,j) x(j) = temp end do else kx = kx + (n-1)*incx jx = kx do j = n,1,-1 temp = x(jx) ix = kx l = 1 - j do i = min(n,j+k),j + 1,-1 temp = temp - a(l+i,j)*x(ix) ix = ix - incx end do if (nounit) temp = temp/a(1,j) x(jx) = temp jx = jx - incx if ((n-j)>=k) kx = kx - incx end do end if end if end if return end subroutine stdlib${ii}$_stbsv pure subroutine stdlib${ii}$_stpmv(uplo,trans,diag,n,ap,x,incx) !! STPMV performs one of the matrix-vector operations !! x := A*x, or x := A**T*x, !! where x is an n element vector and A is an n by n unit, or non-unit, !! upper or lower triangular matrix, supplied in packed form. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments integer(${ik}$), intent(in) :: incx, n character, intent(in) :: diag, trans, uplo ! Array Arguments real(sp), intent(in) :: ap(*) real(sp), intent(inout) :: x(*) ! ===================================================================== ! Local Scalars real(sp) :: temp integer(${ik}$) :: i, info, ix, j, jx, k, kk, kx logical(lk) :: nounit ! test the input parameters. info = 0 if (.not.stdlib_lsame(uplo,'U') .and. .not.stdlib_lsame(uplo,'L')) then info = 1 else if (.not.stdlib_lsame(trans,'N') .and. .not.stdlib_lsame(trans,'T') & .and..not.stdlib_lsame(trans,'C')) then info = 2 else if (.not.stdlib_lsame(diag,'U') .and. .not.stdlib_lsame(diag,'N')) then info = 3 else if (n<0) then info = 4 else if (incx==0) then info = 7 end if if (info/=0) then call stdlib${ii}$_xerbla('STPMV ',info) return end if ! quick return if possible. if (n==0) return nounit = stdlib_lsame(diag,'N') ! set up the start point in x if the increment is not unity. this ! will be ( n - 1 )*incx too small for descending loops. if (incx<=0) then kx = 1 - (n-1)*incx else if (incx/=1) then kx = 1 end if ! start the operations. in this version the elements of ap are ! accessed sequentially with one pass through ap. if (stdlib_lsame(trans,'N')) then ! form x:= a*x. if (stdlib_lsame(uplo,'U')) then kk = 1 if (incx==1) then do j = 1,n if (x(j)/=zero) then temp = x(j) k = kk do i = 1,j - 1 x(i) = x(i) + temp*ap(k) k = k + 1 end do if (nounit) x(j) = x(j)*ap(kk+j-1) end if kk = kk + j end do else jx = kx do j = 1,n if (x(jx)/=zero) then temp = x(jx) ix = kx do k = kk,kk + j - 2 x(ix) = x(ix) + temp*ap(k) ix = ix + incx end do if (nounit) x(jx) = x(jx)*ap(kk+j-1) end if jx = jx + incx kk = kk + j end do end if else kk = (n* (n+1))/2 if (incx==1) then do j = n,1,-1 if (x(j)/=zero) then temp = x(j) k = kk do i = n,j + 1,-1 x(i) = x(i) + temp*ap(k) k = k - 1 end do if (nounit) x(j) = x(j)*ap(kk-n+j) end if kk = kk - (n-j+1) end do else kx = kx + (n-1)*incx jx = kx do j = n,1,-1 if (x(jx)/=zero) then temp = x(jx) ix = kx do k = kk,kk - (n- (j+1)),-1 x(ix) = x(ix) + temp*ap(k) ix = ix - incx end do if (nounit) x(jx) = x(jx)*ap(kk-n+j) end if jx = jx - incx kk = kk - (n-j+1) end do end if end if else ! form x := a**t*x. if (stdlib_lsame(uplo,'U')) then kk = (n* (n+1))/2 if (incx==1) then do j = n,1,-1 temp = x(j) if (nounit) temp = temp*ap(kk) k = kk - 1 do i = j - 1,1,-1 temp = temp + ap(k)*x(i) k = k - 1 end do x(j) = temp kk = kk - j end do else jx = kx + (n-1)*incx do j = n,1,-1 temp = x(jx) ix = jx if (nounit) temp = temp*ap(kk) do k = kk - 1,kk - j + 1,-1 ix = ix - incx temp = temp + ap(k)*x(ix) end do x(jx) = temp jx = jx - incx kk = kk - j end do end if else kk = 1 if (incx==1) then do j = 1,n temp = x(j) if (nounit) temp = temp*ap(kk) k = kk + 1 do i = j + 1,n temp = temp + ap(k)*x(i) k = k + 1 end do x(j) = temp kk = kk + (n-j+1) end do else jx = kx do j = 1,n temp = x(jx) ix = jx if (nounit) temp = temp*ap(kk) do k = kk + 1,kk + n - j ix = ix + incx temp = temp + ap(k)*x(ix) end do x(jx) = temp jx = jx + incx kk = kk + (n-j+1) end do end if end if end if return end subroutine stdlib${ii}$_stpmv pure subroutine stdlib${ii}$_stpsv(uplo,trans,diag,n,ap,x,incx) !! STPSV solves one of the systems of equations !! A*x = b, or A**T*x = b, !! where b and x are n element vectors and A is an n by n unit, or !! non-unit, upper or lower triangular matrix, supplied in packed form. !! No test for singularity or near-singularity is included in this !! routine. Such tests must be performed before calling this routine. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments integer(${ik}$), intent(in) :: incx, n character, intent(in) :: diag, trans, uplo ! Array Arguments real(sp), intent(in) :: ap(*) real(sp), intent(inout) :: x(*) ! ===================================================================== ! Local Scalars real(sp) :: temp integer(${ik}$) :: i, info, ix, j, jx, k, kk, kx logical(lk) :: nounit ! test the input parameters. info = 0 if (.not.stdlib_lsame(uplo,'U') .and. .not.stdlib_lsame(uplo,'L')) then info = 1 else if (.not.stdlib_lsame(trans,'N') .and. .not.stdlib_lsame(trans,'T') & .and..not.stdlib_lsame(trans,'C')) then info = 2 else if (.not.stdlib_lsame(diag,'U') .and. .not.stdlib_lsame(diag,'N')) then info = 3 else if (n<0) then info = 4 else if (incx==0) then info = 7 end if if (info/=0) then call stdlib${ii}$_xerbla('STPSV ',info) return end if ! quick return if possible. if (n==0) return nounit = stdlib_lsame(diag,'N') ! set up the start point in x if the increment is not unity. this ! will be ( n - 1 )*incx too small for descending loops. if (incx<=0) then kx = 1 - (n-1)*incx else if (incx/=1) then kx = 1 end if ! start the operations. in this version the elements of ap are ! accessed sequentially with one pass through ap. if (stdlib_lsame(trans,'N')) then ! form x := inv( a )*x. if (stdlib_lsame(uplo,'U')) then kk = (n* (n+1))/2 if (incx==1) then do j = n,1,-1 if (x(j)/=zero) then if (nounit) x(j) = x(j)/ap(kk) temp = x(j) k = kk - 1 do i = j - 1,1,-1 x(i) = x(i) - temp*ap(k) k = k - 1 end do end if kk = kk - j end do else jx = kx + (n-1)*incx do j = n,1,-1 if (x(jx)/=zero) then if (nounit) x(jx) = x(jx)/ap(kk) temp = x(jx) ix = jx do k = kk - 1,kk - j + 1,-1 ix = ix - incx x(ix) = x(ix) - temp*ap(k) end do end if jx = jx - incx kk = kk - j end do end if else kk = 1 if (incx==1) then do j = 1,n if (x(j)/=zero) then if (nounit) x(j) = x(j)/ap(kk) temp = x(j) k = kk + 1 do i = j + 1,n x(i) = x(i) - temp*ap(k) k = k + 1 end do end if kk = kk + (n-j+1) end do else jx = kx do j = 1,n if (x(jx)/=zero) then if (nounit) x(jx) = x(jx)/ap(kk) temp = x(jx) ix = jx do k = kk + 1,kk + n - j ix = ix + incx x(ix) = x(ix) - temp*ap(k) end do end if jx = jx + incx kk = kk + (n-j+1) end do end if end if else ! form x := inv( a**t )*x. if (stdlib_lsame(uplo,'U')) then kk = 1 if (incx==1) then do j = 1,n temp = x(j) k = kk do i = 1,j - 1 temp = temp - ap(k)*x(i) k = k + 1 end do if (nounit) temp = temp/ap(kk+j-1) x(j) = temp kk = kk + j end do else jx = kx do j = 1,n temp = x(jx) ix = kx do k = kk,kk + j - 2 temp = temp - ap(k)*x(ix) ix = ix + incx end do if (nounit) temp = temp/ap(kk+j-1) x(jx) = temp jx = jx + incx kk = kk + j end do end if else kk = (n* (n+1))/2 if (incx==1) then do j = n,1,-1 temp = x(j) k = kk do i = n,j + 1,-1 temp = temp - ap(k)*x(i) k = k - 1 end do if (nounit) temp = temp/ap(kk-n+j) x(j) = temp kk = kk - (n-j+1) end do else kx = kx + (n-1)*incx jx = kx do j = n,1,-1 temp = x(jx) ix = kx do k = kk,kk - (n- (j+1)),-1 temp = temp - ap(k)*x(ix) ix = ix - incx end do if (nounit) temp = temp/ap(kk-n+j) x(jx) = temp jx = jx - incx kk = kk - (n-j+1) end do end if end if end if return end subroutine stdlib${ii}$_stpsv pure subroutine stdlib${ii}$_strmm(side,uplo,transa,diag,m,n,alpha,a,lda,b,ldb) !! STRMM performs one of the matrix-matrix operations !! B := alpha*op( A )*B, or B := alpha*B*op( A ), !! where alpha is a scalar, B is an m by n matrix, A is a unit, or !! non-unit, upper or lower triangular matrix and op( A ) is one of !! op( A ) = A or op( A ) = A**T. ! -- reference blas level3 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments real(sp), intent(in) :: alpha integer(${ik}$), intent(in) :: lda, ldb, m, n character, intent(in) :: diag, side, transa, uplo ! Array Arguments real(sp), intent(in) :: a(lda,*) real(sp), intent(inout) :: b(ldb,*) ! ===================================================================== ! Intrinsic Functions intrinsic :: max ! Local Scalars real(sp) :: temp integer(${ik}$) :: i, info, j, k, nrowa logical(lk) :: lside, nounit, upper ! test the input parameters. lside = stdlib_lsame(side,'L') if (lside) then nrowa = m else nrowa = n end if nounit = stdlib_lsame(diag,'N') upper = stdlib_lsame(uplo,'U') info = 0 if ((.not.lside) .and. (.not.stdlib_lsame(side,'R'))) then info = 1 else if ((.not.upper) .and. (.not.stdlib_lsame(uplo,'L'))) then info = 2 else if ((.not.stdlib_lsame(transa,'N')) .and.(.not.stdlib_lsame(transa,'T')) .and.(& .not.stdlib_lsame(transa,'C'))) then info = 3 else if ((.not.stdlib_lsame(diag,'U')) .and. (.not.stdlib_lsame(diag,'N'))) & then info = 4 else if (m<0) then info = 5 else if (n<0) then info = 6 else if (lda<max(1,nrowa)) then info = 9 else if (ldb<max(1,m)) then info = 11 end if if (info/=0) then call stdlib${ii}$_xerbla('STRMM ',info) return end if ! quick return if possible. if (m==0 .or. n==0) return ! and when alpha.eq.zero. if (alpha==zero) then do j = 1,n do i = 1,m b(i,j) = zero end do end do return end if ! start the operations. if (lside) then if (stdlib_lsame(transa,'N')) then ! form b := alpha*a*b. if (upper) then do j = 1,n do k = 1,m if (b(k,j)/=zero) then temp = alpha*b(k,j) do i = 1,k - 1 b(i,j) = b(i,j) + temp*a(i,k) end do if (nounit) temp = temp*a(k,k) b(k,j) = temp end if end do end do else do j = 1,n do k = m,1,-1 if (b(k,j)/=zero) then temp = alpha*b(k,j) b(k,j) = temp if (nounit) b(k,j) = b(k,j)*a(k,k) do i = k + 1,m b(i,j) = b(i,j) + temp*a(i,k) end do end if end do end do end if else ! form b := alpha*a**t*b. if (upper) then do j = 1,n do i = m,1,-1 temp = b(i,j) if (nounit) temp = temp*a(i,i) do k = 1,i - 1 temp = temp + a(k,i)*b(k,j) end do b(i,j) = alpha*temp end do end do else do j = 1,n do i = 1,m temp = b(i,j) if (nounit) temp = temp*a(i,i) do k = i + 1,m temp = temp + a(k,i)*b(k,j) end do b(i,j) = alpha*temp end do end do end if end if else if (stdlib_lsame(transa,'N')) then ! form b := alpha*b*a. if (upper) then do j = n,1,-1 temp = alpha if (nounit) temp = temp*a(j,j) do i = 1,m b(i,j) = temp*b(i,j) end do do k = 1,j - 1 if (a(k,j)/=zero) then temp = alpha*a(k,j) do i = 1,m b(i,j) = b(i,j) + temp*b(i,k) end do end if end do end do else do j = 1,n temp = alpha if (nounit) temp = temp*a(j,j) do i = 1,m b(i,j) = temp*b(i,j) end do do k = j + 1,n if (a(k,j)/=zero) then temp = alpha*a(k,j) do i = 1,m b(i,j) = b(i,j) + temp*b(i,k) end do end if end do end do end if else ! form b := alpha*b*a**t. if (upper) then do k = 1,n do j = 1,k - 1 if (a(j,k)/=zero) then temp = alpha*a(j,k) do i = 1,m b(i,j) = b(i,j) + temp*b(i,k) end do end if end do temp = alpha if (nounit) temp = temp*a(k,k) if (temp/=one) then do i = 1,m b(i,k) = temp*b(i,k) end do end if end do else do k = n,1,-1 do j = k + 1,n if (a(j,k)/=zero) then temp = alpha*a(j,k) do i = 1,m b(i,j) = b(i,j) + temp*b(i,k) end do end if end do temp = alpha if (nounit) temp = temp*a(k,k) if (temp/=one) then do i = 1,m b(i,k) = temp*b(i,k) end do end if end do end if end if end if return end subroutine stdlib${ii}$_strmm pure subroutine stdlib${ii}$_strmv(uplo,trans,diag,n,a,lda,x,incx) !! STRMV performs one of the matrix-vector operations !! x := A*x, or x := A**T*x, !! where x is an n element vector and A is an n by n unit, or non-unit, !! upper or lower triangular matrix. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments integer(${ik}$), intent(in) :: incx, lda, n character, intent(in) :: diag, trans, uplo ! Array Arguments real(sp), intent(in) :: a(lda,*) real(sp), intent(inout) :: x(*) ! ===================================================================== ! Local Scalars real(sp) :: temp integer(${ik}$) :: i, info, ix, j, jx, kx logical(lk) :: nounit ! Intrinsic Functions intrinsic :: max ! test the input parameters. info = 0 if (.not.stdlib_lsame(uplo,'U') .and. .not.stdlib_lsame(uplo,'L')) then info = 1 else if (.not.stdlib_lsame(trans,'N') .and. .not.stdlib_lsame(trans,'T') & .and..not.stdlib_lsame(trans,'C')) then info = 2 else if (.not.stdlib_lsame(diag,'U') .and. .not.stdlib_lsame(diag,'N')) then info = 3 else if (n<0) then info = 4 else if (lda<max(1,n)) then info = 6 else if (incx==0) then info = 8 end if if (info/=0) then call stdlib${ii}$_xerbla('STRMV ',info) return end if ! quick return if possible. if (n==0) return nounit = stdlib_lsame(diag,'N') ! set up the start point in x if the increment is not unity. this ! will be ( n - 1 )*incx too small for descending loops. if (incx<=0) then kx = 1 - (n-1)*incx else if (incx/=1) then kx = 1 end if ! start the operations. in this version the elements of a are ! accessed sequentially with one pass through a. if (stdlib_lsame(trans,'N')) then ! form x := a*x. if (stdlib_lsame(uplo,'U')) then if (incx==1) then do j = 1,n if (x(j)/=zero) then temp = x(j) do i = 1,j - 1 x(i) = x(i) + temp*a(i,j) end do if (nounit) x(j) = x(j)*a(j,j) end if end do else jx = kx do j = 1,n if (x(jx)/=zero) then temp = x(jx) ix = kx do i = 1,j - 1 x(ix) = x(ix) + temp*a(i,j) ix = ix + incx end do if (nounit) x(jx) = x(jx)*a(j,j) end if jx = jx + incx end do end if else if (incx==1) then do j = n,1,-1 if (x(j)/=zero) then temp = x(j) do i = n,j + 1,-1 x(i) = x(i) + temp*a(i,j) end do if (nounit) x(j) = x(j)*a(j,j) end if end do else kx = kx + (n-1)*incx jx = kx do j = n,1,-1 if (x(jx)/=zero) then temp = x(jx) ix = kx do i = n,j + 1,-1 x(ix) = x(ix) + temp*a(i,j) ix = ix - incx end do if (nounit) x(jx) = x(jx)*a(j,j) end if jx = jx - incx end do end if end if else ! form x := a**t*x. if (stdlib_lsame(uplo,'U')) then if (incx==1) then do j = n,1,-1 temp = x(j) if (nounit) temp = temp*a(j,j) do i = j - 1,1,-1 temp = temp + a(i,j)*x(i) end do x(j) = temp end do else jx = kx + (n-1)*incx do j = n,1,-1 temp = x(jx) ix = jx if (nounit) temp = temp*a(j,j) do i = j - 1,1,-1 ix = ix - incx temp = temp + a(i,j)*x(ix) end do x(jx) = temp jx = jx - incx end do end if else if (incx==1) then do j = 1,n temp = x(j) if (nounit) temp = temp*a(j,j) do i = j + 1,n temp = temp + a(i,j)*x(i) end do x(j) = temp end do else jx = kx do j = 1,n temp = x(jx) ix = jx if (nounit) temp = temp*a(j,j) do i = j + 1,n ix = ix + incx temp = temp + a(i,j)*x(ix) end do x(jx) = temp jx = jx + incx end do end if end if end if return end subroutine stdlib${ii}$_strmv pure subroutine stdlib${ii}$_strsm(side,uplo,transa,diag,m,n,alpha,a,lda,b,ldb) !! STRSM solves one of the matrix equations !! op( A )*X = alpha*B, or X*op( A ) = alpha*B, !! where alpha is a scalar, X and B are m by n matrices, A is a unit, or !! non-unit, upper or lower triangular matrix and op( A ) is one of !! op( A ) = A or op( A ) = A**T. !! The matrix X is overwritten on B. ! -- reference blas level3 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments real(sp), intent(in) :: alpha integer(${ik}$), intent(in) :: lda, ldb, m, n character, intent(in) :: diag, side, transa, uplo ! Array Arguments real(sp), intent(in) :: a(lda,*) real(sp), intent(inout) :: b(ldb,*) ! ===================================================================== ! Intrinsic Functions intrinsic :: max ! Local Scalars real(sp) :: temp integer(${ik}$) :: i, info, j, k, nrowa logical(lk) :: lside, nounit, upper ! test the input parameters. lside = stdlib_lsame(side,'L') if (lside) then nrowa = m else nrowa = n end if nounit = stdlib_lsame(diag,'N') upper = stdlib_lsame(uplo,'U') info = 0 if ((.not.lside) .and. (.not.stdlib_lsame(side,'R'))) then info = 1 else if ((.not.upper) .and. (.not.stdlib_lsame(uplo,'L'))) then info = 2 else if ((.not.stdlib_lsame(transa,'N')) .and.(.not.stdlib_lsame(transa,'T')) .and.(& .not.stdlib_lsame(transa,'C'))) then info = 3 else if ((.not.stdlib_lsame(diag,'U')) .and. (.not.stdlib_lsame(diag,'N'))) & then info = 4 else if (m<0) then info = 5 else if (n<0) then info = 6 else if (lda<max(1,nrowa)) then info = 9 else if (ldb<max(1,m)) then info = 11 end if if (info/=0) then call stdlib${ii}$_xerbla('STRSM ',info) return end if ! quick return if possible. if (m==0 .or. n==0) return ! and when alpha.eq.zero. if (alpha==zero) then do j = 1,n do i = 1,m b(i,j) = zero end do end do return end if ! start the operations. if (lside) then if (stdlib_lsame(transa,'N')) then ! form b := alpha*inv( a )*b. if (upper) then do j = 1,n if (alpha/=one) then do i = 1,m b(i,j) = alpha*b(i,j) end do end if do k = m,1,-1 if (b(k,j)/=zero) then if (nounit) b(k,j) = b(k,j)/a(k,k) do i = 1,k - 1 b(i,j) = b(i,j) - b(k,j)*a(i,k) end do end if end do end do else do j = 1,n if (alpha/=one) then do i = 1,m b(i,j) = alpha*b(i,j) end do end if do k = 1,m if (b(k,j)/=zero) then if (nounit) b(k,j) = b(k,j)/a(k,k) do i = k + 1,m b(i,j) = b(i,j) - b(k,j)*a(i,k) end do end if end do end do end if else ! form b := alpha*inv( a**t )*b. if (upper) then do j = 1,n do i = 1,m temp = alpha*b(i,j) do k = 1,i - 1 temp = temp - a(k,i)*b(k,j) end do if (nounit) temp = temp/a(i,i) b(i,j) = temp end do end do else do j = 1,n do i = m,1,-1 temp = alpha*b(i,j) do k = i + 1,m temp = temp - a(k,i)*b(k,j) end do if (nounit) temp = temp/a(i,i) b(i,j) = temp end do end do end if end if else if (stdlib_lsame(transa,'N')) then ! form b := alpha*b*inv( a ). if (upper) then do j = 1,n if (alpha/=one) then do i = 1,m b(i,j) = alpha*b(i,j) end do end if do k = 1,j - 1 if (a(k,j)/=zero) then do i = 1,m b(i,j) = b(i,j) - a(k,j)*b(i,k) end do end if end do if (nounit) then temp = one/a(j,j) do i = 1,m b(i,j) = temp*b(i,j) end do end if end do else do j = n,1,-1 if (alpha/=one) then do i = 1,m b(i,j) = alpha*b(i,j) end do end if do k = j + 1,n if (a(k,j)/=zero) then do i = 1,m b(i,j) = b(i,j) - a(k,j)*b(i,k) end do end if end do if (nounit) then temp = one/a(j,j) do i = 1,m b(i,j) = temp*b(i,j) end do end if end do end if else ! form b := alpha*b*inv( a**t ). if (upper) then do k = n,1,-1 if (nounit) then temp = one/a(k,k) do i = 1,m b(i,k) = temp*b(i,k) end do end if do j = 1,k - 1 if (a(j,k)/=zero) then temp = a(j,k) do i = 1,m b(i,j) = b(i,j) - temp*b(i,k) end do end if end do if (alpha/=one) then do i = 1,m b(i,k) = alpha*b(i,k) end do end if end do else do k = 1,n if (nounit) then temp = one/a(k,k) do i = 1,m b(i,k) = temp*b(i,k) end do end if do j = k + 1,n if (a(j,k)/=zero) then temp = a(j,k) do i = 1,m b(i,j) = b(i,j) - temp*b(i,k) end do end if end do if (alpha/=one) then do i = 1,m b(i,k) = alpha*b(i,k) end do end if end do end if end if end if return end subroutine stdlib${ii}$_strsm pure subroutine stdlib${ii}$_strsv(uplo,trans,diag,n,a,lda,x,incx) !! STRSV solves one of the systems of equations !! A*x = b, or A**T*x = b, !! where b and x are n element vectors and A is an n by n unit, or !! non-unit, upper or lower triangular matrix. !! No test for singularity or near-singularity is included in this !! routine. Such tests must be performed before calling this routine. ! -- reference blas level2 routine -- ! -- reference blas is a software package provided by univ. of tennessee, -- ! -- univ. of california berkeley, univ. of colorado denver and nag ltd..-- ! Scalar Arguments integer(${ik}$), intent(in) :: incx, lda, n character, intent(in) :: diag, trans, uplo ! Array Arguments real(sp), intent(in) :: a(lda,*) real(sp), intent(inout) :: x(*) ! ===================================================================== ! Local Scalars real(sp) :: temp integer(${ik}$) :: i, info, ix, j, jx, kx logical(lk) :: nounit ! Intrinsic Functions intrinsic :: max ! test the input parameters. info = 0 if (.not.stdlib_lsame(uplo,'U') .and. .not.stdlib_lsame(uplo,'L')) then info = 1 else if (.not.stdlib_lsame(trans,'N') .and. .not.stdlib_lsame(trans,'T') & .and..not.stdlib_lsame(trans,'C')) then info = 2 else if (.not.stdlib_lsame(diag,'U') .and. .not.stdlib_lsame(diag,'N')) then info = 3 else if (n<0) then info = 4 else if (lda<max(1,n)) then info = 6 else if (incx==0) then info = 8 end if if (info/=0) then call stdlib${ii}$_xerbla('STRSV ',info) return end if ! quick return if possible. if (n==0) return nounit = stdlib_lsame(diag,'N') ! set up the start point in x if the increment is not unity. this ! will be ( n - 1 )*incx too small for descending loops. if (incx<=0) then kx = 1 - (n-1)*incx else if (incx/=1) then kx = 1 end if ! start the operations. in this version the elements of a are ! accessed sequentially with one pass through a. if (stdlib_lsame(trans,'N')) then ! form x := inv( a )*x. if (stdlib_lsame(uplo,'U')) then if (incx==1) then do j = n,1,-1 if (x(j)/=zero) then if (nounit) x(j) = x(j)/a(j,j) temp = x(j) do i = j - 1,1,-1 x(i) = x(i) - temp*a(i,j) end do end if end do else jx = kx + (n-1)*incx do j = n,1,-1 if (x(jx)/=zero) then if (nounit) x(jx) = x(jx)/a(j,j) temp = x(jx) ix = jx do i = j - 1,1,-1 ix = ix - incx x(ix) = x(ix) - temp*a(i,j) end do end if jx = jx - incx end do end if else if (incx==1) then do j = 1,n if (x(j)/=zero) then if (nounit) x(j) = x(j)/a(j,j) temp = x(j) do i = j + 1,n x(i) = x(i) - temp*a(i,j) end do end if end do else jx = kx do j = 1,n if (x(jx)/=zero) then if (nounit) x(jx) = x(jx)/a(j,j) temp = x(jx) ix = jx do i = j + 1,n ix = ix + incx x(ix) = x(ix) - temp*a(i,j) end do end if jx = jx + incx end do end if end if else ! form x := inv( a**t )*x. if (stdlib_lsame(uplo,'U')) then if (incx==1) then do j = 1,n temp = x(j) do i = 1,j - 1 temp = temp - a(i,j)*x(i) end do if (nounit) temp = temp/a(j,j) x(j) = temp end do else jx = kx do j = 1,n temp = x(jx) ix = kx do i = 1,j - 1 temp = temp - a(i,j)*x(ix) ix = ix + incx end do if (nounit) temp = temp/a(j,j) x(jx) = temp jx = jx + incx end do end if else if (incx==1) then do j = n,1,-1 temp = x(j) do i = n,j + 1,-1 temp = temp - a(i,j)*x(i) end do if (nounit) temp = temp/a(j,j) x(j) = temp end do else kx = kx + (n-1)*incx jx = kx do j = n,1,-1 temp = x(jx) ix = kx do i = n,j + 1,-1 temp = temp - a(i,j)*x(ix) ix = ix - incx end do if (nounit) temp = temp/a(j,j) x(jx) = temp jx = jx - incx end do end if end if end if return end subroutine stdlib${ii}$_strsv #:endfor end module stdlib_linalg_blas_s