stdlib_linalg Module

Provides a support for various linear algebra procedures (Specification)



Interfaces

public interface chol

Computes the Cholesky factorization , or . (Specification)

Summary

Pure function interface for computing the Cholesky triangular factors.

Description

This interface provides methods for computing the lower- or upper- triangular matrix from the Cholesky factorization of a real symmetric or complex Hermitian matrix. Supported data types include real and complex.

Note

The solution is based on LAPACK's *POTRF methods.

  • private pure module function stdlib_linalg_c_cholesky_fun(a, lower, other_zeroed) result(c)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: a(:,:)

    Input matrix a[m,n]

    logical(kind=lk), intent(in), optional :: lower

    [optional] is the lower or upper triangular factor required? Default = lower

    logical(kind=lk), intent(in), optional :: other_zeroed

    [optional] should the unused half of the return matrix be zeroed out? Default: yes

    Return Value complex(kind=sp), (size(a,1),size(a,2))

    Output matrix with Cholesky factors c[n,n]

  • private pure module function stdlib_linalg_d_cholesky_fun(a, lower, other_zeroed) result(c)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: a(:,:)

    Input matrix a[m,n]

    logical(kind=lk), intent(in), optional :: lower

    [optional] is the lower or upper triangular factor required? Default = lower

    logical(kind=lk), intent(in), optional :: other_zeroed

    [optional] should the unused half of the return matrix be zeroed out? Default: yes

    Return Value real(kind=dp), (size(a,1),size(a,2))

    Output matrix with Cholesky factors c[n,n]

  • private pure module function stdlib_linalg_s_cholesky_fun(a, lower, other_zeroed) result(c)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: a(:,:)

    Input matrix a[m,n]

    logical(kind=lk), intent(in), optional :: lower

    [optional] is the lower or upper triangular factor required? Default = lower

    logical(kind=lk), intent(in), optional :: other_zeroed

    [optional] should the unused half of the return matrix be zeroed out? Default: yes

    Return Value real(kind=sp), (size(a,1),size(a,2))

    Output matrix with Cholesky factors c[n,n]

  • private pure module function stdlib_linalg_z_cholesky_fun(a, lower, other_zeroed) result(c)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: a(:,:)

    Input matrix a[m,n]

    logical(kind=lk), intent(in), optional :: lower

    [optional] is the lower or upper triangular factor required? Default = lower

    logical(kind=lk), intent(in), optional :: other_zeroed

    [optional] should the unused half of the return matrix be zeroed out? Default: yes

    Return Value complex(kind=dp), (size(a,1),size(a,2))

    Output matrix with Cholesky factors c[n,n]

public interface cholesky

Computes the Cholesky factorization , or . (Specification)

Summary

Pure subroutine interface for computing the Cholesky triangular factors.

Description

This interface provides methods for computing the lower- or upper- triangular matrix from the Cholesky factorization of a real symmetric or complex Hermitian matrix. Supported data types include real and complex.
The factorization is computed in-place if only one matrix argument is present; or returned into a second matrix argument, if present. The lower logical flag allows to select between upper or lower factorization; the other_zeroed optional logical flag allows to choose whether the unused part of the triangular matrix should be filled with zeroes.

Note

The solution is based on LAPACK's *POTRF methods.

  • private pure module subroutine stdlib_linalg_c_cholesky(a, c, lower, other_zeroed, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: a(:,:)

    Input matrix a[n,n]

    complex(kind=sp), intent(out) :: c(:,:)

    Output matrix with Cholesky factors c[n,n]

    logical(kind=lk), intent(in), optional :: lower

    [optional] is the lower or upper triangular factor required? Default = lower

    logical(kind=lk), intent(in), optional :: other_zeroed

    [optional] should the unused half of the return matrix be zeroed out? Default: yes

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine stdlib_linalg_c_cholesky_inplace(a, lower, other_zeroed, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(inout), target :: a(:,:)

    Input matrix a[m,n]

    logical(kind=lk), intent(in), optional :: lower

    [optional] is the lower or upper triangular factor required? Default = lower

    logical(kind=lk), intent(in), optional :: other_zeroed

    [optional] should the unused half of the return matrix be zeroed out? Default: yes

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine stdlib_linalg_d_cholesky(a, c, lower, other_zeroed, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: a(:,:)

    Input matrix a[n,n]

    real(kind=dp), intent(out) :: c(:,:)

    Output matrix with Cholesky factors c[n,n]

    logical(kind=lk), intent(in), optional :: lower

    [optional] is the lower or upper triangular factor required? Default = lower

    logical(kind=lk), intent(in), optional :: other_zeroed

    [optional] should the unused half of the return matrix be zeroed out? Default: yes

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine stdlib_linalg_d_cholesky_inplace(a, lower, other_zeroed, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(inout), target :: a(:,:)

    Input matrix a[m,n]

    logical(kind=lk), intent(in), optional :: lower

    [optional] is the lower or upper triangular factor required? Default = lower

    logical(kind=lk), intent(in), optional :: other_zeroed

    [optional] should the unused half of the return matrix be zeroed out? Default: yes

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine stdlib_linalg_s_cholesky(a, c, lower, other_zeroed, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: a(:,:)

    Input matrix a[n,n]

    real(kind=sp), intent(out) :: c(:,:)

    Output matrix with Cholesky factors c[n,n]

    logical(kind=lk), intent(in), optional :: lower

    [optional] is the lower or upper triangular factor required? Default = lower

    logical(kind=lk), intent(in), optional :: other_zeroed

    [optional] should the unused half of the return matrix be zeroed out? Default: yes

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine stdlib_linalg_s_cholesky_inplace(a, lower, other_zeroed, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(inout), target :: a(:,:)

    Input matrix a[m,n]

    logical(kind=lk), intent(in), optional :: lower

    [optional] is the lower or upper triangular factor required? Default = lower

    logical(kind=lk), intent(in), optional :: other_zeroed

    [optional] should the unused half of the return matrix be zeroed out? Default: yes

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine stdlib_linalg_z_cholesky(a, c, lower, other_zeroed, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: a(:,:)

    Input matrix a[n,n]

    complex(kind=dp), intent(out) :: c(:,:)

    Output matrix with Cholesky factors c[n,n]

    logical(kind=lk), intent(in), optional :: lower

    [optional] is the lower or upper triangular factor required? Default = lower

    logical(kind=lk), intent(in), optional :: other_zeroed

    [optional] should the unused half of the return matrix be zeroed out? Default: yes

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine stdlib_linalg_z_cholesky_inplace(a, lower, other_zeroed, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(inout), target :: a(:,:)

    Input matrix a[m,n]

    logical(kind=lk), intent(in), optional :: lower

    [optional] is the lower or upper triangular factor required? Default = lower

    logical(kind=lk), intent(in), optional :: other_zeroed

    [optional] should the unused half of the return matrix be zeroed out? Default: yes

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

public interface cross_product

Computes the cross product of two vectors, returning a rank-1 and size-3 array (Specification)

  • private pure module function cross_product_cdp(a, b) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: a(3)
    complex(kind=dp), intent(in) :: b(3)

    Return Value complex(kind=dp), (3)

  • private pure module function cross_product_csp(a, b) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: a(3)
    complex(kind=sp), intent(in) :: b(3)

    Return Value complex(kind=sp), (3)

  • private pure module function cross_product_iint16(a, b) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int16), intent(in) :: a(3)
    integer(kind=int16), intent(in) :: b(3)

    Return Value integer(kind=int16), (3)

  • private pure module function cross_product_iint32(a, b) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int32), intent(in) :: a(3)
    integer(kind=int32), intent(in) :: b(3)

    Return Value integer(kind=int32), (3)

  • private pure module function cross_product_iint64(a, b) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int64), intent(in) :: a(3)
    integer(kind=int64), intent(in) :: b(3)

    Return Value integer(kind=int64), (3)

  • private pure module function cross_product_iint8(a, b) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int8), intent(in) :: a(3)
    integer(kind=int8), intent(in) :: b(3)

    Return Value integer(kind=int8), (3)

  • private pure module function cross_product_rdp(a, b) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: a(3)
    real(kind=dp), intent(in) :: b(3)

    Return Value real(kind=dp), (3)

  • private pure module function cross_product_rsp(a, b) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: a(3)
    real(kind=sp), intent(in) :: b(3)

    Return Value real(kind=sp), (3)

public interface det

Computes the determinant of a square matrix (Specification)

Summary

Interface for computing matrix determinant.

Description

This interface provides methods for computing the determinant of a matrix. Supported data types include real and complex.

Note

The provided functions are intended for square matrices only.

Note

BLAS/LAPACK backends do not currently support extended precision (xdp).

Example

    real(sp) :: a(3,3), d
    type(linalg_state_type) :: state  
    a = reshape([1, 2, 3, 4, 5, 6, 7, 8, 9], [3, 3])

    ! ...
    d = det(a,err=state)
    if (state%ok()) then 
       print *, 'Success! det=',d
    else
       print *, state%print()
    endif
    ! ...
  • private interface stdlib_linalg_rspdeterminant()

    Arguments

    None
  • private interface stdlib_linalg_pure_rspdeterminant()

    Arguments

    None
  • private interface stdlib_linalg_rdpdeterminant()

    Arguments

    None
  • private interface stdlib_linalg_pure_rdpdeterminant()

    Arguments

    None
  • private interface stdlib_linalg_cspdeterminant()

    Arguments

    None
  • private interface stdlib_linalg_pure_cspdeterminant()

    Arguments

    None
  • private interface stdlib_linalg_cdpdeterminant()

    Arguments

    None
  • private interface stdlib_linalg_pure_cdpdeterminant()

    Arguments

    None

public interface diag

Creates a diagonal array or extract the diagonal elements of an array (Specification)

  • private module function diag_cdp(v) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: v(:)

    Return Value complex(kind=dp), (size(v),size(v))

  • private module function diag_cdp_k(v, k) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: v(:)
    integer, intent(in) :: k

    Return Value complex(kind=dp), (size(v)+abs(k),size(v)+abs(k))

  • private module function diag_cdp_mat(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: A(:,:)

    Return Value complex(kind=dp), (minval(shape(A)))

  • private module function diag_cdp_mat_k(A, k) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: A(:,:)
    integer, intent(in) :: k

    Return Value complex(kind=dp), (minval(shape(A))-abs(k))

  • private module function diag_csp(v) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: v(:)

    Return Value complex(kind=sp), (size(v),size(v))

  • private module function diag_csp_k(v, k) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: v(:)
    integer, intent(in) :: k

    Return Value complex(kind=sp), (size(v)+abs(k),size(v)+abs(k))

  • private module function diag_csp_mat(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: A(:,:)

    Return Value complex(kind=sp), (minval(shape(A)))

  • private module function diag_csp_mat_k(A, k) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: A(:,:)
    integer, intent(in) :: k

    Return Value complex(kind=sp), (minval(shape(A))-abs(k))

  • private module function diag_iint16(v) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int16), intent(in) :: v(:)

    Return Value integer(kind=int16), (size(v),size(v))

  • private module function diag_iint16_k(v, k) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int16), intent(in) :: v(:)
    integer, intent(in) :: k

    Return Value integer(kind=int16), (size(v)+abs(k),size(v)+abs(k))

  • private module function diag_iint16_mat(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int16), intent(in) :: A(:,:)

    Return Value integer(kind=int16), (minval(shape(A)))

  • private module function diag_iint16_mat_k(A, k) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int16), intent(in) :: A(:,:)
    integer, intent(in) :: k

    Return Value integer(kind=int16), (minval(shape(A))-abs(k))

  • private module function diag_iint32(v) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int32), intent(in) :: v(:)

    Return Value integer(kind=int32), (size(v),size(v))

  • private module function diag_iint32_k(v, k) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int32), intent(in) :: v(:)
    integer, intent(in) :: k

    Return Value integer(kind=int32), (size(v)+abs(k),size(v)+abs(k))

  • private module function diag_iint32_mat(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int32), intent(in) :: A(:,:)

    Return Value integer(kind=int32), (minval(shape(A)))

  • private module function diag_iint32_mat_k(A, k) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int32), intent(in) :: A(:,:)
    integer, intent(in) :: k

    Return Value integer(kind=int32), (minval(shape(A))-abs(k))

  • private module function diag_iint64(v) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int64), intent(in) :: v(:)

    Return Value integer(kind=int64), (size(v),size(v))

  • private module function diag_iint64_k(v, k) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int64), intent(in) :: v(:)
    integer, intent(in) :: k

    Return Value integer(kind=int64), (size(v)+abs(k),size(v)+abs(k))

  • private module function diag_iint64_mat(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int64), intent(in) :: A(:,:)

    Return Value integer(kind=int64), (minval(shape(A)))

  • private module function diag_iint64_mat_k(A, k) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int64), intent(in) :: A(:,:)
    integer, intent(in) :: k

    Return Value integer(kind=int64), (minval(shape(A))-abs(k))

  • private module function diag_iint8(v) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int8), intent(in) :: v(:)

    Return Value integer(kind=int8), (size(v),size(v))

  • private module function diag_iint8_k(v, k) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int8), intent(in) :: v(:)
    integer, intent(in) :: k

    Return Value integer(kind=int8), (size(v)+abs(k),size(v)+abs(k))

  • private module function diag_iint8_mat(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int8), intent(in) :: A(:,:)

    Return Value integer(kind=int8), (minval(shape(A)))

  • private module function diag_iint8_mat_k(A, k) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int8), intent(in) :: A(:,:)
    integer, intent(in) :: k

    Return Value integer(kind=int8), (minval(shape(A))-abs(k))

  • private module function diag_rdp(v) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: v(:)

    Return Value real(kind=dp), (size(v),size(v))

  • private module function diag_rdp_k(v, k) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: v(:)
    integer, intent(in) :: k

    Return Value real(kind=dp), (size(v)+abs(k),size(v)+abs(k))

  • private module function diag_rdp_mat(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: A(:,:)

    Return Value real(kind=dp), (minval(shape(A)))

  • private module function diag_rdp_mat_k(A, k) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: A(:,:)
    integer, intent(in) :: k

    Return Value real(kind=dp), (minval(shape(A))-abs(k))

  • private module function diag_rsp(v) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: v(:)

    Return Value real(kind=sp), (size(v),size(v))

  • private module function diag_rsp_k(v, k) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: v(:)
    integer, intent(in) :: k

    Return Value real(kind=sp), (size(v)+abs(k),size(v)+abs(k))

  • private module function diag_rsp_mat(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: A(:,:)

    Return Value real(kind=sp), (minval(shape(A)))

  • private module function diag_rsp_mat_k(A, k) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: A(:,:)
    integer, intent(in) :: k

    Return Value real(kind=sp), (minval(shape(A))-abs(k))

public interface eig

Solves the eigendecomposition for square matrix . (Specification)

Summary

Subroutine interface for computing eigenvalues and eigenvectors of a square matrix.

Description

This interface provides methods for computing the eigenvalues, and optionally eigenvectors, of a general square matrix. Supported data types include real and complex, and no assumption is made on the matrix structure. The user may request either left, right, or both eigenvectors to be returned. They are returned as columns of a square matrix with the same size as A. Preallocated space for both eigenvalues lambda and the eigenvector matrices must be user-provided.

Note

The solution is based on LAPACK's general eigenproblem solvers *GEEV.

Note

BLAS/LAPACK backends do not currently support extended precision (xdp).

  • private module subroutine stdlib_linalg_eig_generalized_c(a, b, lambda, right, left, overwrite_a, overwrite_b, err)

    Eigendecomposition of matrix A returning an array lambda of eigenvalues, and optionally right or left eigenvectors.

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(inout), target :: a(:,:)

    Input matrix A[m,n]

    complex(kind=sp), intent(inout), target :: b(:,:)

    Generalized problem matrix B[n,n]

    complex(kind=sp), intent(out) :: lambda(:)

    Array of eigenvalues

    complex(kind=sp), intent(out), optional, target :: right(:,:)

    The columns of RIGHT contain the right eigenvectors of A

    complex(kind=sp), intent(out), optional, target :: left(:,:)

    The columns of LEFT contain the left eigenvectors of A

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    logical(kind=lk), intent(in), optional :: overwrite_b

    [optional] Can B data be overwritten and destroyed? (default: no)

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_eig_generalized_d(a, b, lambda, right, left, overwrite_a, overwrite_b, err)

    Eigendecomposition of matrix A returning an array lambda of eigenvalues, and optionally right or left eigenvectors.

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(inout), target :: a(:,:)

    Input matrix A[m,n]

    real(kind=dp), intent(inout), target :: b(:,:)

    Generalized problem matrix B[n,n]

    complex(kind=dp), intent(out) :: lambda(:)

    Array of eigenvalues

    complex(kind=dp), intent(out), optional, target :: right(:,:)

    The columns of RIGHT contain the right eigenvectors of A

    complex(kind=dp), intent(out), optional, target :: left(:,:)

    The columns of LEFT contain the left eigenvectors of A

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    logical(kind=lk), intent(in), optional :: overwrite_b

    [optional] Can B data be overwritten and destroyed? (default: no)

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_eig_generalized_s(a, b, lambda, right, left, overwrite_a, overwrite_b, err)

    Eigendecomposition of matrix A returning an array lambda of eigenvalues, and optionally right or left eigenvectors.

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(inout), target :: a(:,:)

    Input matrix A[m,n]

    real(kind=sp), intent(inout), target :: b(:,:)

    Generalized problem matrix B[n,n]

    complex(kind=sp), intent(out) :: lambda(:)

    Array of eigenvalues

    complex(kind=sp), intent(out), optional, target :: right(:,:)

    The columns of RIGHT contain the right eigenvectors of A

    complex(kind=sp), intent(out), optional, target :: left(:,:)

    The columns of LEFT contain the left eigenvectors of A

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    logical(kind=lk), intent(in), optional :: overwrite_b

    [optional] Can B data be overwritten and destroyed? (default: no)

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_eig_generalized_z(a, b, lambda, right, left, overwrite_a, overwrite_b, err)

    Eigendecomposition of matrix A returning an array lambda of eigenvalues, and optionally right or left eigenvectors.

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(inout), target :: a(:,:)

    Input matrix A[m,n]

    complex(kind=dp), intent(inout), target :: b(:,:)

    Generalized problem matrix B[n,n]

    complex(kind=dp), intent(out) :: lambda(:)

    Array of eigenvalues

    complex(kind=dp), intent(out), optional, target :: right(:,:)

    The columns of RIGHT contain the right eigenvectors of A

    complex(kind=dp), intent(out), optional, target :: left(:,:)

    The columns of LEFT contain the left eigenvectors of A

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    logical(kind=lk), intent(in), optional :: overwrite_b

    [optional] Can B data be overwritten and destroyed? (default: no)

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_eig_standard_c(a, lambda, right, left, overwrite_a, err)

    Eigendecomposition of matrix A returning an array lambda of eigenvalues, and optionally right or left eigenvectors.

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(inout), target :: a(:,:)

    Input matrix A[m,n]

    complex(kind=sp), intent(out) :: lambda(:)

    Array of eigenvalues

    complex(kind=sp), intent(out), optional, target :: right(:,:)

    The columns of RIGHT contain the right eigenvectors of A

    complex(kind=sp), intent(out), optional, target :: left(:,:)

    The columns of LEFT contain the left eigenvectors of A

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_eig_standard_d(a, lambda, right, left, overwrite_a, err)

    Eigendecomposition of matrix A returning an array lambda of eigenvalues, and optionally right or left eigenvectors.

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(inout), target :: a(:,:)

    Input matrix A[m,n]

    complex(kind=dp), intent(out) :: lambda(:)

    Array of eigenvalues

    complex(kind=dp), intent(out), optional, target :: right(:,:)

    The columns of RIGHT contain the right eigenvectors of A

    complex(kind=dp), intent(out), optional, target :: left(:,:)

    The columns of LEFT contain the left eigenvectors of A

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_eig_standard_s(a, lambda, right, left, overwrite_a, err)

    Eigendecomposition of matrix A returning an array lambda of eigenvalues, and optionally right or left eigenvectors.

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(inout), target :: a(:,:)

    Input matrix A[m,n]

    complex(kind=sp), intent(out) :: lambda(:)

    Array of eigenvalues

    complex(kind=sp), intent(out), optional, target :: right(:,:)

    The columns of RIGHT contain the right eigenvectors of A

    complex(kind=sp), intent(out), optional, target :: left(:,:)

    The columns of LEFT contain the left eigenvectors of A

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_eig_standard_z(a, lambda, right, left, overwrite_a, err)

    Eigendecomposition of matrix A returning an array lambda of eigenvalues, and optionally right or left eigenvectors.

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(inout), target :: a(:,:)

    Input matrix A[m,n]

    complex(kind=dp), intent(out) :: lambda(:)

    Array of eigenvalues

    complex(kind=dp), intent(out), optional, target :: right(:,:)

    The columns of RIGHT contain the right eigenvectors of A

    complex(kind=dp), intent(out), optional, target :: left(:,:)

    The columns of LEFT contain the left eigenvectors of A

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_real_eig_generalized_c(a, b, lambda, right, left, overwrite_a, overwrite_b, err)

    Eigendecomposition of matrix A returning an array lambda of real eigenvalues, and optionally right or left eigenvectors. Returns an error if the eigenvalues had non-trivial imaginary parts.

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(inout), target :: a(:,:)

    Input matrix A[m,n]

    complex(kind=sp), intent(inout), target :: b(:,:)

    Generalized problem matrix B[n,n]

    real(kind=sp), intent(out) :: lambda(:)

    Array of real eigenvalues

    complex(kind=sp), intent(out), optional, target :: right(:,:)

    The columns of RIGHT contain the right eigenvectors of A

    complex(kind=sp), intent(out), optional, target :: left(:,:)

    The columns of LEFT contain the left eigenvectors of A

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    logical(kind=lk), intent(in), optional :: overwrite_b

    [optional] Can B data be overwritten and destroyed? (default: no)

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_real_eig_generalized_d(a, b, lambda, right, left, overwrite_a, overwrite_b, err)

    Eigendecomposition of matrix A returning an array lambda of real eigenvalues, and optionally right or left eigenvectors. Returns an error if the eigenvalues had non-trivial imaginary parts.

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(inout), target :: a(:,:)

    Input matrix A[m,n]

    real(kind=dp), intent(inout), target :: b(:,:)

    Generalized problem matrix B[n,n]

    real(kind=dp), intent(out) :: lambda(:)

    Array of real eigenvalues

    complex(kind=dp), intent(out), optional, target :: right(:,:)

    The columns of RIGHT contain the right eigenvectors of A

    complex(kind=dp), intent(out), optional, target :: left(:,:)

    The columns of LEFT contain the left eigenvectors of A

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    logical(kind=lk), intent(in), optional :: overwrite_b

    [optional] Can B data be overwritten and destroyed? (default: no)

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_real_eig_generalized_s(a, b, lambda, right, left, overwrite_a, overwrite_b, err)

    Eigendecomposition of matrix A returning an array lambda of real eigenvalues, and optionally right or left eigenvectors. Returns an error if the eigenvalues had non-trivial imaginary parts.

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(inout), target :: a(:,:)

    Input matrix A[m,n]

    real(kind=sp), intent(inout), target :: b(:,:)

    Generalized problem matrix B[n,n]

    real(kind=sp), intent(out) :: lambda(:)

    Array of real eigenvalues

    complex(kind=sp), intent(out), optional, target :: right(:,:)

    The columns of RIGHT contain the right eigenvectors of A

    complex(kind=sp), intent(out), optional, target :: left(:,:)

    The columns of LEFT contain the left eigenvectors of A

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    logical(kind=lk), intent(in), optional :: overwrite_b

    [optional] Can B data be overwritten and destroyed? (default: no)

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_real_eig_generalized_z(a, b, lambda, right, left, overwrite_a, overwrite_b, err)

    Eigendecomposition of matrix A returning an array lambda of real eigenvalues, and optionally right or left eigenvectors. Returns an error if the eigenvalues had non-trivial imaginary parts.

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(inout), target :: a(:,:)

    Input matrix A[m,n]

    complex(kind=dp), intent(inout), target :: b(:,:)

    Generalized problem matrix B[n,n]

    real(kind=dp), intent(out) :: lambda(:)

    Array of real eigenvalues

    complex(kind=dp), intent(out), optional, target :: right(:,:)

    The columns of RIGHT contain the right eigenvectors of A

    complex(kind=dp), intent(out), optional, target :: left(:,:)

    The columns of LEFT contain the left eigenvectors of A

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    logical(kind=lk), intent(in), optional :: overwrite_b

    [optional] Can B data be overwritten and destroyed? (default: no)

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_real_eig_standard_c(a, lambda, right, left, overwrite_a, err)

    Eigendecomposition of matrix A returning an array lambda of real eigenvalues, and optionally right or left eigenvectors. Returns an error if the eigenvalues had non-trivial imaginary parts.

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(inout), target :: a(:,:)

    Input matrix A[m,n]

    real(kind=sp), intent(out) :: lambda(:)

    Array of real eigenvalues

    complex(kind=sp), intent(out), optional, target :: right(:,:)

    The columns of RIGHT contain the right eigenvectors of A

    complex(kind=sp), intent(out), optional, target :: left(:,:)

    The columns of LEFT contain the left eigenvectors of A

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_real_eig_standard_d(a, lambda, right, left, overwrite_a, err)

    Eigendecomposition of matrix A returning an array lambda of real eigenvalues, and optionally right or left eigenvectors. Returns an error if the eigenvalues had non-trivial imaginary parts.

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(inout), target :: a(:,:)

    Input matrix A[m,n]

    real(kind=dp), intent(out) :: lambda(:)

    Array of real eigenvalues

    complex(kind=dp), intent(out), optional, target :: right(:,:)

    The columns of RIGHT contain the right eigenvectors of A

    complex(kind=dp), intent(out), optional, target :: left(:,:)

    The columns of LEFT contain the left eigenvectors of A

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_real_eig_standard_s(a, lambda, right, left, overwrite_a, err)

    Eigendecomposition of matrix A returning an array lambda of real eigenvalues, and optionally right or left eigenvectors. Returns an error if the eigenvalues had non-trivial imaginary parts.

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(inout), target :: a(:,:)

    Input matrix A[m,n]

    real(kind=sp), intent(out) :: lambda(:)

    Array of real eigenvalues

    complex(kind=sp), intent(out), optional, target :: right(:,:)

    The columns of RIGHT contain the right eigenvectors of A

    complex(kind=sp), intent(out), optional, target :: left(:,:)

    The columns of LEFT contain the left eigenvectors of A

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_real_eig_standard_z(a, lambda, right, left, overwrite_a, err)

    Eigendecomposition of matrix A returning an array lambda of real eigenvalues, and optionally right or left eigenvectors. Returns an error if the eigenvalues had non-trivial imaginary parts.

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(inout), target :: a(:,:)

    Input matrix A[m,n]

    real(kind=dp), intent(out) :: lambda(:)

    Array of real eigenvalues

    complex(kind=dp), intent(out), optional, target :: right(:,:)

    The columns of RIGHT contain the right eigenvectors of A

    complex(kind=dp), intent(out), optional, target :: left(:,:)

    The columns of LEFT contain the left eigenvectors of A

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

public interface eigh

Solves the eigendecomposition for a real symmetric or complex Hermitian square matrix. (Specification)

Summary

Subroutine interface for computing eigenvalues and eigenvectors of a real symmetric or complex Hermitian square matrix.

Description

This interface provides methods for computing the eigenvalues, and optionally eigenvectors, of a real symmetric or complex Hermitian square matrix. Supported data types include real and complex. The matrix must be symmetric (if real) or Hermitian (if complex). Only the lower or upper half of the matrix is accessed, and the user can select which using the optional upper_a flag (default: use lower half). The vectors are orthogonal, and may be returned as columns of an optional matrix vectors with the same kind and size as A. Preallocated space for both eigenvalues lambda and the eigenvector matrix must be user-provided.

Note

The solution is based on LAPACK's eigenproblem solvers *SYEV/*HEEV.

Note

BLAS/LAPACK backends do not currently support extended precision (xdp).

  • private module subroutine stdlib_linalg_eigh_c(a, lambda, vectors, upper_a, overwrite_a, err)

    Eigendecomposition of a real symmetric or complex Hermitian matrix A returning an array lambda of eigenvalues, and optionally right or left eigenvectors.

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(inout), target :: a(:,:)

    Input matrix A[m,n]

    real(kind=sp), intent(out) :: lambda(:)

    Array of eigenvalues

    complex(kind=sp), intent(out), optional, target :: vectors(:,:)

    The columns of vectors contain the orthonormal eigenvectors of A

    logical(kind=lk), intent(in), optional :: upper_a

    [optional] Should the upper/lower half of A be used? Default: lower

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_eigh_d(a, lambda, vectors, upper_a, overwrite_a, err)

    Eigendecomposition of a real symmetric or complex Hermitian matrix A returning an array lambda of eigenvalues, and optionally right or left eigenvectors.

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(inout), target :: a(:,:)

    Input matrix A[m,n]

    real(kind=dp), intent(out) :: lambda(:)

    Array of eigenvalues

    real(kind=dp), intent(out), optional, target :: vectors(:,:)

    The columns of vectors contain the orthonormal eigenvectors of A

    logical(kind=lk), intent(in), optional :: upper_a

    [optional] Should the upper/lower half of A be used? Default: lower

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_eigh_s(a, lambda, vectors, upper_a, overwrite_a, err)

    Eigendecomposition of a real symmetric or complex Hermitian matrix A returning an array lambda of eigenvalues, and optionally right or left eigenvectors.

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(inout), target :: a(:,:)

    Input matrix A[m,n]

    real(kind=sp), intent(out) :: lambda(:)

    Array of eigenvalues

    real(kind=sp), intent(out), optional, target :: vectors(:,:)

    The columns of vectors contain the orthonormal eigenvectors of A

    logical(kind=lk), intent(in), optional :: upper_a

    [optional] Should the upper/lower half of A be used? Default: lower

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_eigh_z(a, lambda, vectors, upper_a, overwrite_a, err)

    Eigendecomposition of a real symmetric or complex Hermitian matrix A returning an array lambda of eigenvalues, and optionally right or left eigenvectors.

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(inout), target :: a(:,:)

    Input matrix A[m,n]

    real(kind=dp), intent(out) :: lambda(:)

    Array of eigenvalues

    complex(kind=dp), intent(out), optional, target :: vectors(:,:)

    The columns of vectors contain the orthonormal eigenvectors of A

    logical(kind=lk), intent(in), optional :: upper_a

    [optional] Should the upper/lower half of A be used? Default: lower

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

public interface eigvals

Returns the eigenvalues , , for square matrix . (Specification)

Summary

Function interface for computing the eigenvalues of a square matrix.

Description

This interface provides functions for returning the eigenvalues of a general square matrix. Supported data types include real and complex, and no assumption is made on the matrix structure. An error stop is thrown in case of failure; otherwise, error information can be returned as an optional type(linalg_state_type) output flag.

Note

The solution is based on LAPACK's general eigenproblem solvers *GEEV.

Note

BLAS/LAPACK backends do not currently support extended precision (xdp).

  • private module function stdlib_linalg_eigvals_generalized_c(a, b, err) result(lambda)

    Return an array of eigenvalues of matrix A.

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), dimension(:,:), target :: a

    Input matrix A[m,n]

    complex(kind=sp), intent(inout), dimension(:,:), target :: b

    Generalized problem matrix B[n,n]

    type(linalg_state_type), intent(out) :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value complex(kind=sp), allocatable, (:)

    Array of singular values

  • private module function stdlib_linalg_eigvals_generalized_d(a, b, err) result(lambda)

    Return an array of eigenvalues of matrix A.

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), dimension(:,:), target :: a

    Input matrix A[m,n]

    real(kind=dp), intent(inout), dimension(:,:), target :: b

    Generalized problem matrix B[n,n]

    type(linalg_state_type), intent(out) :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value complex(kind=dp), allocatable, (:)

    Array of singular values

  • private module function stdlib_linalg_eigvals_generalized_s(a, b, err) result(lambda)

    Return an array of eigenvalues of matrix A.

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), dimension(:,:), target :: a

    Input matrix A[m,n]

    real(kind=sp), intent(inout), dimension(:,:), target :: b

    Generalized problem matrix B[n,n]

    type(linalg_state_type), intent(out) :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value complex(kind=sp), allocatable, (:)

    Array of singular values

  • private module function stdlib_linalg_eigvals_generalized_z(a, b, err) result(lambda)

    Return an array of eigenvalues of matrix A.

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), dimension(:,:), target :: a

    Input matrix A[m,n]

    complex(kind=dp), intent(inout), dimension(:,:), target :: b

    Generalized problem matrix B[n,n]

    type(linalg_state_type), intent(out) :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value complex(kind=dp), allocatable, (:)

    Array of singular values

  • private module function stdlib_linalg_eigvals_noerr_generalized_c(a, b) result(lambda)

    Return an array of eigenvalues of matrix A.

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), dimension(:,:), target :: a

    Input matrix A[m,n]

    complex(kind=sp), intent(inout), dimension(:,:), target :: b

    Generalized problem matrix B[n,n]

    Return Value complex(kind=sp), allocatable, (:)

    Array of singular values

  • private module function stdlib_linalg_eigvals_noerr_generalized_d(a, b) result(lambda)

    Return an array of eigenvalues of matrix A.

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), dimension(:,:), target :: a

    Input matrix A[m,n]

    real(kind=dp), intent(inout), dimension(:,:), target :: b

    Generalized problem matrix B[n,n]

    Return Value complex(kind=dp), allocatable, (:)

    Array of singular values

  • private module function stdlib_linalg_eigvals_noerr_generalized_s(a, b) result(lambda)

    Return an array of eigenvalues of matrix A.

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), dimension(:,:), target :: a

    Input matrix A[m,n]

    real(kind=sp), intent(inout), dimension(:,:), target :: b

    Generalized problem matrix B[n,n]

    Return Value complex(kind=sp), allocatable, (:)

    Array of singular values

  • private module function stdlib_linalg_eigvals_noerr_generalized_z(a, b) result(lambda)

    Return an array of eigenvalues of matrix A.

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), dimension(:,:), target :: a

    Input matrix A[m,n]

    complex(kind=dp), intent(inout), dimension(:,:), target :: b

    Generalized problem matrix B[n,n]

    Return Value complex(kind=dp), allocatable, (:)

    Array of singular values

  • private module function stdlib_linalg_eigvals_noerr_standard_c(a) result(lambda)

    Return an array of eigenvalues of matrix A.

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), dimension(:,:), target :: a

    Input matrix A[m,n]

    Return Value complex(kind=sp), allocatable, (:)

    Array of singular values

  • private module function stdlib_linalg_eigvals_noerr_standard_d(a) result(lambda)

    Return an array of eigenvalues of matrix A.

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), dimension(:,:), target :: a

    Input matrix A[m,n]

    Return Value complex(kind=dp), allocatable, (:)

    Array of singular values

  • private module function stdlib_linalg_eigvals_noerr_standard_s(a) result(lambda)

    Return an array of eigenvalues of matrix A.

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), dimension(:,:), target :: a

    Input matrix A[m,n]

    Return Value complex(kind=sp), allocatable, (:)

    Array of singular values

  • private module function stdlib_linalg_eigvals_noerr_standard_z(a) result(lambda)

    Return an array of eigenvalues of matrix A.

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), dimension(:,:), target :: a

    Input matrix A[m,n]

    Return Value complex(kind=dp), allocatable, (:)

    Array of singular values

  • private module function stdlib_linalg_eigvals_standard_c(a, err) result(lambda)

    Return an array of eigenvalues of matrix A.

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), dimension(:,:), target :: a

    Input matrix A[m,n]

    type(linalg_state_type), intent(out) :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value complex(kind=sp), allocatable, (:)

    Array of singular values

  • private module function stdlib_linalg_eigvals_standard_d(a, err) result(lambda)

    Return an array of eigenvalues of matrix A.

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), dimension(:,:), target :: a

    Input matrix A[m,n]

    type(linalg_state_type), intent(out) :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value complex(kind=dp), allocatable, (:)

    Array of singular values

  • private module function stdlib_linalg_eigvals_standard_s(a, err) result(lambda)

    Return an array of eigenvalues of matrix A.

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), dimension(:,:), target :: a

    Input matrix A[m,n]

    type(linalg_state_type), intent(out) :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value complex(kind=sp), allocatable, (:)

    Array of singular values

  • private module function stdlib_linalg_eigvals_standard_z(a, err) result(lambda)

    Return an array of eigenvalues of matrix A.

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), dimension(:,:), target :: a

    Input matrix A[m,n]

    type(linalg_state_type), intent(out) :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value complex(kind=dp), allocatable, (:)

    Array of singular values

public interface eigvalsh

Returns the eigenvalues , , for a real symmetric or complex Hermitian square matrix. (Specification)

Summary

Function interface for computing the eigenvalues of a real symmetric or complex hermitian square matrix.

Description

This interface provides functions for returning the eigenvalues of a real symmetric or complex Hermitian square matrix. Supported data types include real and complex. The matrix must be symmetric (if real) or Hermitian (if complex). Only the lower or upper half of the matrix is accessed, and the user can select which using the optional upper_a flag (default: use lower half). An error stop is thrown in case of failure; otherwise, error information can be returned as an optional type(linalg_state_type) output flag.

Note

The solution is based on LAPACK's eigenproblem solvers *SYEV/*HEEV.

Note

BLAS/LAPACK backends do not currently support extended precision (xdp).

  • private module function stdlib_linalg_eigvalsh_c(a, upper_a, err) result(lambda)

    Return an array of eigenvalues of real symmetric / complex hermitian A

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), target :: a(:,:)

    Input matrix A[m,n]

    logical(kind=lk), intent(in), optional :: upper_a

    [optional] Should the upper/lower half of A be used? Default: lower

    type(linalg_state_type), intent(out) :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=sp), allocatable, (:)

    Array of singular values

  • private module function stdlib_linalg_eigvalsh_d(a, upper_a, err) result(lambda)

    Return an array of eigenvalues of real symmetric / complex hermitian A

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), target :: a(:,:)

    Input matrix A[m,n]

    logical(kind=lk), intent(in), optional :: upper_a

    [optional] Should the upper/lower half of A be used? Default: lower

    type(linalg_state_type), intent(out) :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=dp), allocatable, (:)

    Array of singular values

  • private module function stdlib_linalg_eigvalsh_noerr_c(a, upper_a) result(lambda)

    Return an array of eigenvalues of real symmetric / complex hermitian A

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), target :: a(:,:)

    Input matrix A[m,n]

    logical(kind=lk), intent(in), optional :: upper_a

    [optional] Should the upper/lower half of A be used? Default: lower

    Return Value real(kind=sp), allocatable, (:)

    Array of singular values

  • private module function stdlib_linalg_eigvalsh_noerr_d(a, upper_a) result(lambda)

    Return an array of eigenvalues of real symmetric / complex hermitian A

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), target :: a(:,:)

    Input matrix A[m,n]

    logical(kind=lk), intent(in), optional :: upper_a

    [optional] Should the upper/lower half of A be used? Default: lower

    Return Value real(kind=dp), allocatable, (:)

    Array of singular values

  • private module function stdlib_linalg_eigvalsh_noerr_s(a, upper_a) result(lambda)

    Return an array of eigenvalues of real symmetric / complex hermitian A

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), target :: a(:,:)

    Input matrix A[m,n]

    logical(kind=lk), intent(in), optional :: upper_a

    [optional] Should the upper/lower half of A be used? Default: lower

    Return Value real(kind=sp), allocatable, (:)

    Array of singular values

  • private module function stdlib_linalg_eigvalsh_noerr_z(a, upper_a) result(lambda)

    Return an array of eigenvalues of real symmetric / complex hermitian A

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), target :: a(:,:)

    Input matrix A[m,n]

    logical(kind=lk), intent(in), optional :: upper_a

    [optional] Should the upper/lower half of A be used? Default: lower

    Return Value real(kind=dp), allocatable, (:)

    Array of singular values

  • private module function stdlib_linalg_eigvalsh_s(a, upper_a, err) result(lambda)

    Return an array of eigenvalues of real symmetric / complex hermitian A

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), target :: a(:,:)

    Input matrix A[m,n]

    logical(kind=lk), intent(in), optional :: upper_a

    [optional] Should the upper/lower half of A be used? Default: lower

    type(linalg_state_type), intent(out) :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=sp), allocatable, (:)

    Array of singular values

  • private module function stdlib_linalg_eigvalsh_z(a, upper_a, err) result(lambda)

    Return an array of eigenvalues of real symmetric / complex hermitian A

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), target :: a(:,:)

    Input matrix A[m,n]

    logical(kind=lk), intent(in), optional :: upper_a

    [optional] Should the upper/lower half of A be used? Default: lower

    type(linalg_state_type), intent(out) :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=dp), allocatable, (:)

    Array of singular values

public interface eye

Constructs the identity matrix (Specification)

  • private pure function eye_rsp(dim1, dim2, mold) result(result)

    Constructs the identity matrix. (Specification)

    Arguments

    Type IntentOptional Attributes Name
    integer, intent(in) :: dim1
    integer, intent(in), optional :: dim2
    real(kind=sp), intent(in) :: mold

    Return Value real(kind=sp), allocatable, (:,:)

  • private pure function eye_rdp(dim1, dim2, mold) result(result)

    Arguments

    Type IntentOptional Attributes Name
    integer, intent(in) :: dim1
    integer, intent(in), optional :: dim2
    real(kind=dp), intent(in), optional :: mold

    Return Value real(kind=dp), allocatable, (:,:)

  • private pure function eye_csp(dim1, dim2, mold) result(result)

    Arguments

    Type IntentOptional Attributes Name
    integer, intent(in) :: dim1
    integer, intent(in), optional :: dim2
    complex(kind=sp), intent(in) :: mold

    Return Value complex(kind=sp), allocatable, (:,:)

  • private pure function eye_cdp(dim1, dim2, mold) result(result)

    Arguments

    Type IntentOptional Attributes Name
    integer, intent(in) :: dim1
    integer, intent(in), optional :: dim2
    complex(kind=dp), intent(in) :: mold

    Return Value complex(kind=dp), allocatable, (:,:)

  • private pure function eye_iint8(dim1, dim2, mold) result(result)

    Arguments

    Type IntentOptional Attributes Name
    integer, intent(in) :: dim1
    integer, intent(in), optional :: dim2
    integer(kind=int8), intent(in) :: mold

    Return Value integer(kind=int8), allocatable, (:,:)

  • private pure function eye_iint16(dim1, dim2, mold) result(result)

    Arguments

    Type IntentOptional Attributes Name
    integer, intent(in) :: dim1
    integer, intent(in), optional :: dim2
    integer(kind=int16), intent(in) :: mold

    Return Value integer(kind=int16), allocatable, (:,:)

  • private pure function eye_iint32(dim1, dim2, mold) result(result)

    Arguments

    Type IntentOptional Attributes Name
    integer, intent(in) :: dim1
    integer, intent(in), optional :: dim2
    integer(kind=int32), intent(in) :: mold

    Return Value integer(kind=int32), allocatable, (:,:)

  • private pure function eye_iint64(dim1, dim2, mold) result(result)

    Arguments

    Type IntentOptional Attributes Name
    integer, intent(in) :: dim1
    integer, intent(in), optional :: dim2
    integer(kind=int64), intent(in) :: mold

    Return Value integer(kind=int64), allocatable, (:,:)

public interface get_norm

Vector norm: subroutine interface version: experimental

Computes the vector norm of a generic-rank array . (Specification)

Summary

Subroutine interface that returns one of several scalar norm metrics of a real or complex input array , that can have any rank. For generic rank-n arrays, the scalar norm over the whole array is returned by default. If n>=2 and the optional input dimension dim is specified, a rank n-1 array is returned with dimension dim collapsed, containing all 1D array norms evaluated along dimension dim only.

Description

This pure subroutineinterface provides methods for computing the vector norm(s) of an array.
Supported data types include real and complex. Input arrays may have generic rank from 1 to 3.

Norm type input is mandatory, and it is provided via the order argument. This can be provided as either an integer value or a character string. Allowed metrics are: - 1-norm : order = 1 or '1'
- Euclidean norm : order = 2 or '2' - p-norm : integer order, order>=3 - Infinity norm : order = huge(0) or 'inf' - Minus-infinity norm : order = -huge(0) or '-inf'

Example

    real(sp) :: a(3,3), na, rown(3)
    type(linalg_state_type) :: err
    a = reshape([1, 2, 3, 4, 5, 6, 7, 8, 9], [3, 3])

    ! L2 norm: whole matrix
    call get_norm(a, na, 2)

    ! Infinity norms of each row, with error control
    call get_norm(a, rown, 'inf', dim=2, err=err)     
  • private pure module subroutine norm_1D_char_c(a, nrm, order, err)

    Scalar norms: complex(sp)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), target :: a(:)

    Input 1-d matrix a(:)

    real(kind=sp), intent(out) :: nrm

    Norm of the matrix.

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_1D_char_d(a, nrm, order, err)

    Scalar norms: real(dp)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), target :: a(:)

    Input 1-d matrix a(:)

    real(kind=dp), intent(out) :: nrm

    Norm of the matrix.

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_1D_char_s(a, nrm, order, err)

    Scalar norms: real(sp)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), target :: a(:)

    Input 1-d matrix a(:)

    real(kind=sp), intent(out) :: nrm

    Norm of the matrix.

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_1D_char_z(a, nrm, order, err)

    Scalar norms: complex(dp)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), target :: a(:)

    Input 1-d matrix a(:)

    real(kind=dp), intent(out) :: nrm

    Norm of the matrix.

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_1D_int_c(a, nrm, order, err)

    Scalar norms: complex(sp)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), target :: a(:)

    Input 1-d matrix a(:)

    real(kind=sp), intent(out) :: nrm

    Norm of the matrix.

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_1D_int_d(a, nrm, order, err)

    Scalar norms: real(dp)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), target :: a(:)

    Input 1-d matrix a(:)

    real(kind=dp), intent(out) :: nrm

    Norm of the matrix.

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_1D_int_s(a, nrm, order, err)

    Scalar norms: real(sp)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), target :: a(:)

    Input 1-d matrix a(:)

    real(kind=sp), intent(out) :: nrm

    Norm of the matrix.

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_1D_int_z(a, nrm, order, err)

    Scalar norms: complex(dp)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), target :: a(:)

    Input 1-d matrix a(:)

    real(kind=dp), intent(out) :: nrm

    Norm of the matrix.

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_2D_char_c(a, nrm, order, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), target :: a(:,:)

    Input 2-d matrix a(:,:)

    real(kind=sp), intent(out) :: nrm

    Norm of the matrix.

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_2D_char_d(a, nrm, order, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), target :: a(:,:)

    Input 2-d matrix a(:,:)

    real(kind=dp), intent(out) :: nrm

    Norm of the matrix.

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_2D_char_s(a, nrm, order, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), target :: a(:,:)

    Input 2-d matrix a(:,:)

    real(kind=sp), intent(out) :: nrm

    Norm of the matrix.

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_2D_char_z(a, nrm, order, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), target :: a(:,:)

    Input 2-d matrix a(:,:)

    real(kind=dp), intent(out) :: nrm

    Norm of the matrix.

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_2D_int_c(a, nrm, order, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), target :: a(:,:)

    Input 2-d matrix a(:,:)

    real(kind=sp), intent(out) :: nrm

    Norm of the matrix.

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_2D_int_d(a, nrm, order, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), target :: a(:,:)

    Input 2-d matrix a(:,:)

    real(kind=dp), intent(out) :: nrm

    Norm of the matrix.

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_2D_int_s(a, nrm, order, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), target :: a(:,:)

    Input 2-d matrix a(:,:)

    real(kind=sp), intent(out) :: nrm

    Norm of the matrix.

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_2D_int_z(a, nrm, order, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), target :: a(:,:)

    Input 2-d matrix a(:,:)

    real(kind=dp), intent(out) :: nrm

    Norm of the matrix.

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_2D_to_1D_char_c(a, nrm, order, dim, err)

    Array norms: complex(sp)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: a(:,:)

    Input matrix a[..]

    real(kind=sp), intent(out) :: nrm(merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_2D_to_1D_char_d(a, nrm, order, dim, err)

    Array norms: real(dp)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: a(:,:)

    Input matrix a[..]

    real(kind=dp), intent(out) :: nrm(merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_2D_to_1D_char_s(a, nrm, order, dim, err)

    Array norms: real(sp)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: a(:,:)

    Input matrix a[..]

    real(kind=sp), intent(out) :: nrm(merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_2D_to_1D_char_z(a, nrm, order, dim, err)

    Array norms: complex(dp)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: a(:,:)

    Input matrix a[..]

    real(kind=dp), intent(out) :: nrm(merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_2D_to_1D_int_c(a, nrm, order, dim, err)

    Array norms: complex(sp)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: a(:,:)

    Input matrix a[..]

    real(kind=sp), intent(out) :: nrm(merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_2D_to_1D_int_d(a, nrm, order, dim, err)

    Array norms: real(dp)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: a(:,:)

    Input matrix a[..]

    real(kind=dp), intent(out) :: nrm(merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_2D_to_1D_int_s(a, nrm, order, dim, err)

    Array norms: real(sp)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: a(:,:)

    Input matrix a[..]

    real(kind=sp), intent(out) :: nrm(merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_2D_to_1D_int_z(a, nrm, order, dim, err)

    Array norms: complex(dp)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: a(:,:)

    Input matrix a[..]

    real(kind=dp), intent(out) :: nrm(merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_3D_char_c(a, nrm, order, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), target :: a(:,:,:)

    Input 3-d matrix a(:,:,:)

    real(kind=sp), intent(out) :: nrm

    Norm of the matrix.

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_3D_char_d(a, nrm, order, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), target :: a(:,:,:)

    Input 3-d matrix a(:,:,:)

    real(kind=dp), intent(out) :: nrm

    Norm of the matrix.

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_3D_char_s(a, nrm, order, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), target :: a(:,:,:)

    Input 3-d matrix a(:,:,:)

    real(kind=sp), intent(out) :: nrm

    Norm of the matrix.

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_3D_char_z(a, nrm, order, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), target :: a(:,:,:)

    Input 3-d matrix a(:,:,:)

    real(kind=dp), intent(out) :: nrm

    Norm of the matrix.

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_3D_int_c(a, nrm, order, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), target :: a(:,:,:)

    Input 3-d matrix a(:,:,:)

    real(kind=sp), intent(out) :: nrm

    Norm of the matrix.

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_3D_int_d(a, nrm, order, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), target :: a(:,:,:)

    Input 3-d matrix a(:,:,:)

    real(kind=dp), intent(out) :: nrm

    Norm of the matrix.

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_3D_int_s(a, nrm, order, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), target :: a(:,:,:)

    Input 3-d matrix a(:,:,:)

    real(kind=sp), intent(out) :: nrm

    Norm of the matrix.

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_3D_int_z(a, nrm, order, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), target :: a(:,:,:)

    Input 3-d matrix a(:,:,:)

    real(kind=dp), intent(out) :: nrm

    Norm of the matrix.

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_3D_to_2D_char_c(a, nrm, order, dim, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: a(:,:,:)

    Input matrix a[..]

    real(kind=sp), intent(out) :: nrm(merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_3D_to_2D_char_d(a, nrm, order, dim, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: a(:,:,:)

    Input matrix a[..]

    real(kind=dp), intent(out) :: nrm(merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_3D_to_2D_char_s(a, nrm, order, dim, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: a(:,:,:)

    Input matrix a[..]

    real(kind=sp), intent(out) :: nrm(merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_3D_to_2D_char_z(a, nrm, order, dim, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: a(:,:,:)

    Input matrix a[..]

    real(kind=dp), intent(out) :: nrm(merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_3D_to_2D_int_c(a, nrm, order, dim, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: a(:,:,:)

    Input matrix a[..]

    real(kind=sp), intent(out) :: nrm(merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_3D_to_2D_int_d(a, nrm, order, dim, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: a(:,:,:)

    Input matrix a[..]

    real(kind=dp), intent(out) :: nrm(merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_3D_to_2D_int_s(a, nrm, order, dim, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: a(:,:,:)

    Input matrix a[..]

    real(kind=sp), intent(out) :: nrm(merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine norm_3D_to_2D_int_z(a, nrm, order, dim, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: a(:,:,:)

    Input matrix a[..]

    real(kind=dp), intent(out) :: nrm(merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

public interface hermitian

Computes the Hermitian version of a rank-2 matrix. For complex matrices, this returns conjg(transpose(a)). For real or integer matrices, this returns transpose(a).

Usage:

A  = reshape([(1, 2), (3, 4), (5, 6), (7, 8)], [2, 2])
AH = hermitian(A)

Specification

  • private pure module function hermitian_cdp(a) result(ah)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: a(:,:)

    Return Value complex(kind=dp), (size(a,2),size(a,1))

  • private pure module function hermitian_csp(a) result(ah)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: a(:,:)

    Return Value complex(kind=sp), (size(a,2),size(a,1))

  • private pure module function hermitian_iint16(a) result(ah)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int16), intent(in) :: a(:,:)

    Return Value integer(kind=int16), (size(a,2),size(a,1))

  • private pure module function hermitian_iint32(a) result(ah)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int32), intent(in) :: a(:,:)

    Return Value integer(kind=int32), (size(a,2),size(a,1))

  • private pure module function hermitian_iint64(a) result(ah)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int64), intent(in) :: a(:,:)

    Return Value integer(kind=int64), (size(a,2),size(a,1))

  • private pure module function hermitian_iint8(a) result(ah)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int8), intent(in) :: a(:,:)

    Return Value integer(kind=int8), (size(a,2),size(a,1))

  • private pure module function hermitian_rdp(a) result(ah)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: a(:,:)

    Return Value real(kind=dp), (size(a,2),size(a,1))

  • private pure module function hermitian_rsp(a) result(ah)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: a(:,:)

    Return Value real(kind=sp), (size(a,2),size(a,1))

public interface inv

Inverse of a square matrix (Specification)

Summary

This interface provides methods for computing the inverse of a square real or complex matrix. The inverse is defined such that .

Description

This function interface provides methods that return the inverse of a square matrix.
Supported data types include real and complex. The inverse matrix is returned as a function result. Exceptions are raised in case of singular matrix or invalid size, and trigger an error stop if the state flag err is not provided.

Note

The provided functions are intended for square matrices.

  • private module function stdlib_linalg_inverse_c(a, err) result(inva)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: a(:,:)

    Input matrix a[n,n]

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value complex(kind=sp), allocatable, (:,:)

    Output matrix inverse

  • private module function stdlib_linalg_inverse_d(a, err) result(inva)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: a(:,:)

    Input matrix a[n,n]

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=dp), allocatable, (:,:)

    Output matrix inverse

  • private module function stdlib_linalg_inverse_s(a, err) result(inva)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: a(:,:)

    Input matrix a[n,n]

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=sp), allocatable, (:,:)

    Output matrix inverse

  • private module function stdlib_linalg_inverse_z(a, err) result(inva)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: a(:,:)

    Input matrix a[n,n]

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value complex(kind=dp), allocatable, (:,:)

    Output matrix inverse

public interface invert

Inversion of a square matrix (Specification)

Summary

This interface provides methods for inverting a square real or complex matrix in-place. The inverse is defined such that .

Description

This subroutine interface provides a way to compute the inverse of a matrix.
Supported data types include real and complex. The user may provide a unique matrix argument a. In this case, a is replaced by the inverse matrix. on output. Otherwise, one may provide two separate arguments: an input matrix a and an output matrix inva. In this case, a will not be modified, and the inverse is returned in inva. Pre-allocated storage may be provided for the array of pivot indices, pivot. If all pre-allocated work spaces are provided, no internal memory allocations take place when using this interface.

Note

The provided subroutines are intended for square matrices.

  • private module subroutine stdlib_linalg_invert_inplace_c(a, pivot, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(inout) :: a(:,:)

    Input matrix a[n,n]

    integer(kind=ilp), intent(inout), optional, target :: pivot(:)

    [optional] Storage array for the diagonal pivot indices

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_invert_inplace_d(a, pivot, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(inout) :: a(:,:)

    Input matrix a[n,n]

    integer(kind=ilp), intent(inout), optional, target :: pivot(:)

    [optional] Storage array for the diagonal pivot indices

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_invert_inplace_s(a, pivot, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(inout) :: a(:,:)

    Input matrix a[n,n]

    integer(kind=ilp), intent(inout), optional, target :: pivot(:)

    [optional] Storage array for the diagonal pivot indices

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_invert_inplace_z(a, pivot, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(inout) :: a(:,:)

    Input matrix a[n,n]

    integer(kind=ilp), intent(inout), optional, target :: pivot(:)

    [optional] Storage array for the diagonal pivot indices

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_invert_split_c(a, inva, pivot, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: a(:,:)

    Input matrix a[n,n].

    complex(kind=sp), intent(out) :: inva(:,:)

    Inverse matrix a[n,n].

    integer(kind=ilp), intent(inout), optional, target :: pivot(:)

    [optional] Storage array for the diagonal pivot indices

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_invert_split_d(a, inva, pivot, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: a(:,:)

    Input matrix a[n,n].

    real(kind=dp), intent(out) :: inva(:,:)

    Inverse matrix a[n,n].

    integer(kind=ilp), intent(inout), optional, target :: pivot(:)

    [optional] Storage array for the diagonal pivot indices

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_invert_split_s(a, inva, pivot, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: a(:,:)

    Input matrix a[n,n].

    real(kind=sp), intent(out) :: inva(:,:)

    Inverse matrix a[n,n].

    integer(kind=ilp), intent(inout), optional, target :: pivot(:)

    [optional] Storage array for the diagonal pivot indices

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_invert_split_z(a, inva, pivot, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: a(:,:)

    Input matrix a[n,n].

    complex(kind=dp), intent(out) :: inva(:,:)

    Inverse matrix a[n,n].

    integer(kind=ilp), intent(inout), optional, target :: pivot(:)

    [optional] Storage array for the diagonal pivot indices

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

public interface is_diagonal

Checks if a matrix (rank-2 array) is diagonal (Specification)

  • private pure function is_diagonal_rsp(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_diagonal_rdp(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_diagonal_csp(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_diagonal_cdp(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_diagonal_iint8(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int8), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_diagonal_iint16(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int16), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_diagonal_iint32(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int32), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_diagonal_iint64(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int64), intent(in) :: A(:,:)

    Return Value logical

public interface is_hermitian

Checks if a matrix (rank-2 array) is Hermitian (Specification)

  • private pure function is_hermitian_rsp(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_hermitian_rdp(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_hermitian_csp(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_hermitian_cdp(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_hermitian_iint8(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int8), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_hermitian_iint16(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int16), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_hermitian_iint32(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int32), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_hermitian_iint64(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int64), intent(in) :: A(:,:)

    Return Value logical

public interface is_hessenberg

Checks if a matrix (rank-2 array) is Hessenberg (Specification)

  • private function is_hessenberg_rsp(A, uplo) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: A(:,:)
    character(len=1), intent(in) :: uplo

    Return Value logical

  • private function is_hessenberg_rdp(A, uplo) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: A(:,:)
    character(len=1), intent(in) :: uplo

    Return Value logical

  • private function is_hessenberg_csp(A, uplo) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: A(:,:)
    character(len=1), intent(in) :: uplo

    Return Value logical

  • private function is_hessenberg_cdp(A, uplo) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: A(:,:)
    character(len=1), intent(in) :: uplo

    Return Value logical

  • private function is_hessenberg_iint8(A, uplo) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int8), intent(in) :: A(:,:)
    character(len=1), intent(in) :: uplo

    Return Value logical

  • private function is_hessenberg_iint16(A, uplo) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int16), intent(in) :: A(:,:)
    character(len=1), intent(in) :: uplo

    Return Value logical

  • private function is_hessenberg_iint32(A, uplo) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int32), intent(in) :: A(:,:)
    character(len=1), intent(in) :: uplo

    Return Value logical

  • private function is_hessenberg_iint64(A, uplo) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int64), intent(in) :: A(:,:)
    character(len=1), intent(in) :: uplo

    Return Value logical

public interface is_skew_symmetric

Checks if a matrix (rank-2 array) is skew-symmetric (Specification)

  • private pure function is_skew_symmetric_rsp(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_skew_symmetric_rdp(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_skew_symmetric_csp(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_skew_symmetric_cdp(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_skew_symmetric_iint8(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int8), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_skew_symmetric_iint16(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int16), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_skew_symmetric_iint32(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int32), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_skew_symmetric_iint64(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int64), intent(in) :: A(:,:)

    Return Value logical

public interface is_square

Checks if a matrix (rank-2 array) is square (Specification)

  • private pure function is_square_rsp(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_square_rdp(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_square_csp(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_square_cdp(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_square_iint8(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int8), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_square_iint16(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int16), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_square_iint32(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int32), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_square_iint64(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int64), intent(in) :: A(:,:)

    Return Value logical

public interface is_symmetric

Checks if a matrix (rank-2 array) is symmetric (Specification)

  • private pure function is_symmetric_rsp(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_symmetric_rdp(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_symmetric_csp(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_symmetric_cdp(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_symmetric_iint8(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int8), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_symmetric_iint16(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int16), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_symmetric_iint32(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int32), intent(in) :: A(:,:)

    Return Value logical

  • private pure function is_symmetric_iint64(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int64), intent(in) :: A(:,:)

    Return Value logical

public interface is_triangular

Checks if a matrix (rank-2 array) is triangular (Specification)

  • private function is_triangular_rsp(A, uplo) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: A(:,:)
    character(len=1), intent(in) :: uplo

    Return Value logical

  • private function is_triangular_rdp(A, uplo) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: A(:,:)
    character(len=1), intent(in) :: uplo

    Return Value logical

  • private function is_triangular_csp(A, uplo) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: A(:,:)
    character(len=1), intent(in) :: uplo

    Return Value logical

  • private function is_triangular_cdp(A, uplo) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: A(:,:)
    character(len=1), intent(in) :: uplo

    Return Value logical

  • private function is_triangular_iint8(A, uplo) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int8), intent(in) :: A(:,:)
    character(len=1), intent(in) :: uplo

    Return Value logical

  • private function is_triangular_iint16(A, uplo) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int16), intent(in) :: A(:,:)
    character(len=1), intent(in) :: uplo

    Return Value logical

  • private function is_triangular_iint32(A, uplo) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int32), intent(in) :: A(:,:)
    character(len=1), intent(in) :: uplo

    Return Value logical

  • private function is_triangular_iint64(A, uplo) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int64), intent(in) :: A(:,:)
    character(len=1), intent(in) :: uplo

    Return Value logical

public interface kronecker_product

Computes the Kronecker product of two arrays of size M1xN1, and of M2xN2, returning an (M1M2)x(N1N2) array (Specification)

  • private pure module function kronecker_product_cdp(A, B) result(C)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: A(:,:)
    complex(kind=dp), intent(in) :: B(:,:)

    Return Value complex(kind=dp), (size(A,dim=1)*size(B,dim=1),size(A,dim=2)*size(B,dim=2))

  • private pure module function kronecker_product_csp(A, B) result(C)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: A(:,:)
    complex(kind=sp), intent(in) :: B(:,:)

    Return Value complex(kind=sp), (size(A,dim=1)*size(B,dim=1),size(A,dim=2)*size(B,dim=2))

  • private pure module function kronecker_product_iint16(A, B) result(C)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int16), intent(in) :: A(:,:)
    integer(kind=int16), intent(in) :: B(:,:)

    Return Value integer(kind=int16), (size(A,dim=1)*size(B,dim=1),size(A,dim=2)*size(B,dim=2))

  • private pure module function kronecker_product_iint32(A, B) result(C)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int32), intent(in) :: A(:,:)
    integer(kind=int32), intent(in) :: B(:,:)

    Return Value integer(kind=int32), (size(A,dim=1)*size(B,dim=1),size(A,dim=2)*size(B,dim=2))

  • private pure module function kronecker_product_iint64(A, B) result(C)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int64), intent(in) :: A(:,:)
    integer(kind=int64), intent(in) :: B(:,:)

    Return Value integer(kind=int64), (size(A,dim=1)*size(B,dim=1),size(A,dim=2)*size(B,dim=2))

  • private pure module function kronecker_product_iint8(A, B) result(C)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int8), intent(in) :: A(:,:)
    integer(kind=int8), intent(in) :: B(:,:)

    Return Value integer(kind=int8), (size(A,dim=1)*size(B,dim=1),size(A,dim=2)*size(B,dim=2))

  • private pure module function kronecker_product_rdp(A, B) result(C)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: A(:,:)
    real(kind=dp), intent(in) :: B(:,:)

    Return Value real(kind=dp), (size(A,dim=1)*size(B,dim=1),size(A,dim=2)*size(B,dim=2))

  • private pure module function kronecker_product_rsp(A, B) result(C)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: A(:,:)
    real(kind=sp), intent(in) :: B(:,:)

    Return Value real(kind=sp), (size(A,dim=1)*size(B,dim=1),size(A,dim=2)*size(B,dim=2))

public interface lstsq

Computes the squares solution to system . (Specification)

Summary

Interface for computing least squares, i.e. the 2-norm minimizing solution.

Description

This interface provides methods for computing the least squares of a linear matrix system. Supported data types include real and complex.

Note

The solution is based on LAPACK's singular value decomposition *GELSD methods.

  • private module function stdlib_linalg_c_lstsq_many(a, b, cond, overwrite_a, rank, err) result(x)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    complex(kind=sp), intent(in) :: b(:,:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    real(kind=sp), intent(in), optional :: cond

    [optional] cutoff for rank evaluation: singular values s(i)<=cond*maxval(s) are considered 0.

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A,b data be overwritten and destroyed?

    integer(kind=ilp), intent(out), optional :: rank

    [optional] Return rank of A

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value complex(kind=sp), allocatable, target, (:,:)

    Result array/matrix x[n] or x[n,nrhs]

  • private module function stdlib_linalg_c_lstsq_one(a, b, cond, overwrite_a, rank, err) result(x)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    complex(kind=sp), intent(in) :: b(:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    real(kind=sp), intent(in), optional :: cond

    [optional] cutoff for rank evaluation: singular values s(i)<=cond*maxval(s) are considered 0.

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A,b data be overwritten and destroyed?

    integer(kind=ilp), intent(out), optional :: rank

    [optional] Return rank of A

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value complex(kind=sp), allocatable, target, (:)

    Result array/matrix x[n] or x[n,nrhs]

  • private module function stdlib_linalg_d_lstsq_many(a, b, cond, overwrite_a, rank, err) result(x)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    real(kind=dp), intent(in) :: b(:,:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    real(kind=dp), intent(in), optional :: cond

    [optional] cutoff for rank evaluation: singular values s(i)<=cond*maxval(s) are considered 0.

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A,b data be overwritten and destroyed?

    integer(kind=ilp), intent(out), optional :: rank

    [optional] Return rank of A

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=dp), allocatable, target, (:,:)

    Result array/matrix x[n] or x[n,nrhs]

  • private module function stdlib_linalg_d_lstsq_one(a, b, cond, overwrite_a, rank, err) result(x)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    real(kind=dp), intent(in) :: b(:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    real(kind=dp), intent(in), optional :: cond

    [optional] cutoff for rank evaluation: singular values s(i)<=cond*maxval(s) are considered 0.

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A,b data be overwritten and destroyed?

    integer(kind=ilp), intent(out), optional :: rank

    [optional] Return rank of A

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=dp), allocatable, target, (:)

    Result array/matrix x[n] or x[n,nrhs]

  • private module function stdlib_linalg_s_lstsq_many(a, b, cond, overwrite_a, rank, err) result(x)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    real(kind=sp), intent(in) :: b(:,:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    real(kind=sp), intent(in), optional :: cond

    [optional] cutoff for rank evaluation: singular values s(i)<=cond*maxval(s) are considered 0.

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A,b data be overwritten and destroyed?

    integer(kind=ilp), intent(out), optional :: rank

    [optional] Return rank of A

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=sp), allocatable, target, (:,:)

    Result array/matrix x[n] or x[n,nrhs]

  • private module function stdlib_linalg_s_lstsq_one(a, b, cond, overwrite_a, rank, err) result(x)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    real(kind=sp), intent(in) :: b(:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    real(kind=sp), intent(in), optional :: cond

    [optional] cutoff for rank evaluation: singular values s(i)<=cond*maxval(s) are considered 0.

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A,b data be overwritten and destroyed?

    integer(kind=ilp), intent(out), optional :: rank

    [optional] Return rank of A

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=sp), allocatable, target, (:)

    Result array/matrix x[n] or x[n,nrhs]

  • private module function stdlib_linalg_z_lstsq_many(a, b, cond, overwrite_a, rank, err) result(x)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    complex(kind=dp), intent(in) :: b(:,:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    real(kind=dp), intent(in), optional :: cond

    [optional] cutoff for rank evaluation: singular values s(i)<=cond*maxval(s) are considered 0.

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A,b data be overwritten and destroyed?

    integer(kind=ilp), intent(out), optional :: rank

    [optional] Return rank of A

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value complex(kind=dp), allocatable, target, (:,:)

    Result array/matrix x[n] or x[n,nrhs]

  • private module function stdlib_linalg_z_lstsq_one(a, b, cond, overwrite_a, rank, err) result(x)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    complex(kind=dp), intent(in) :: b(:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    real(kind=dp), intent(in), optional :: cond

    [optional] cutoff for rank evaluation: singular values s(i)<=cond*maxval(s) are considered 0.

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A,b data be overwritten and destroyed?

    integer(kind=ilp), intent(out), optional :: rank

    [optional] Return rank of A

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value complex(kind=dp), allocatable, target, (:)

    Result array/matrix x[n] or x[n,nrhs]

public interface lstsq_space

Computes the integer, real [, complex] working space required by the least-squares solver (Specification)

Description

This interface provides sizes of integer, real [, complex] working spaces required by the least-squares solver. These sizes can be used to pre-allocated working arrays in case several repeated least-squares solutions to a same system are sought. If pre-allocated working arrays are provided, no internal allocations will take place.

  • private pure module subroutine stdlib_linalg_c_lstsq_space_many(a, b, lrwork, liwork, lcwork)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), target :: a(:,:)

    Input matrix a[m,n]

    complex(kind=sp), intent(in) :: b(:,:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    integer(kind=ilp), intent(out) :: lrwork

    Size of the working space arrays

    integer(kind=ilp), intent(out) :: liwork

    Size of the working space arrays

    integer(kind=ilp), intent(out) :: lcwork

    Size of the working space arrays

  • private pure module subroutine stdlib_linalg_c_lstsq_space_one(a, b, lrwork, liwork, lcwork)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), target :: a(:,:)

    Input matrix a[m,n]

    complex(kind=sp), intent(in) :: b(:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    integer(kind=ilp), intent(out) :: lrwork

    Size of the working space arrays

    integer(kind=ilp), intent(out) :: liwork

    Size of the working space arrays

    integer(kind=ilp), intent(out) :: lcwork

    Size of the working space arrays

  • private pure module subroutine stdlib_linalg_d_lstsq_space_many(a, b, lrwork, liwork)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), target :: a(:,:)

    Input matrix a[m,n]

    real(kind=dp), intent(in) :: b(:,:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    integer(kind=ilp), intent(out) :: lrwork

    Size of the working space arrays

    integer(kind=ilp), intent(out) :: liwork

    Size of the working space arrays

  • private pure module subroutine stdlib_linalg_d_lstsq_space_one(a, b, lrwork, liwork)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), target :: a(:,:)

    Input matrix a[m,n]

    real(kind=dp), intent(in) :: b(:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    integer(kind=ilp), intent(out) :: lrwork

    Size of the working space arrays

    integer(kind=ilp), intent(out) :: liwork

    Size of the working space arrays

  • private pure module subroutine stdlib_linalg_s_lstsq_space_many(a, b, lrwork, liwork)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), target :: a(:,:)

    Input matrix a[m,n]

    real(kind=sp), intent(in) :: b(:,:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    integer(kind=ilp), intent(out) :: lrwork

    Size of the working space arrays

    integer(kind=ilp), intent(out) :: liwork

    Size of the working space arrays

  • private pure module subroutine stdlib_linalg_s_lstsq_space_one(a, b, lrwork, liwork)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), target :: a(:,:)

    Input matrix a[m,n]

    real(kind=sp), intent(in) :: b(:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    integer(kind=ilp), intent(out) :: lrwork

    Size of the working space arrays

    integer(kind=ilp), intent(out) :: liwork

    Size of the working space arrays

  • private pure module subroutine stdlib_linalg_z_lstsq_space_many(a, b, lrwork, liwork, lcwork)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), target :: a(:,:)

    Input matrix a[m,n]

    complex(kind=dp), intent(in) :: b(:,:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    integer(kind=ilp), intent(out) :: lrwork

    Size of the working space arrays

    integer(kind=ilp), intent(out) :: liwork

    Size of the working space arrays

    integer(kind=ilp), intent(out) :: lcwork

    Size of the working space arrays

  • private pure module subroutine stdlib_linalg_z_lstsq_space_one(a, b, lrwork, liwork, lcwork)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), target :: a(:,:)

    Input matrix a[m,n]

    complex(kind=dp), intent(in) :: b(:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    integer(kind=ilp), intent(out) :: lrwork

    Size of the working space arrays

    integer(kind=ilp), intent(out) :: liwork

    Size of the working space arrays

    integer(kind=ilp), intent(out) :: lcwork

    Size of the working space arrays

public interface mnorm

Matrix norms: function interface version: experimental

Computes the matrix norm of a generic-rank array . (Specification)

Summary

Return one of several matrix norm metrics of a real or complex input array , that can have rank 2 or higher. For rank-2 arrays, the matrix norm is returned. If rank>2 and the optional input dimensions dim are specified, a rank n-2 array is returned with dimensions dim(1),dim(2) collapsed, containing all matrix norms evaluated over the specified dimensions only. dim==[1,2] are assumed as default dimensions if not specified.

Description

This interface provides methods for computing the matrix norm(s) of an array.
Supported data types include real and complex. Input arrays must have rank >= 2.

Norm type input is optional, and it is provided via the order argument. This can be provided as either an integer value or a character string. Allowed metrics are: - 1-norm: order = 1 or '1'
- 2-norm: order = 2 or '2' - Euclidean/Frobenius: order = 'Euclidean','Frobenius', or argument not specified - Infinity norm: order = huge(0) or 'Inf'

If an invalid norm type is provided, the routine returns an error state.

Example

    real(sp) :: a(3,3), na
    real(sp) :: b(3,3,4), nb(4)  ! Array of 4 3x3 matrices
    a = reshape([1, 2, 3, 4, 5, 6, 7, 8, 9], [3, 3])

    ! Euclidean/Frobenius norm of single matrix
    na = mnorm(a)
    na = mnorm(a, 'Euclidean')

    ! 1-norm of each 3x3 matrix in b
    nb = mnorm(b, 1, dim=[1,2])

    ! Infinity-norm 
    na = mnorm(b, 'inf', dim=[3,2])
  • private module function matrix_norm_3D_to_1D_char_c(a, order, dim, err) result(nrm)

    Matrix norms: complex(sp) higher rank arrays

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), contiguous, target :: a(:,:,:)

    Input matrix a(m,n)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in), optional :: dim(2)

    [optional] dimensions of the sub-matrices the norms should be evaluated at (default = [1,2])

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=sp), allocatable, (:)

    Norm of the matrix.

  • private module function matrix_norm_3D_to_1D_char_d(a, order, dim, err) result(nrm)

    Matrix norms: real(dp) higher rank arrays

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), contiguous, target :: a(:,:,:)

    Input matrix a(m,n)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in), optional :: dim(2)

    [optional] dimensions of the sub-matrices the norms should be evaluated at (default = [1,2])

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=dp), allocatable, (:)

    Norm of the matrix.

  • private module function matrix_norm_3D_to_1D_char_s(a, order, dim, err) result(nrm)

    Matrix norms: real(sp) higher rank arrays

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), contiguous, target :: a(:,:,:)

    Input matrix a(m,n)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in), optional :: dim(2)

    [optional] dimensions of the sub-matrices the norms should be evaluated at (default = [1,2])

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=sp), allocatable, (:)

    Norm of the matrix.

  • private module function matrix_norm_3D_to_1D_char_z(a, order, dim, err) result(nrm)

    Matrix norms: complex(dp) higher rank arrays

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), contiguous, target :: a(:,:,:)

    Input matrix a(m,n)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in), optional :: dim(2)

    [optional] dimensions of the sub-matrices the norms should be evaluated at (default = [1,2])

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=dp), allocatable, (:)

    Norm of the matrix.

  • private module function matrix_norm_3D_to_1D_int_c(a, order, dim, err) result(nrm)

    Matrix norms: complex(sp) higher rank arrays

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), contiguous, target :: a(:,:,:)

    Input matrix a(m,n)

    integer(kind=ilp), intent(in), optional :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in), optional :: dim(2)

    [optional] dimensions of the sub-matrices the norms should be evaluated at (default = [1,2])

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=sp), allocatable, (:)

    Norm of the matrix.

  • private module function matrix_norm_3D_to_1D_int_d(a, order, dim, err) result(nrm)

    Matrix norms: real(dp) higher rank arrays

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), contiguous, target :: a(:,:,:)

    Input matrix a(m,n)

    integer(kind=ilp), intent(in), optional :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in), optional :: dim(2)

    [optional] dimensions of the sub-matrices the norms should be evaluated at (default = [1,2])

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=dp), allocatable, (:)

    Norm of the matrix.

  • private module function matrix_norm_3D_to_1D_int_s(a, order, dim, err) result(nrm)

    Matrix norms: real(sp) higher rank arrays

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), contiguous, target :: a(:,:,:)

    Input matrix a(m,n)

    integer(kind=ilp), intent(in), optional :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in), optional :: dim(2)

    [optional] dimensions of the sub-matrices the norms should be evaluated at (default = [1,2])

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=sp), allocatable, (:)

    Norm of the matrix.

  • private module function matrix_norm_3D_to_1D_int_z(a, order, dim, err) result(nrm)

    Matrix norms: complex(dp) higher rank arrays

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), contiguous, target :: a(:,:,:)

    Input matrix a(m,n)

    integer(kind=ilp), intent(in), optional :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in), optional :: dim(2)

    [optional] dimensions of the sub-matrices the norms should be evaluated at (default = [1,2])

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=dp), allocatable, (:)

    Norm of the matrix.

  • private module function matrix_norm_char_c(a, order, err) result(nrm)

    Matrix norms: complex(sp) rank-2 arrays

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), target :: a(:,:)

    Input matrix a(m,n)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=sp)

    Norm of the matrix.

  • private module function matrix_norm_char_d(a, order, err) result(nrm)

    Matrix norms: real(dp) rank-2 arrays

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), target :: a(:,:)

    Input matrix a(m,n)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=dp)

    Norm of the matrix.

  • private module function matrix_norm_char_s(a, order, err) result(nrm)

    Matrix norms: real(sp) rank-2 arrays

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), target :: a(:,:)

    Input matrix a(m,n)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=sp)

    Norm of the matrix.

  • private module function matrix_norm_char_z(a, order, err) result(nrm)

    Matrix norms: complex(dp) rank-2 arrays

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), target :: a(:,:)

    Input matrix a(m,n)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=dp)

    Norm of the matrix.

  • private module function matrix_norm_int_c(a, order, err) result(nrm)

    Matrix norms: complex(sp) rank-2 arrays

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), target :: a(:,:)

    Input matrix a(m,n)

    integer(kind=ilp), intent(in), optional :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=sp)

    Norm of the matrix.

  • private module function matrix_norm_int_d(a, order, err) result(nrm)

    Matrix norms: real(dp) rank-2 arrays

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), target :: a(:,:)

    Input matrix a(m,n)

    integer(kind=ilp), intent(in), optional :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=dp)

    Norm of the matrix.

  • private module function matrix_norm_int_s(a, order, err) result(nrm)

    Matrix norms: real(sp) rank-2 arrays

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), target :: a(:,:)

    Input matrix a(m,n)

    integer(kind=ilp), intent(in), optional :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=sp)

    Norm of the matrix.

  • private module function matrix_norm_int_z(a, order, err) result(nrm)

    Matrix norms: complex(dp) rank-2 arrays

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), target :: a(:,:)

    Input matrix a(m,n)

    integer(kind=ilp), intent(in), optional :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=dp)

    Norm of the matrix.

public interface norm

Computes the vector norm of a generic-rank array . (Specification)

Summary

Return one of several scalar norm metrics of a real or complex input array , that can have any rank. For generic rank-n arrays, the scalar norm over the whole array is returned by default. If n>=2 and the optional input dimension dim is specified, a rank n-1 array is returned with dimension dim collapsed, containing all 1D array norms evaluated along dimension dim only.

Description

This interface provides methods for computing the vector norm(s) of an array.
Supported data types include real and complex. Input arrays may have generic rank from 1 to 3.

Norm type input is mandatory, and it is provided via the order argument. This can be provided as either an integer value or a character string. Allowed metrics are: - 1-norm : order = 1 or '1'
- Euclidean norm : order = 2 or '2' - p-norm : integer order, order>=3 - Infinity norm : order = huge(0) or 'inf' - Minus-infinity norm : order = -huge(0) or '-inf'

Example

    real(sp) :: a(3,3), na, rown(3)
    a = reshape([1, 2, 3, 4, 5, 6, 7, 8, 9], [3, 3])

    ! L2 norm: whole matrix
    na = norm(a, 2)

    ! Infinity norm of each row
    rown = norm(a, 'inf', dim=2)
  • private pure module function stdlib_linalg_norm_1D_order_char_c(a, order) result(nrm)

    Scalar norms: complex(sp)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: a(:)

    Input 1-d matrix a(:)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    Return Value real(kind=sp)

    Norm of the matrix.

  • private pure module function stdlib_linalg_norm_1D_order_char_d(a, order) result(nrm)

    Scalar norms: real(dp)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: a(:)

    Input 1-d matrix a(:)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    Return Value real(kind=dp)

    Norm of the matrix.

  • private pure module function stdlib_linalg_norm_1D_order_char_s(a, order) result(nrm)

    Scalar norms: real(sp)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: a(:)

    Input 1-d matrix a(:)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    Return Value real(kind=sp)

    Norm of the matrix.

  • private pure module function stdlib_linalg_norm_1D_order_char_z(a, order) result(nrm)

    Scalar norms: complex(dp)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: a(:)

    Input 1-d matrix a(:)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    Return Value real(kind=dp)

    Norm of the matrix.

  • private module function stdlib_linalg_norm_1D_order_err_char_c(a, order, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: a(:)

    Input 1-d matrix a(:)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=sp)

    Norm of the matrix.

  • private module function stdlib_linalg_norm_1D_order_err_char_d(a, order, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: a(:)

    Input 1-d matrix a(:)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=dp)

    Norm of the matrix.

  • private module function stdlib_linalg_norm_1D_order_err_char_s(a, order, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: a(:)

    Input 1-d matrix a(:)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=sp)

    Norm of the matrix.

  • private module function stdlib_linalg_norm_1D_order_err_char_z(a, order, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: a(:)

    Input 1-d matrix a(:)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=dp)

    Norm of the matrix.

  • private module function stdlib_linalg_norm_1D_order_err_int_c(a, order, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: a(:)

    Input 1-d matrix a(:)

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=sp)

    Norm of the matrix.

  • private module function stdlib_linalg_norm_1D_order_err_int_d(a, order, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: a(:)

    Input 1-d matrix a(:)

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=dp)

    Norm of the matrix.

  • private module function stdlib_linalg_norm_1D_order_err_int_s(a, order, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: a(:)

    Input 1-d matrix a(:)

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=sp)

    Norm of the matrix.

  • private module function stdlib_linalg_norm_1D_order_err_int_z(a, order, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: a(:)

    Input 1-d matrix a(:)

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=dp)

    Norm of the matrix.

  • private pure module function stdlib_linalg_norm_1D_order_int_c(a, order) result(nrm)

    Scalar norms: complex(sp)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: a(:)

    Input 1-d matrix a(:)

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    Return Value real(kind=sp)

    Norm of the matrix.

  • private pure module function stdlib_linalg_norm_1D_order_int_d(a, order) result(nrm)

    Scalar norms: real(dp)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: a(:)

    Input 1-d matrix a(:)

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    Return Value real(kind=dp)

    Norm of the matrix.

  • private pure module function stdlib_linalg_norm_1D_order_int_s(a, order) result(nrm)

    Scalar norms: real(sp)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: a(:)

    Input 1-d matrix a(:)

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    Return Value real(kind=sp)

    Norm of the matrix.

  • private pure module function stdlib_linalg_norm_1D_order_int_z(a, order) result(nrm)

    Scalar norms: complex(dp)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: a(:)

    Input 1-d matrix a(:)

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    Return Value real(kind=dp)

    Norm of the matrix.

  • private pure module function stdlib_linalg_norm_2D_order_char_c(a, order) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: a(:,:)

    Input 2-d matrix a(:,:)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    Return Value real(kind=sp)

    Norm of the matrix.

  • private pure module function stdlib_linalg_norm_2D_order_char_d(a, order) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: a(:,:)

    Input 2-d matrix a(:,:)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    Return Value real(kind=dp)

    Norm of the matrix.

  • private pure module function stdlib_linalg_norm_2D_order_char_s(a, order) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: a(:,:)

    Input 2-d matrix a(:,:)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    Return Value real(kind=sp)

    Norm of the matrix.

  • private pure module function stdlib_linalg_norm_2D_order_char_z(a, order) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: a(:,:)

    Input 2-d matrix a(:,:)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    Return Value real(kind=dp)

    Norm of the matrix.

  • private module function stdlib_linalg_norm_2D_order_err_char_c(a, order, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: a(:,:)

    Input 2-d matrix a(:,:)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=sp)

    Norm of the matrix.

  • private module function stdlib_linalg_norm_2D_order_err_char_d(a, order, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: a(:,:)

    Input 2-d matrix a(:,:)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=dp)

    Norm of the matrix.

  • private module function stdlib_linalg_norm_2D_order_err_char_s(a, order, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: a(:,:)

    Input 2-d matrix a(:,:)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=sp)

    Norm of the matrix.

  • private module function stdlib_linalg_norm_2D_order_err_char_z(a, order, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: a(:,:)

    Input 2-d matrix a(:,:)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=dp)

    Norm of the matrix.

  • private module function stdlib_linalg_norm_2D_order_err_int_c(a, order, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: a(:,:)

    Input 2-d matrix a(:,:)

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=sp)

    Norm of the matrix.

  • private module function stdlib_linalg_norm_2D_order_err_int_d(a, order, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: a(:,:)

    Input 2-d matrix a(:,:)

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=dp)

    Norm of the matrix.

  • private module function stdlib_linalg_norm_2D_order_err_int_s(a, order, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: a(:,:)

    Input 2-d matrix a(:,:)

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=sp)

    Norm of the matrix.

  • private module function stdlib_linalg_norm_2D_order_err_int_z(a, order, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: a(:,:)

    Input 2-d matrix a(:,:)

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=dp)

    Norm of the matrix.

  • private pure module function stdlib_linalg_norm_2D_order_int_c(a, order) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: a(:,:)

    Input 2-d matrix a(:,:)

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    Return Value real(kind=sp)

    Norm of the matrix.

  • private pure module function stdlib_linalg_norm_2D_order_int_d(a, order) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: a(:,:)

    Input 2-d matrix a(:,:)

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    Return Value real(kind=dp)

    Norm of the matrix.

  • private pure module function stdlib_linalg_norm_2D_order_int_s(a, order) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: a(:,:)

    Input 2-d matrix a(:,:)

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    Return Value real(kind=sp)

    Norm of the matrix.

  • private pure module function stdlib_linalg_norm_2D_order_int_z(a, order) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: a(:,:)

    Input 2-d matrix a(:,:)

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    Return Value real(kind=dp)

    Norm of the matrix.

  • private pure module function stdlib_linalg_norm_2D_to_1D_char_c(a, order, dim) result(nrm)

    Array norms: complex(sp)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), target :: a(:,:)

    Input matrix a[..]

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    Return Value real(kind=sp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private pure module function stdlib_linalg_norm_2D_to_1D_char_d(a, order, dim) result(nrm)

    Array norms: real(dp)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), target :: a(:,:)

    Input matrix a[..]

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    Return Value real(kind=dp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private pure module function stdlib_linalg_norm_2D_to_1D_char_s(a, order, dim) result(nrm)

    Array norms: real(sp)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), target :: a(:,:)

    Input matrix a[..]

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    Return Value real(kind=sp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private pure module function stdlib_linalg_norm_2D_to_1D_char_z(a, order, dim) result(nrm)

    Array norms: complex(dp)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), target :: a(:,:)

    Input matrix a[..]

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    Return Value real(kind=dp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private module function stdlib_linalg_norm_2D_to_1D_err_char_c(a, order, dim, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), target :: a(:,:)

    Input matrix a[..]

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=sp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private module function stdlib_linalg_norm_2D_to_1D_err_char_d(a, order, dim, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), target :: a(:,:)

    Input matrix a[..]

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=dp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private module function stdlib_linalg_norm_2D_to_1D_err_char_s(a, order, dim, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), target :: a(:,:)

    Input matrix a[..]

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=sp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private module function stdlib_linalg_norm_2D_to_1D_err_char_z(a, order, dim, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), target :: a(:,:)

    Input matrix a[..]

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=dp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private module function stdlib_linalg_norm_2D_to_1D_err_int_c(a, order, dim, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), target :: a(:,:)

    Input matrix a[..]

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=sp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private module function stdlib_linalg_norm_2D_to_1D_err_int_d(a, order, dim, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), target :: a(:,:)

    Input matrix a[..]

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=dp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private module function stdlib_linalg_norm_2D_to_1D_err_int_s(a, order, dim, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), target :: a(:,:)

    Input matrix a[..]

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=sp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private module function stdlib_linalg_norm_2D_to_1D_err_int_z(a, order, dim, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), target :: a(:,:)

    Input matrix a[..]

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=dp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private pure module function stdlib_linalg_norm_2D_to_1D_int_c(a, order, dim) result(nrm)

    Array norms: complex(sp)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), target :: a(:,:)

    Input matrix a[..]

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    Return Value real(kind=sp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private pure module function stdlib_linalg_norm_2D_to_1D_int_d(a, order, dim) result(nrm)

    Array norms: real(dp)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), target :: a(:,:)

    Input matrix a[..]

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    Return Value real(kind=dp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private pure module function stdlib_linalg_norm_2D_to_1D_int_s(a, order, dim) result(nrm)

    Array norms: real(sp)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), target :: a(:,:)

    Input matrix a[..]

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    Return Value real(kind=sp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private pure module function stdlib_linalg_norm_2D_to_1D_int_z(a, order, dim) result(nrm)

    Array norms: complex(dp)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), target :: a(:,:)

    Input matrix a[..]

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    Return Value real(kind=dp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private pure module function stdlib_linalg_norm_3D_order_char_c(a, order) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: a(:,:,:)

    Input 3-d matrix a(:,:,:)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    Return Value real(kind=sp)

    Norm of the matrix.

  • private pure module function stdlib_linalg_norm_3D_order_char_d(a, order) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: a(:,:,:)

    Input 3-d matrix a(:,:,:)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    Return Value real(kind=dp)

    Norm of the matrix.

  • private pure module function stdlib_linalg_norm_3D_order_char_s(a, order) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: a(:,:,:)

    Input 3-d matrix a(:,:,:)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    Return Value real(kind=sp)

    Norm of the matrix.

  • private pure module function stdlib_linalg_norm_3D_order_char_z(a, order) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: a(:,:,:)

    Input 3-d matrix a(:,:,:)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    Return Value real(kind=dp)

    Norm of the matrix.

  • private module function stdlib_linalg_norm_3D_order_err_char_c(a, order, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: a(:,:,:)

    Input 3-d matrix a(:,:,:)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=sp)

    Norm of the matrix.

  • private module function stdlib_linalg_norm_3D_order_err_char_d(a, order, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: a(:,:,:)

    Input 3-d matrix a(:,:,:)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=dp)

    Norm of the matrix.

  • private module function stdlib_linalg_norm_3D_order_err_char_s(a, order, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: a(:,:,:)

    Input 3-d matrix a(:,:,:)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=sp)

    Norm of the matrix.

  • private module function stdlib_linalg_norm_3D_order_err_char_z(a, order, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: a(:,:,:)

    Input 3-d matrix a(:,:,:)

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=dp)

    Norm of the matrix.

  • private module function stdlib_linalg_norm_3D_order_err_int_c(a, order, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: a(:,:,:)

    Input 3-d matrix a(:,:,:)

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=sp)

    Norm of the matrix.

  • private module function stdlib_linalg_norm_3D_order_err_int_d(a, order, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: a(:,:,:)

    Input 3-d matrix a(:,:,:)

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=dp)

    Norm of the matrix.

  • private module function stdlib_linalg_norm_3D_order_err_int_s(a, order, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: a(:,:,:)

    Input 3-d matrix a(:,:,:)

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=sp)

    Norm of the matrix.

  • private module function stdlib_linalg_norm_3D_order_err_int_z(a, order, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: a(:,:,:)

    Input 3-d matrix a(:,:,:)

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=dp)

    Norm of the matrix.

  • private pure module function stdlib_linalg_norm_3D_order_int_c(a, order) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: a(:,:,:)

    Input 3-d matrix a(:,:,:)

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    Return Value real(kind=sp)

    Norm of the matrix.

  • private pure module function stdlib_linalg_norm_3D_order_int_d(a, order) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: a(:,:,:)

    Input 3-d matrix a(:,:,:)

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    Return Value real(kind=dp)

    Norm of the matrix.

  • private pure module function stdlib_linalg_norm_3D_order_int_s(a, order) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: a(:,:,:)

    Input 3-d matrix a(:,:,:)

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    Return Value real(kind=sp)

    Norm of the matrix.

  • private pure module function stdlib_linalg_norm_3D_order_int_z(a, order) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: a(:,:,:)

    Input 3-d matrix a(:,:,:)

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    Return Value real(kind=dp)

    Norm of the matrix.

  • private pure module function stdlib_linalg_norm_3D_to_2D_char_c(a, order, dim) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), target :: a(:,:,:)

    Input matrix a[..]

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    Return Value real(kind=sp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private pure module function stdlib_linalg_norm_3D_to_2D_char_d(a, order, dim) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), target :: a(:,:,:)

    Input matrix a[..]

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    Return Value real(kind=dp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private pure module function stdlib_linalg_norm_3D_to_2D_char_s(a, order, dim) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), target :: a(:,:,:)

    Input matrix a[..]

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    Return Value real(kind=sp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private pure module function stdlib_linalg_norm_3D_to_2D_char_z(a, order, dim) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), target :: a(:,:,:)

    Input matrix a[..]

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    Return Value real(kind=dp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private module function stdlib_linalg_norm_3D_to_2D_err_char_c(a, order, dim, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), target :: a(:,:,:)

    Input matrix a[..]

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=sp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private module function stdlib_linalg_norm_3D_to_2D_err_char_d(a, order, dim, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), target :: a(:,:,:)

    Input matrix a[..]

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=dp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private module function stdlib_linalg_norm_3D_to_2D_err_char_s(a, order, dim, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), target :: a(:,:,:)

    Input matrix a[..]

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=sp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private module function stdlib_linalg_norm_3D_to_2D_err_char_z(a, order, dim, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), target :: a(:,:,:)

    Input matrix a[..]

    character(len=*), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=dp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private module function stdlib_linalg_norm_3D_to_2D_err_int_c(a, order, dim, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), target :: a(:,:,:)

    Input matrix a[..]

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=sp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private module function stdlib_linalg_norm_3D_to_2D_err_int_d(a, order, dim, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), target :: a(:,:,:)

    Input matrix a[..]

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=dp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private module function stdlib_linalg_norm_3D_to_2D_err_int_s(a, order, dim, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), target :: a(:,:,:)

    Input matrix a[..]

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=sp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private module function stdlib_linalg_norm_3D_to_2D_err_int_z(a, order, dim, err) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), target :: a(:,:,:)

    Input matrix a[..]

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    type(linalg_state_type), intent(out) :: err

    Output state return flag.

    Return Value real(kind=dp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private pure module function stdlib_linalg_norm_3D_to_2D_int_c(a, order, dim) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), target :: a(:,:,:)

    Input matrix a[..]

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    Return Value real(kind=sp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private pure module function stdlib_linalg_norm_3D_to_2D_int_d(a, order, dim) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), target :: a(:,:,:)

    Input matrix a[..]

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    Return Value real(kind=dp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private pure module function stdlib_linalg_norm_3D_to_2D_int_s(a, order, dim) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), target :: a(:,:,:)

    Input matrix a[..]

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    Return Value real(kind=sp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

  • private pure module function stdlib_linalg_norm_3D_to_2D_int_z(a, order, dim) result(nrm)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), target :: a(:,:,:)

    Input matrix a[..]

    integer(kind=ilp), intent(in) :: order

    Order of the matrix norm being computed.

    integer(kind=ilp), intent(in) :: dim

    Dimension the norm is computed along

    Return Value real(kind=dp), (merge(size(a,1),size(a,2),mask=1

    Norm of the matrix. (Same shape as a, with dim dropped).

public interface operator(.det.)

Determinant operator of a square matrix (Specification)

Summary

Pure operator interface for computing matrix determinant.

Description

This pure operator interface provides a convenient way to compute the determinant of a matrix. Supported data types include real and complex.

Note

The provided functions are intended for square matrices.

Note

BLAS/LAPACK backends do not currently support extended precision (xdp).

Example

    ! ...
    real(sp) :: matrix(3,3), d
    matrix = reshape([1, 2, 3, 4, 5, 6, 7, 8, 9], [3, 3])
    d = .det.matrix
    ! ...
  • private interface stdlib_linalg_pure_rspdeterminant()

    Arguments

    None
  • private interface stdlib_linalg_pure_rdpdeterminant()

    Arguments

    None
  • private interface stdlib_linalg_pure_cspdeterminant()

    Arguments

    None
  • private interface stdlib_linalg_pure_cdpdeterminant()

    Arguments

    None

public interface operator(.inv.)

Inverse operator of a square matrix (Specification)

Summary

Operator interface for computing the inverse of a square real or complex matrix.

Description

This operator interface provides a convenient way to compute the inverse of a matrix. Supported data types include real and complex. On input errors or singular matrix, NaNs will be returned.

Note

The provided functions are intended for square matrices.

  • private module function stdlib_linalg_inverse_c_operator(a) result(inva)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: a(:,:)

    Input matrix a[n,n]

    Return Value complex(kind=sp), allocatable, (:,:)

    Result matrix

  • private module function stdlib_linalg_inverse_d_operator(a) result(inva)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: a(:,:)

    Input matrix a[n,n]

    Return Value real(kind=dp), allocatable, (:,:)

    Result matrix

  • private module function stdlib_linalg_inverse_s_operator(a) result(inva)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: a(:,:)

    Input matrix a[n,n]

    Return Value real(kind=sp), allocatable, (:,:)

    Result matrix

  • private module function stdlib_linalg_inverse_z_operator(a) result(inva)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: a(:,:)

    Input matrix a[n,n]

    Return Value complex(kind=dp), allocatable, (:,:)

    Result matrix

public interface operator(.pinv.)

Pseudo-inverse operator of a matrix (Specification)

Summary

Operator interface for computing the Moore-Penrose pseudo-inverse of a real or complex matrix.

Description

This operator interface provides a convenient way to compute the Moore-Penrose pseudo-inverse of a matrix. Supported data types include real and complex. The pseudo-inverse is computed using singular value decomposition (SVD), with singular values below an internal threshold treated as zero.

For computational errors or invalid input, the function may return a matrix filled with NaNs.

Note

The provided functions are intended for both rectangular and square matrices.

  • private module function stdlib_linalg_pinv_c_operator(a) result(pinva)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), target :: a(:,:)

    Input matrix a[m,n]

    Return Value complex(kind=sp), (size(a,2,kind=ilp),size(a,1,kind=ilp))

    Result pseudo-inverse matrix

  • private module function stdlib_linalg_pinv_d_operator(a) result(pinva)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), target :: a(:,:)

    Input matrix a[m,n]

    Return Value real(kind=dp), (size(a,2,kind=ilp),size(a,1,kind=ilp))

    Result pseudo-inverse matrix

  • private module function stdlib_linalg_pinv_s_operator(a) result(pinva)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), target :: a(:,:)

    Input matrix a[m,n]

    Return Value real(kind=sp), (size(a,2,kind=ilp),size(a,1,kind=ilp))

    Result pseudo-inverse matrix

  • private module function stdlib_linalg_pinv_z_operator(a) result(pinva)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), target :: a(:,:)

    Input matrix a[m,n]

    Return Value complex(kind=dp), (size(a,2,kind=ilp),size(a,1,kind=ilp))

    Result pseudo-inverse matrix

public interface outer_product

Computes the outer product of two vectors, returning a rank-2 array (Specification)

  • private pure module function outer_product_cdp(u, v) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: u(:)
    complex(kind=dp), intent(in) :: v(:)

    Return Value complex(kind=dp), (size(u),size(v))

  • private pure module function outer_product_csp(u, v) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: u(:)
    complex(kind=sp), intent(in) :: v(:)

    Return Value complex(kind=sp), (size(u),size(v))

  • private pure module function outer_product_iint16(u, v) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int16), intent(in) :: u(:)
    integer(kind=int16), intent(in) :: v(:)

    Return Value integer(kind=int16), (size(u),size(v))

  • private pure module function outer_product_iint32(u, v) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int32), intent(in) :: u(:)
    integer(kind=int32), intent(in) :: v(:)

    Return Value integer(kind=int32), (size(u),size(v))

  • private pure module function outer_product_iint64(u, v) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int64), intent(in) :: u(:)
    integer(kind=int64), intent(in) :: v(:)

    Return Value integer(kind=int64), (size(u),size(v))

  • private pure module function outer_product_iint8(u, v) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int8), intent(in) :: u(:)
    integer(kind=int8), intent(in) :: v(:)

    Return Value integer(kind=int8), (size(u),size(v))

  • private pure module function outer_product_rdp(u, v) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: u(:)
    real(kind=dp), intent(in) :: v(:)

    Return Value real(kind=dp), (size(u),size(v))

  • private pure module function outer_product_rsp(u, v) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: u(:)
    real(kind=sp), intent(in) :: v(:)

    Return Value real(kind=sp), (size(u),size(v))

public interface pinv

Pseudo-inverse of a matrix (Specification)

Summary

This interface provides methods for computing the Moore-Penrose pseudo-inverse of a matrix. The pseudo-inverse is a generalization of the matrix inverse, computed for square, singular, or rectangular matrices. It is defined such that it satisfies the conditions: - - - -

Description

This function interface provides methods that return the Moore-Penrose pseudo-inverse of a matrix.
Supported data types include real and complex. The pseudo-inverse is returned as a function result. The computation is based on the singular value decomposition (SVD). An optional relative tolerance rtol is provided to control the inclusion of singular values during inversion. Singular values below are treated as zero, where is the largest singular value. If rtol is not provided, a default threshold is applied.

Exceptions are raised in case of computational errors or invalid input, and trigger an error stop if the state flag err is not provided.

Note

The provided functions are intended for both rectangular and square matrices.

  • private module function stdlib_linalg_pseudoinverse_c(a, rtol, err) result(pinva)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), target :: a(:,:)

    Input matrix a[m,n]

    real(kind=sp), intent(in), optional :: rtol

    [optional] Relative tolerance for singular value cutoff

    type(linalg_state_type), intent(out), optional :: err

    [optional] State return flag. On error if not requested, the code will stop

    Return Value complex(kind=sp), (size(a,2,kind=ilp),size(a,1,kind=ilp))

    Output matrix pseudo-inverse [n,m]

  • private module function stdlib_linalg_pseudoinverse_d(a, rtol, err) result(pinva)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), target :: a(:,:)

    Input matrix a[m,n]

    real(kind=dp), intent(in), optional :: rtol

    [optional] Relative tolerance for singular value cutoff

    type(linalg_state_type), intent(out), optional :: err

    [optional] State return flag. On error if not requested, the code will stop

    Return Value real(kind=dp), (size(a,2,kind=ilp),size(a,1,kind=ilp))

    Output matrix pseudo-inverse [n,m]

  • private module function stdlib_linalg_pseudoinverse_s(a, rtol, err) result(pinva)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), target :: a(:,:)

    Input matrix a[m,n]

    real(kind=sp), intent(in), optional :: rtol

    [optional] Relative tolerance for singular value cutoff

    type(linalg_state_type), intent(out), optional :: err

    [optional] State return flag. On error if not requested, the code will stop

    Return Value real(kind=sp), (size(a,2,kind=ilp),size(a,1,kind=ilp))

    Output matrix pseudo-inverse [n,m]

  • private module function stdlib_linalg_pseudoinverse_z(a, rtol, err) result(pinva)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), target :: a(:,:)

    Input matrix a[m,n]

    real(kind=dp), intent(in), optional :: rtol

    [optional] Relative tolerance for singular value cutoff

    type(linalg_state_type), intent(out), optional :: err

    [optional] State return flag. On error if not requested, the code will stop

    Return Value complex(kind=dp), (size(a,2,kind=ilp),size(a,1,kind=ilp))

    Output matrix pseudo-inverse [n,m]

public interface pseudoinvert

Computation of the Moore-Penrose pseudo-inverse (Specification)

Summary

This interface provides methods for computing the Moore-Penrose pseudo-inverse of a rectangular or square real or complex matrix. The pseudo-inverse generalizes the matrix inverse and satisfies the properties: - - - -

Description

This subroutine interface provides a way to compute the Moore-Penrose pseudo-inverse of a matrix.
Supported data types include real and complex. Users must provide two matrices: the input matrix a [m,n] and the output pseudo-inverse pinva [n,m]. The input matrix a is used to compute the pseudo-inverse and is not modified. The computed pseudo-inverse is stored in pinva. The computation is based on the singular value decomposition (SVD).

An optional relative tolerance rtol is used to control the inclusion of singular values in the computation. Singular values below are treated as zero, where is the largest singular value. If rtol is not provided, a default threshold is applied.

Exceptions are raised in case of computational errors or invalid input, and trigger an error stop if the state flag err is not provided.

Note

The provided subroutines are intended for both rectangular and square matrices.

  • private module subroutine stdlib_linalg_pseudoinvert_c(a, pinva, rtol, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(inout) :: a(:,:)

    Input matrix a[m,n]

    complex(kind=sp), intent(out) :: pinva(:,:)

    Output pseudo-inverse matrix [n,m]

    real(kind=sp), intent(in), optional :: rtol

    [optional] Relative tolerance for singular value cutoff

    type(linalg_state_type), intent(out), optional :: err

    [optional] State return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_pseudoinvert_d(a, pinva, rtol, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(inout) :: a(:,:)

    Input matrix a[m,n]

    real(kind=dp), intent(out) :: pinva(:,:)

    Output pseudo-inverse matrix [n,m]

    real(kind=dp), intent(in), optional :: rtol

    [optional] Relative tolerance for singular value cutoff

    type(linalg_state_type), intent(out), optional :: err

    [optional] State return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_pseudoinvert_s(a, pinva, rtol, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(inout) :: a(:,:)

    Input matrix a[m,n]

    real(kind=sp), intent(out) :: pinva(:,:)

    Output pseudo-inverse matrix [n,m]

    real(kind=sp), intent(in), optional :: rtol

    [optional] Relative tolerance for singular value cutoff

    type(linalg_state_type), intent(out), optional :: err

    [optional] State return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_pseudoinvert_z(a, pinva, rtol, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(inout) :: a(:,:)

    Input matrix a[m,n]

    complex(kind=dp), intent(out) :: pinva(:,:)

    Output pseudo-inverse matrix [n,m]

    real(kind=dp), intent(in), optional :: rtol

    [optional] Relative tolerance for singular value cutoff

    type(linalg_state_type), intent(out), optional :: err

    [optional] State return flag. On error if not requested, the code will stop

public interface qr

Computes the QR factorization of matrix . (Specification)

Summary

Compute the QR factorization of a real or complex matrix: , where is orthonormal and is upper-triangular. Matrix has size [m,n], with .

Description

This interface provides methods for computing the QR factorization of a matrix. Supported data types include real and complex. If a pre-allocated work space is provided, no internal memory allocations take place when using this interface.

Given k = min(m,n), one can write \cdot ). The user may want the full problem (provide shape(Q)==[m,m], shape(R)==[m,n]) or the reduced
problem only: (provide shape(Q)==[m,k], shape(R)==[k,n]).

Note

The solution is based on LAPACK's QR factorization (*GEQRF) and ordered matrix output (*ORGQR, *UNGQR).

  • private pure module subroutine stdlib_linalg_c_qr(a, q, r, overwrite_a, storage, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(inout), target :: a(:,:)

    Input matrix a[m,n]

    complex(kind=sp), intent(out), contiguous, target :: q(:,:)

    Orthogonal matrix Q ([m,m], or [m,k] if reduced)

    complex(kind=sp), intent(out), contiguous, target :: r(:,:)

    Upper triangular matrix R ([m,n], or [k,n] if reduced)

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    complex(kind=sp), intent(out), optional, target :: storage(:)

    [optional] Provide pre-allocated workspace, size to be checked with qr_space

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine stdlib_linalg_d_qr(a, q, r, overwrite_a, storage, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(inout), target :: a(:,:)

    Input matrix a[m,n]

    real(kind=dp), intent(out), contiguous, target :: q(:,:)

    Orthogonal matrix Q ([m,m], or [m,k] if reduced)

    real(kind=dp), intent(out), contiguous, target :: r(:,:)

    Upper triangular matrix R ([m,n], or [k,n] if reduced)

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    real(kind=dp), intent(out), optional, target :: storage(:)

    [optional] Provide pre-allocated workspace, size to be checked with qr_space

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine stdlib_linalg_s_qr(a, q, r, overwrite_a, storage, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(inout), target :: a(:,:)

    Input matrix a[m,n]

    real(kind=sp), intent(out), contiguous, target :: q(:,:)

    Orthogonal matrix Q ([m,m], or [m,k] if reduced)

    real(kind=sp), intent(out), contiguous, target :: r(:,:)

    Upper triangular matrix R ([m,n], or [k,n] if reduced)

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    real(kind=sp), intent(out), optional, target :: storage(:)

    [optional] Provide pre-allocated workspace, size to be checked with qr_space

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine stdlib_linalg_z_qr(a, q, r, overwrite_a, storage, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(inout), target :: a(:,:)

    Input matrix a[m,n]

    complex(kind=dp), intent(out), contiguous, target :: q(:,:)

    Orthogonal matrix Q ([m,m], or [m,k] if reduced)

    complex(kind=dp), intent(out), contiguous, target :: r(:,:)

    Upper triangular matrix R ([m,n], or [k,n] if reduced)

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    complex(kind=dp), intent(out), optional, target :: storage(:)

    [optional] Provide pre-allocated workspace, size to be checked with qr_space

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

public interface qr_space

Computes the working array space required by the QR factorization solver (Specification)

Description

This interface returns the size of the real or complex working storage required by the QR factorization solver. The working size only depends on the kind (real or complex) and size of the matrix being factorized. Storage size can be used to pre-allocate a working array in case several repeated QR factorizations to a same-size matrix are sought. If pre-allocated working arrays are provided, no internal allocations will take place during the factorization.

  • private pure module subroutine get_qr_c_workspace(a, lwork, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), target :: a(:,:)

    Input matrix a[m,n]

    integer(kind=ilp), intent(out) :: lwork

    Minimum workspace size for both operations

    type(linalg_state_type), intent(out), optional :: err

    State return flag. Returns an error if the query failed

  • private pure module subroutine get_qr_d_workspace(a, lwork, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), target :: a(:,:)

    Input matrix a[m,n]

    integer(kind=ilp), intent(out) :: lwork

    Minimum workspace size for both operations

    type(linalg_state_type), intent(out), optional :: err

    State return flag. Returns an error if the query failed

  • private pure module subroutine get_qr_s_workspace(a, lwork, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), target :: a(:,:)

    Input matrix a[m,n]

    integer(kind=ilp), intent(out) :: lwork

    Minimum workspace size for both operations

    type(linalg_state_type), intent(out), optional :: err

    State return flag. Returns an error if the query failed

  • private pure module subroutine get_qr_z_workspace(a, lwork, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), target :: a(:,:)

    Input matrix a[m,n]

    integer(kind=ilp), intent(out) :: lwork

    Minimum workspace size for both operations

    type(linalg_state_type), intent(out), optional :: err

    State return flag. Returns an error if the query failed

public interface schur

Computes the Schur decomposition of matrix . (Specification)

Summary

Compute the Schur decomposition of a real or complex matrix: , where is orthonormal/unitary and is upper-triangular or quasi-upper-triangular. Matrix has size [m,m].

Description

This interface provides methods for computing the Schur decomposition of a matrix. Supported data types include real and complex. If a pre-allocated workspace is provided, no internal memory allocations take place when using this interface.

The output matrix is upper-triangular for complex input matrices and quasi-upper-triangular for real input matrices (with possible blocks on the diagonal).

Note

The solution is based on LAPACK's Schur decomposition routines (*GEES).

  • private module subroutine stdlib_linalg_c_schur(a, t, z, eigvals, overwrite_a, storage, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(inout), target :: a(:,:)

    Input matrix a[m,m]

    complex(kind=sp), intent(out), contiguous, target :: t(:,:)

    Schur form of A: upper-triangular or quasi-upper-triangular matrix T

    complex(kind=sp), intent(out), optional, contiguous, target :: z(:,:)

    Unitary/orthonormal transformation matrix Z

    complex(kind=sp), intent(out), optional, contiguous, target :: eigvals(:)

    [optional] Output eigenvalues that appear on the diagonal of T

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    complex(kind=sp), intent(inout), optional, target :: storage(:)

    [optional] Provide pre-allocated workspace, size to be checked with schur_space

    type(linalg_state_type), intent(out), optional :: err

    [optional] State return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_d_schur(a, t, z, eigvals, overwrite_a, storage, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(inout), target :: a(:,:)

    Input matrix a[m,m]

    real(kind=dp), intent(out), contiguous, target :: t(:,:)

    Schur form of A: upper-triangular or quasi-upper-triangular matrix T

    real(kind=dp), intent(out), optional, contiguous, target :: z(:,:)

    Unitary/orthonormal transformation matrix Z

    complex(kind=dp), intent(out), optional, contiguous, target :: eigvals(:)

    [optional] Output eigenvalues that appear on the diagonal of T

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    real(kind=dp), intent(inout), optional, target :: storage(:)

    [optional] Provide pre-allocated workspace, size to be checked with schur_space

    type(linalg_state_type), intent(out), optional :: err

    [optional] State return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_real_eig_c_schur(a, t, z, eigvals, overwrite_a, storage, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(inout), target :: a(:,:)

    Input matrix a[m,m]

    complex(kind=sp), intent(out), contiguous, target :: t(:,:)

    Schur form of A: upper-triangular or quasi-upper-triangular matrix T

    complex(kind=sp), intent(out), optional, contiguous, target :: z(:,:)

    Unitary/orthonormal transformation matrix Z

    real(kind=sp), intent(out), contiguous, target :: eigvals(:)

    Output real eigenvalues that appear on the diagonal of T

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    complex(kind=sp), intent(inout), optional, target :: storage(:)

    [optional] Provide pre-allocated workspace, size to be checked with schur_space

    type(linalg_state_type), intent(out), optional :: err

    [optional] State return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_real_eig_d_schur(a, t, z, eigvals, overwrite_a, storage, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(inout), target :: a(:,:)

    Input matrix a[m,m]

    real(kind=dp), intent(out), contiguous, target :: t(:,:)

    Schur form of A: upper-triangular or quasi-upper-triangular matrix T

    real(kind=dp), intent(out), optional, contiguous, target :: z(:,:)

    Unitary/orthonormal transformation matrix Z

    real(kind=dp), intent(out), contiguous, target :: eigvals(:)

    Output real eigenvalues that appear on the diagonal of T

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    real(kind=dp), intent(inout), optional, target :: storage(:)

    [optional] Provide pre-allocated workspace, size to be checked with schur_space

    type(linalg_state_type), intent(out), optional :: err

    [optional] State return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_real_eig_s_schur(a, t, z, eigvals, overwrite_a, storage, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(inout), target :: a(:,:)

    Input matrix a[m,m]

    real(kind=sp), intent(out), contiguous, target :: t(:,:)

    Schur form of A: upper-triangular or quasi-upper-triangular matrix T

    real(kind=sp), intent(out), optional, contiguous, target :: z(:,:)

    Unitary/orthonormal transformation matrix Z

    real(kind=sp), intent(out), contiguous, target :: eigvals(:)

    Output real eigenvalues that appear on the diagonal of T

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    real(kind=sp), intent(inout), optional, target :: storage(:)

    [optional] Provide pre-allocated workspace, size to be checked with schur_space

    type(linalg_state_type), intent(out), optional :: err

    [optional] State return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_real_eig_z_schur(a, t, z, eigvals, overwrite_a, storage, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(inout), target :: a(:,:)

    Input matrix a[m,m]

    complex(kind=dp), intent(out), contiguous, target :: t(:,:)

    Schur form of A: upper-triangular or quasi-upper-triangular matrix T

    complex(kind=dp), intent(out), optional, contiguous, target :: z(:,:)

    Unitary/orthonormal transformation matrix Z

    real(kind=dp), intent(out), contiguous, target :: eigvals(:)

    Output real eigenvalues that appear on the diagonal of T

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    complex(kind=dp), intent(inout), optional, target :: storage(:)

    [optional] Provide pre-allocated workspace, size to be checked with schur_space

    type(linalg_state_type), intent(out), optional :: err

    [optional] State return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_s_schur(a, t, z, eigvals, overwrite_a, storage, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(inout), target :: a(:,:)

    Input matrix a[m,m]

    real(kind=sp), intent(out), contiguous, target :: t(:,:)

    Schur form of A: upper-triangular or quasi-upper-triangular matrix T

    real(kind=sp), intent(out), optional, contiguous, target :: z(:,:)

    Unitary/orthonormal transformation matrix Z

    complex(kind=sp), intent(out), optional, contiguous, target :: eigvals(:)

    [optional] Output eigenvalues that appear on the diagonal of T

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    real(kind=sp), intent(inout), optional, target :: storage(:)

    [optional] Provide pre-allocated workspace, size to be checked with schur_space

    type(linalg_state_type), intent(out), optional :: err

    [optional] State return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_z_schur(a, t, z, eigvals, overwrite_a, storage, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(inout), target :: a(:,:)

    Input matrix a[m,m]

    complex(kind=dp), intent(out), contiguous, target :: t(:,:)

    Schur form of A: upper-triangular or quasi-upper-triangular matrix T

    complex(kind=dp), intent(out), optional, contiguous, target :: z(:,:)

    Unitary/orthonormal transformation matrix Z

    complex(kind=dp), intent(out), optional, contiguous, target :: eigvals(:)

    [optional] Output eigenvalues that appear on the diagonal of T

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    complex(kind=dp), intent(inout), optional, target :: storage(:)

    [optional] Provide pre-allocated workspace, size to be checked with schur_space

    type(linalg_state_type), intent(out), optional :: err

    [optional] State return flag. On error if not requested, the code will stop

public interface schur_space

Computes the working array space required by the Schur decomposition solver (Specification)

Description

This interface returns the size of the real or complex working storage required by the Schur decomposition solver. The working size only depends on the kind (real or complex) and size of the matrix being decomposed. Storage size can be used to pre-allocate a working array in case several repeated Schur decompositions of same-size matrices are sought. If pre-allocated working arrays are provided, no internal allocations will take place during the decomposition.

  • private module subroutine get_schur_c_workspace(a, lwork, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), target :: a(:,:)

    Input matrix a[m,m]

    integer(kind=ilp), intent(out) :: lwork

    Minimum workspace size for the decomposition operation

    type(linalg_state_type), intent(out), optional :: err

    State return flag. Returns an error if the query failed

  • private module subroutine get_schur_d_workspace(a, lwork, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), target :: a(:,:)

    Input matrix a[m,m]

    integer(kind=ilp), intent(out) :: lwork

    Minimum workspace size for the decomposition operation

    type(linalg_state_type), intent(out), optional :: err

    State return flag. Returns an error if the query failed

  • private module subroutine get_schur_s_workspace(a, lwork, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), target :: a(:,:)

    Input matrix a[m,m]

    integer(kind=ilp), intent(out) :: lwork

    Minimum workspace size for the decomposition operation

    type(linalg_state_type), intent(out), optional :: err

    State return flag. Returns an error if the query failed

  • private module subroutine get_schur_z_workspace(a, lwork, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), target :: a(:,:)

    Input matrix a[m,m]

    integer(kind=ilp), intent(out) :: lwork

    Minimum workspace size for the decomposition operation

    type(linalg_state_type), intent(out), optional :: err

    State return flag. Returns an error if the query failed

public interface solve

Solves the linear system for the unknown vector from a square matrix . (Specification)

Summary

Interface for solving a linear system arising from a general matrix.

Description

This interface provides methods for computing the solution of a linear matrix system. Supported data types include real and complex. No assumption is made on the matrix structure. The function can solve simultaneously either one (from a 1-d right-hand-side vector b(:)) or several (from a 2-d right-hand-side vector b(:,:)) systems.

Note

The solution is based on LAPACK's generic LU decomposition based solvers *GESV.

  • private pure module function stdlib_linalg_c_pure_solve_many(a, b) result(x)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: a(:,:)

    Input matrix a[n,n]

    complex(kind=sp), intent(in) :: b(:,:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    Return Value complex(kind=sp), allocatable, target, (:,:)

    Result array/matrix x[n] or x[n,nrhs]

  • private pure module function stdlib_linalg_c_pure_solve_one(a, b) result(x)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: a(:,:)

    Input matrix a[n,n]

    complex(kind=sp), intent(in) :: b(:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    Return Value complex(kind=sp), allocatable, target, (:)

    Result array/matrix x[n] or x[n,nrhs]

  • private module function stdlib_linalg_c_solve_many(a, b, overwrite_a, err) result(x)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    complex(kind=sp), intent(in) :: b(:,:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out) :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value complex(kind=sp), allocatable, target, (:,:)

    Result array/matrix x[n] or x[n,nrhs]

  • private module function stdlib_linalg_c_solve_one(a, b, overwrite_a, err) result(x)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    complex(kind=sp), intent(in) :: b(:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out) :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value complex(kind=sp), allocatable, target, (:)

    Result array/matrix x[n] or x[n,nrhs]

  • private pure module function stdlib_linalg_d_pure_solve_many(a, b) result(x)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: a(:,:)

    Input matrix a[n,n]

    real(kind=dp), intent(in) :: b(:,:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    Return Value real(kind=dp), allocatable, target, (:,:)

    Result array/matrix x[n] or x[n,nrhs]

  • private pure module function stdlib_linalg_d_pure_solve_one(a, b) result(x)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: a(:,:)

    Input matrix a[n,n]

    real(kind=dp), intent(in) :: b(:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    Return Value real(kind=dp), allocatable, target, (:)

    Result array/matrix x[n] or x[n,nrhs]

  • private module function stdlib_linalg_d_solve_many(a, b, overwrite_a, err) result(x)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    real(kind=dp), intent(in) :: b(:,:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out) :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=dp), allocatable, target, (:,:)

    Result array/matrix x[n] or x[n,nrhs]

  • private module function stdlib_linalg_d_solve_one(a, b, overwrite_a, err) result(x)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    real(kind=dp), intent(in) :: b(:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out) :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=dp), allocatable, target, (:)

    Result array/matrix x[n] or x[n,nrhs]

  • private pure module function stdlib_linalg_s_pure_solve_many(a, b) result(x)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: a(:,:)

    Input matrix a[n,n]

    real(kind=sp), intent(in) :: b(:,:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    Return Value real(kind=sp), allocatable, target, (:,:)

    Result array/matrix x[n] or x[n,nrhs]

  • private pure module function stdlib_linalg_s_pure_solve_one(a, b) result(x)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: a(:,:)

    Input matrix a[n,n]

    real(kind=sp), intent(in) :: b(:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    Return Value real(kind=sp), allocatable, target, (:)

    Result array/matrix x[n] or x[n,nrhs]

  • private module function stdlib_linalg_s_solve_many(a, b, overwrite_a, err) result(x)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    real(kind=sp), intent(in) :: b(:,:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out) :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=sp), allocatable, target, (:,:)

    Result array/matrix x[n] or x[n,nrhs]

  • private module function stdlib_linalg_s_solve_one(a, b, overwrite_a, err) result(x)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    real(kind=sp), intent(in) :: b(:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out) :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=sp), allocatable, target, (:)

    Result array/matrix x[n] or x[n,nrhs]

  • private pure module function stdlib_linalg_z_pure_solve_many(a, b) result(x)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: a(:,:)

    Input matrix a[n,n]

    complex(kind=dp), intent(in) :: b(:,:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    Return Value complex(kind=dp), allocatable, target, (:,:)

    Result array/matrix x[n] or x[n,nrhs]

  • private pure module function stdlib_linalg_z_pure_solve_one(a, b) result(x)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: a(:,:)

    Input matrix a[n,n]

    complex(kind=dp), intent(in) :: b(:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    Return Value complex(kind=dp), allocatable, target, (:)

    Result array/matrix x[n] or x[n,nrhs]

  • private module function stdlib_linalg_z_solve_many(a, b, overwrite_a, err) result(x)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    complex(kind=dp), intent(in) :: b(:,:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out) :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value complex(kind=dp), allocatable, target, (:,:)

    Result array/matrix x[n] or x[n,nrhs]

  • private module function stdlib_linalg_z_solve_one(a, b, overwrite_a, err) result(x)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    complex(kind=dp), intent(in) :: b(:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out) :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value complex(kind=dp), allocatable, target, (:)

    Result array/matrix x[n] or x[n,nrhs]

public interface solve_lstsq

Computes the squares solution to system . (Specification)

Summary

Subroutine interface for computing least squares, i.e. the 2-norm minimizing solution.

Description

This interface provides methods for computing the least squares of a linear matrix system using a subroutine. Supported data types include real and complex. If pre-allocated work spaces are provided, no internal memory allocations take place when using this interface.

Note

The solution is based on LAPACK's singular value decomposition *GELSD methods.

  • private module subroutine stdlib_linalg_c_solve_lstsq_many(a, b, x, real_storage, int_storage, cmpl_storage, cond, singvals, overwrite_a, rank, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    complex(kind=sp), intent(in) :: b(:,:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    complex(kind=sp), intent(inout), contiguous, target :: x(:,:)

    Result array/matrix x[n] or x[n,nrhs]

    real(kind=sp), intent(inout), optional, target :: real_storage(:)

    [optional] real working storage space

    integer(kind=ilp), intent(inout), optional, target :: int_storage(:)

    [optional] integer working storage space

    complex(kind=sp), intent(inout), optional, target :: cmpl_storage(:)

    [optional] complex working storage space

    real(kind=sp), intent(in), optional :: cond

    [optional] cutoff for rank evaluation: singular values s(i)<=cond*maxval(s) are considered 0.

    real(kind=sp), intent(out), optional, target :: singvals(:)

    [optional] list of singular values [min(m,n)], in descending magnitude order, returned by the SVD

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A,b data be overwritten and destroyed?

    integer(kind=ilp), intent(out), optional :: rank

    [optional] Return rank of A

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_c_solve_lstsq_one(a, b, x, real_storage, int_storage, cmpl_storage, cond, singvals, overwrite_a, rank, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    complex(kind=sp), intent(in) :: b(:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    complex(kind=sp), intent(inout), contiguous, target :: x(:)

    Result array/matrix x[n] or x[n,nrhs]

    real(kind=sp), intent(inout), optional, target :: real_storage(:)

    [optional] real working storage space

    integer(kind=ilp), intent(inout), optional, target :: int_storage(:)

    [optional] integer working storage space

    complex(kind=sp), intent(inout), optional, target :: cmpl_storage(:)

    [optional] complex working storage space

    real(kind=sp), intent(in), optional :: cond

    [optional] cutoff for rank evaluation: singular values s(i)<=cond*maxval(s) are considered 0.

    real(kind=sp), intent(out), optional, target :: singvals(:)

    [optional] list of singular values [min(m,n)], in descending magnitude order, returned by the SVD

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A,b data be overwritten and destroyed?

    integer(kind=ilp), intent(out), optional :: rank

    [optional] Return rank of A

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_d_solve_lstsq_many(a, b, x, real_storage, int_storage, cond, singvals, overwrite_a, rank, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    real(kind=dp), intent(in) :: b(:,:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    real(kind=dp), intent(inout), contiguous, target :: x(:,:)

    Result array/matrix x[n] or x[n,nrhs]

    real(kind=dp), intent(inout), optional, target :: real_storage(:)

    [optional] real working storage space

    integer(kind=ilp), intent(inout), optional, target :: int_storage(:)

    [optional] integer working storage space

    real(kind=dp), intent(in), optional :: cond

    [optional] cutoff for rank evaluation: singular values s(i)<=cond*maxval(s) are considered 0.

    real(kind=dp), intent(out), optional, target :: singvals(:)

    [optional] list of singular values [min(m,n)], in descending magnitude order, returned by the SVD

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A,b data be overwritten and destroyed?

    integer(kind=ilp), intent(out), optional :: rank

    [optional] Return rank of A

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_d_solve_lstsq_one(a, b, x, real_storage, int_storage, cond, singvals, overwrite_a, rank, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    real(kind=dp), intent(in) :: b(:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    real(kind=dp), intent(inout), contiguous, target :: x(:)

    Result array/matrix x[n] or x[n,nrhs]

    real(kind=dp), intent(inout), optional, target :: real_storage(:)

    [optional] real working storage space

    integer(kind=ilp), intent(inout), optional, target :: int_storage(:)

    [optional] integer working storage space

    real(kind=dp), intent(in), optional :: cond

    [optional] cutoff for rank evaluation: singular values s(i)<=cond*maxval(s) are considered 0.

    real(kind=dp), intent(out), optional, target :: singvals(:)

    [optional] list of singular values [min(m,n)], in descending magnitude order, returned by the SVD

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A,b data be overwritten and destroyed?

    integer(kind=ilp), intent(out), optional :: rank

    [optional] Return rank of A

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_s_solve_lstsq_many(a, b, x, real_storage, int_storage, cond, singvals, overwrite_a, rank, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    real(kind=sp), intent(in) :: b(:,:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    real(kind=sp), intent(inout), contiguous, target :: x(:,:)

    Result array/matrix x[n] or x[n,nrhs]

    real(kind=sp), intent(inout), optional, target :: real_storage(:)

    [optional] real working storage space

    integer(kind=ilp), intent(inout), optional, target :: int_storage(:)

    [optional] integer working storage space

    real(kind=sp), intent(in), optional :: cond

    [optional] cutoff for rank evaluation: singular values s(i)<=cond*maxval(s) are considered 0.

    real(kind=sp), intent(out), optional, target :: singvals(:)

    [optional] list of singular values [min(m,n)], in descending magnitude order, returned by the SVD

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A,b data be overwritten and destroyed?

    integer(kind=ilp), intent(out), optional :: rank

    [optional] Return rank of A

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_s_solve_lstsq_one(a, b, x, real_storage, int_storage, cond, singvals, overwrite_a, rank, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    real(kind=sp), intent(in) :: b(:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    real(kind=sp), intent(inout), contiguous, target :: x(:)

    Result array/matrix x[n] or x[n,nrhs]

    real(kind=sp), intent(inout), optional, target :: real_storage(:)

    [optional] real working storage space

    integer(kind=ilp), intent(inout), optional, target :: int_storage(:)

    [optional] integer working storage space

    real(kind=sp), intent(in), optional :: cond

    [optional] cutoff for rank evaluation: singular values s(i)<=cond*maxval(s) are considered 0.

    real(kind=sp), intent(out), optional, target :: singvals(:)

    [optional] list of singular values [min(m,n)], in descending magnitude order, returned by the SVD

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A,b data be overwritten and destroyed?

    integer(kind=ilp), intent(out), optional :: rank

    [optional] Return rank of A

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_z_solve_lstsq_many(a, b, x, real_storage, int_storage, cmpl_storage, cond, singvals, overwrite_a, rank, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    complex(kind=dp), intent(in) :: b(:,:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    complex(kind=dp), intent(inout), contiguous, target :: x(:,:)

    Result array/matrix x[n] or x[n,nrhs]

    real(kind=dp), intent(inout), optional, target :: real_storage(:)

    [optional] real working storage space

    integer(kind=ilp), intent(inout), optional, target :: int_storage(:)

    [optional] integer working storage space

    complex(kind=dp), intent(inout), optional, target :: cmpl_storage(:)

    [optional] complex working storage space

    real(kind=dp), intent(in), optional :: cond

    [optional] cutoff for rank evaluation: singular values s(i)<=cond*maxval(s) are considered 0.

    real(kind=dp), intent(out), optional, target :: singvals(:)

    [optional] list of singular values [min(m,n)], in descending magnitude order, returned by the SVD

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A,b data be overwritten and destroyed?

    integer(kind=ilp), intent(out), optional :: rank

    [optional] Return rank of A

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_z_solve_lstsq_one(a, b, x, real_storage, int_storage, cmpl_storage, cond, singvals, overwrite_a, rank, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    complex(kind=dp), intent(in) :: b(:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    complex(kind=dp), intent(inout), contiguous, target :: x(:)

    Result array/matrix x[n] or x[n,nrhs]

    real(kind=dp), intent(inout), optional, target :: real_storage(:)

    [optional] real working storage space

    integer(kind=ilp), intent(inout), optional, target :: int_storage(:)

    [optional] integer working storage space

    complex(kind=dp), intent(inout), optional, target :: cmpl_storage(:)

    [optional] complex working storage space

    real(kind=dp), intent(in), optional :: cond

    [optional] cutoff for rank evaluation: singular values s(i)<=cond*maxval(s) are considered 0.

    real(kind=dp), intent(out), optional, target :: singvals(:)

    [optional] list of singular values [min(m,n)], in descending magnitude order, returned by the SVD

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A,b data be overwritten and destroyed?

    integer(kind=ilp), intent(out), optional :: rank

    [optional] Return rank of A

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

public interface solve_lu

Solves the linear system for the unknown vector from a square matrix . (Specification)

Summary

Subroutine interface for solving a linear system using LU decomposition.

Description

This interface provides methods for computing the solution of a linear matrix system using a subroutine. Supported data types include real and complex. No assumption is made on the matrix structure. Preallocated space for the solution vector x is user-provided, and it may be provided for the array of pivot indices, pivot. If all pre-allocated work spaces are provided, no internal memory allocations take place when using this interface.
The function can solve simultaneously either one (from a 1-d right-hand-side vector b(:)) or several (from a 2-d right-hand-side vector b(:,:)) systems.

Note

The solution is based on LAPACK's generic LU decomposition based solvers *GESV.

  • private pure module subroutine stdlib_linalg_c_solve_lu_many(a, b, x, pivot, overwrite_a, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    complex(kind=sp), intent(in) :: b(:,:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    complex(kind=sp), intent(inout), contiguous, target :: x(:,:)

    Result array/matrix x[n] or x[n,nrhs]

    integer(kind=ilp), intent(inout), optional, target :: pivot(:)

    [optional] Storage array for the diagonal pivot indices

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine stdlib_linalg_c_solve_lu_one(a, b, x, pivot, overwrite_a, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    complex(kind=sp), intent(in) :: b(:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    complex(kind=sp), intent(inout), contiguous, target :: x(:)

    Result array/matrix x[n] or x[n,nrhs]

    integer(kind=ilp), intent(inout), optional, target :: pivot(:)

    [optional] Storage array for the diagonal pivot indices

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine stdlib_linalg_d_solve_lu_many(a, b, x, pivot, overwrite_a, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    real(kind=dp), intent(in) :: b(:,:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    real(kind=dp), intent(inout), contiguous, target :: x(:,:)

    Result array/matrix x[n] or x[n,nrhs]

    integer(kind=ilp), intent(inout), optional, target :: pivot(:)

    [optional] Storage array for the diagonal pivot indices

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine stdlib_linalg_d_solve_lu_one(a, b, x, pivot, overwrite_a, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    real(kind=dp), intent(in) :: b(:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    real(kind=dp), intent(inout), contiguous, target :: x(:)

    Result array/matrix x[n] or x[n,nrhs]

    integer(kind=ilp), intent(inout), optional, target :: pivot(:)

    [optional] Storage array for the diagonal pivot indices

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine stdlib_linalg_s_solve_lu_many(a, b, x, pivot, overwrite_a, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    real(kind=sp), intent(in) :: b(:,:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    real(kind=sp), intent(inout), contiguous, target :: x(:,:)

    Result array/matrix x[n] or x[n,nrhs]

    integer(kind=ilp), intent(inout), optional, target :: pivot(:)

    [optional] Storage array for the diagonal pivot indices

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine stdlib_linalg_s_solve_lu_one(a, b, x, pivot, overwrite_a, err)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    real(kind=sp), intent(in) :: b(:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    real(kind=sp), intent(inout), contiguous, target :: x(:)

    Result array/matrix x[n] or x[n,nrhs]

    integer(kind=ilp), intent(inout), optional, target :: pivot(:)

    [optional] Storage array for the diagonal pivot indices

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine stdlib_linalg_z_solve_lu_many(a, b, x, pivot, overwrite_a, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    complex(kind=dp), intent(in) :: b(:,:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    complex(kind=dp), intent(inout), contiguous, target :: x(:,:)

    Result array/matrix x[n] or x[n,nrhs]

    integer(kind=ilp), intent(inout), optional, target :: pivot(:)

    [optional] Storage array for the diagonal pivot indices

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private pure module subroutine stdlib_linalg_z_solve_lu_one(a, b, x, pivot, overwrite_a, err)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(inout), target :: a(:,:)

    Input matrix a[n,n]

    complex(kind=dp), intent(in) :: b(:)

    Right hand side vector or array, b[n] or b[n,nrhs]

    complex(kind=dp), intent(inout), contiguous, target :: x(:)

    Result array/matrix x[n] or x[n,nrhs]

    integer(kind=ilp), intent(inout), optional, target :: pivot(:)

    [optional] Storage array for the diagonal pivot indices

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

public interface svd

Computes the singular value decomposition of a real or complex 2d matrix. (Specification)

Summary

Interface for computing the singular value decomposition of a real or complex 2d matrix.

Description

This interface provides methods for computing the singular value decomposition of a matrix. Supported data types include real and complex. The subroutine returns a real array of singular values, and optionally, left- and right- singular vector matrices, U and V. For a matrix A with size [m,n], full matrix storage for U and V should be [m,m] and [n,n]. It is possible to use partial storage [m,k] and [k,n], k=min(m,n), choosing full_matrices=.false..

Note

The solution is based on LAPACK's singular value decomposition *GESDD methods.

Example

    real(sp) :: a(2,3), s(2), u(2,2), vt(3,3) 
    a = reshape([3,2, 2,3, 2,-2],[2,3])

    call svd(A,s,u,v)
    print *, 'singular values = ',s
  • private module subroutine stdlib_linalg_svd_c(a, s, u, vt, overwrite_a, full_matrices, err)

    Summary

    Compute singular value decomposition of a matrix

    Description

    This function computes the singular value decomposition of a real or complex matrix , and returns the array of singular values, and optionally the left matrix containing the left unitary singular vectors, and the right matrix , containing the right unitary singular vectors.

    param: a Input matrix of size [m,n]. param: s Output real array of size [min(m,n)] returning a list of singular values. param: u [optional] Output left singular matrix of size [m,m] or [m,min(m,n)] (.not.full_matrices). Contains singular vectors as columns. param: vt [optional] Output right singular matrix of size [n,n] or [min(m,n),n] (.not.full_matrices). Contains singular vectors as rows.
    param: overwrite_a [optional] Flag indicating if the input matrix can be overwritten. param: full_matrices [optional] If .true. (default), matrices and have size [m,m], [n,n]. Otherwise, they are [m,k], [k,n] with k=min(m,n). param: err [optional] State return flag.

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(inout), target :: a(:,:)

    Input matrix A[m,n]

    real(kind=sp), intent(out) :: s(:)

    Array of singular values

    complex(kind=sp), intent(out), optional, target :: u(:,:)

    The columns of U contain the left singular vectors

    complex(kind=sp), intent(out), optional, target :: vt(:,:)

    The rows of V^T contain the right singular vectors

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    logical(kind=lk), intent(in), optional :: full_matrices

    [optional] full matrices have shape(u)==[m,m], shape(vh)==[n,n] (default); otherwise they are shape(u)==[m,k] and shape(vh)==[k,n] with k=min(m,n)

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_svd_d(a, s, u, vt, overwrite_a, full_matrices, err)

    Summary

    Compute singular value decomposition of a matrix

    Description

    This function computes the singular value decomposition of a real or complex matrix , and returns the array of singular values, and optionally the left matrix containing the left unitary singular vectors, and the right matrix , containing the right unitary singular vectors.

    param: a Input matrix of size [m,n]. param: s Output real array of size [min(m,n)] returning a list of singular values. param: u [optional] Output left singular matrix of size [m,m] or [m,min(m,n)] (.not.full_matrices). Contains singular vectors as columns. param: vt [optional] Output right singular matrix of size [n,n] or [min(m,n),n] (.not.full_matrices). Contains singular vectors as rows.
    param: overwrite_a [optional] Flag indicating if the input matrix can be overwritten. param: full_matrices [optional] If .true. (default), matrices and have size [m,m], [n,n]. Otherwise, they are [m,k], [k,n] with k=min(m,n). param: err [optional] State return flag.

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(inout), target :: a(:,:)

    Input matrix A[m,n]

    real(kind=dp), intent(out) :: s(:)

    Array of singular values

    real(kind=dp), intent(out), optional, target :: u(:,:)

    The columns of U contain the left singular vectors

    real(kind=dp), intent(out), optional, target :: vt(:,:)

    The rows of V^T contain the right singular vectors

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    logical(kind=lk), intent(in), optional :: full_matrices

    [optional] full matrices have shape(u)==[m,m], shape(vh)==[n,n] (default); otherwise they are shape(u)==[m,k] and shape(vh)==[k,n] with k=min(m,n)

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_svd_s(a, s, u, vt, overwrite_a, full_matrices, err)

    Summary

    Compute singular value decomposition of a matrix

    Description

    This function computes the singular value decomposition of a real or complex matrix , and returns the array of singular values, and optionally the left matrix containing the left unitary singular vectors, and the right matrix , containing the right unitary singular vectors.

    param: a Input matrix of size [m,n]. param: s Output real array of size [min(m,n)] returning a list of singular values. param: u [optional] Output left singular matrix of size [m,m] or [m,min(m,n)] (.not.full_matrices). Contains singular vectors as columns. param: vt [optional] Output right singular matrix of size [n,n] or [min(m,n),n] (.not.full_matrices). Contains singular vectors as rows.
    param: overwrite_a [optional] Flag indicating if the input matrix can be overwritten. param: full_matrices [optional] If .true. (default), matrices and have size [m,m], [n,n]. Otherwise, they are [m,k], [k,n] with k=min(m,n). param: err [optional] State return flag.

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(inout), target :: a(:,:)

    Input matrix A[m,n]

    real(kind=sp), intent(out) :: s(:)

    Array of singular values

    real(kind=sp), intent(out), optional, target :: u(:,:)

    The columns of U contain the left singular vectors

    real(kind=sp), intent(out), optional, target :: vt(:,:)

    The rows of V^T contain the right singular vectors

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    logical(kind=lk), intent(in), optional :: full_matrices

    [optional] full matrices have shape(u)==[m,m], shape(vh)==[n,n] (default); otherwise they are shape(u)==[m,k] and shape(vh)==[k,n] with k=min(m,n)

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

  • private module subroutine stdlib_linalg_svd_z(a, s, u, vt, overwrite_a, full_matrices, err)

    Summary

    Compute singular value decomposition of a matrix

    Description

    This function computes the singular value decomposition of a real or complex matrix , and returns the array of singular values, and optionally the left matrix containing the left unitary singular vectors, and the right matrix , containing the right unitary singular vectors.

    param: a Input matrix of size [m,n]. param: s Output real array of size [min(m,n)] returning a list of singular values. param: u [optional] Output left singular matrix of size [m,m] or [m,min(m,n)] (.not.full_matrices). Contains singular vectors as columns. param: vt [optional] Output right singular matrix of size [n,n] or [min(m,n),n] (.not.full_matrices). Contains singular vectors as rows.
    param: overwrite_a [optional] Flag indicating if the input matrix can be overwritten. param: full_matrices [optional] If .true. (default), matrices and have size [m,m], [n,n]. Otherwise, they are [m,k], [k,n] with k=min(m,n). param: err [optional] State return flag.

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(inout), target :: a(:,:)

    Input matrix A[m,n]

    real(kind=dp), intent(out) :: s(:)

    Array of singular values

    complex(kind=dp), intent(out), optional, target :: u(:,:)

    The columns of U contain the left singular vectors

    complex(kind=dp), intent(out), optional, target :: vt(:,:)

    The rows of V^T contain the right singular vectors

    logical(kind=lk), intent(in), optional :: overwrite_a

    [optional] Can A data be overwritten and destroyed?

    logical(kind=lk), intent(in), optional :: full_matrices

    [optional] full matrices have shape(u)==[m,m], shape(vh)==[n,n] (default); otherwise they are shape(u)==[m,k] and shape(vh)==[k,n] with k=min(m,n)

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

public interface svdvals

Computes the singular values of a real or complex 2d matrix. (Specification)

Summary

Function interface for computing the array of singular values from the singular value decomposition of a real or complex 2d matrix.

Description

This interface provides methods for computing the singular values a 2d matrix. Supported data types include real and complex. The function returns a real array of singular values, with size [min(m,n)].

Note

The solution is based on LAPACK's singular value decomposition *GESDD methods.

Example

    real(sp) :: a(2,3), s(2)
    a = reshape([3,2, 2,3, 2,-2],[2,3])

    s = svdvals(A)
    print *, 'singular values = ',s
  • private module function stdlib_linalg_svdvals_c(a, err) result(s)

    Summary

    Compute singular values from the singular-value decomposition of a matrix .

    Description

    This function returns the array of singular values from the singular value decomposition of a real or complex matrix .

    param: a Input matrix of size [m,n]. param: err [optional] State return flag.

    Return value

    param: s real array of size [min(m,n)] returning a list of singular values.

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in), target :: a(:,:)

    Input matrix A[m,n]

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=sp), allocatable, (:)

    Array of singular values

  • private module function stdlib_linalg_svdvals_d(a, err) result(s)

    Summary

    Compute singular values from the singular-value decomposition of a matrix .

    Description

    This function returns the array of singular values from the singular value decomposition of a real or complex matrix .

    param: a Input matrix of size [m,n]. param: err [optional] State return flag.

    Return value

    param: s real array of size [min(m,n)] returning a list of singular values.

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in), target :: a(:,:)

    Input matrix A[m,n]

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=dp), allocatable, (:)

    Array of singular values

  • private module function stdlib_linalg_svdvals_s(a, err) result(s)

    Summary

    Compute singular values from the singular-value decomposition of a matrix .

    Description

    This function returns the array of singular values from the singular value decomposition of a real or complex matrix .

    param: a Input matrix of size [m,n]. param: err [optional] State return flag.

    Return value

    param: s real array of size [min(m,n)] returning a list of singular values.

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in), target :: a(:,:)

    Input matrix A[m,n]

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=sp), allocatable, (:)

    Array of singular values

  • private module function stdlib_linalg_svdvals_z(a, err) result(s)

    Summary

    Compute singular values from the singular-value decomposition of a matrix .

    Description

    This function returns the array of singular values from the singular value decomposition of a real or complex matrix .

    param: a Input matrix of size [m,n]. param: err [optional] State return flag.

    Return value

    param: s real array of size [min(m,n)] returning a list of singular values.

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in), target :: a(:,:)

    Input matrix A[m,n]

    type(linalg_state_type), intent(out), optional :: err

    [optional] state return flag. On error if not requested, the code will stop

    Return Value real(kind=dp), allocatable, (:)

    Array of singular values

public interface trace

Computes the trace of a matrix (Specification)

  • private function trace_rsp(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=sp), intent(in) :: A(:,:)

    Return Value real(kind=sp)

  • private function trace_rdp(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    real(kind=dp), intent(in) :: A(:,:)

    Return Value real(kind=dp)

  • private function trace_csp(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=sp), intent(in) :: A(:,:)

    Return Value complex(kind=sp)

  • private function trace_cdp(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    complex(kind=dp), intent(in) :: A(:,:)

    Return Value complex(kind=dp)

  • private function trace_iint8(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int8), intent(in) :: A(:,:)

    Return Value integer(kind=int8)

  • private function trace_iint16(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int16), intent(in) :: A(:,:)

    Return Value integer(kind=int16)

  • private function trace_iint32(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int32), intent(in) :: A(:,:)

    Return Value integer(kind=int32)

  • private function trace_iint64(A) result(res)

    Arguments

    Type IntentOptional Attributes Name
    integer(kind=int64), intent(in) :: A(:,:)

    Return Value integer(kind=int64)



Fortran-lang/stdlib was developed by fortran-lang/stdlib contributors
© 2025 Creative Commons License
8916fc52

Documentation generated by FORD on 2025-01-17 07:19