rvs_exp
- exponential distribution random variatesExperimental
An exponential distribution is the distribution of time between events in a Poisson point process. The inverse scale parameter lambda
specifies the average time between events, also called the rate of events.
Without argument the function returns a random sample from the standard exponential distribution E(1)
with lambda = 1
.
With a single argument, the function returns a random sample from the exponential distribution E(lambda)
.
For complex arguments, the real and imaginary parts are sampled independently of each other.
With two arguments the function returns a rank one array of exponentially distributed random variates.
Note: the algorithm used for generating exponetial random variates is fundamentally limited to double precision. Ref.: Marsaglia, G. & Tsang, W.W. (2000) `The ziggurat method for generating random variables', J. Statist. Software, v5(8).
result = rvs_exp([lambda] [[, array_size]])
Function
lambda
: optional argument has intent(in)
and is a scalar of type real
or complex
. The value of lambda
has to be non-negative.
array_size
: optional argument has intent(in)
and is a scalar of type integer
with default kind.
The result is a scalar or rank one array with a size of array_size
, and has the same type of lambda
.
program demo_exponential_rvs
use stdlib_random, only : random_seed
use stdlib_stats_distribution_exponential, only: rexp => rvs_exp
implicit none
real :: a(2,3,4)
complex :: scale
integer :: seed_put, seed_get
seed_put = 1234567
call random_seed(seed_put, seed_get)
print *, rexp( ) !single standard exponential random variate
! 0.358690143
print *, rexp(2.0) !exponential random variate with lambda=2.0
! 0.816459715
print *, rexp(0.3, 10) !an array of 10 variates with lambda=0.3
! 1.84008647E-02 3.59742008E-02 0.136567295 0.262772143 3.62352766E-02
! 0.547133625 0.213591918 4.10784185E-02 0.583882213 0.671128035
scale = (2.0, 0.7)
print *, rexp(scale)
!single complex exponential random variate with real part of lambda=2.0;
!imagainary part of lambda=0.7
! (1.41435969,4.081114382E-02)
end program demo_exponential_rvs
pdf_exp
- exponential distribution probability density functionExperimental
The probability density function (pdf) of the single real variable exponential distribution:
For a complex variable (x + y i) with independent real x and imaginary y parts, the joint probability density function is the product of the corresponding marginal pdf of real and imaginary pdf (for more details, see "Probability and Random Processes with Applications to Signal Processing and Communications", 2nd ed., Scott L. Miller and Donald Childers, 2012, p.197):
result = pdf_exp(x, lambda)
Elemental function
x
: has intent(in)
and is a scalar of type real
or complex
.
lambda
: has intent(in)
and is a scalar of type real
or complex
.
All arguments must have the same type.
The result is a scalar or an array, with a shape conformable to arguments, and has the same type of input arguments.
program demo_exponential_pdf
use stdlib_random, only : random_seed
use stdlib_stats_distribution_exponential, only: exp_pdf => pdf_exp, &
rexp => rvs_exp
implicit none
real :: x(2,3,4),a(2,3,4)
complex :: scale
integer :: seed_put, seed_get
seed_put = 1234567
call random_seed(seed_put, seed_get)
print *, exp_pdf(1.0,1.0) !a probability density at 1.0 in standard expon
! 0.367879450
print *, exp_pdf(2.0,2.0) !a probability density at 2.0 with lambda=2.0
! 3.66312787E-02
x = reshape(rexp(0.5, 24),[2,3,4]) ! standard expon random variates array
a(:,:,:) = 0.5
print *, exp_pdf(x, a) ! a rank 3 standard expon probability density
! 0.457115263 0.451488823 0.492391467 0.485233188 0.446215510
! 0.401670188 0.485127628 0.316924453 0.418474048 0.483173639
! 0.307366133 0.285812140 0.448017836 0.426440030 0.403896868
! 0.334653258 0.410376132 0.485370994 0.333617479 0.263791025
! 0.249779820 0.457159877 0.495636940 0.482243657
scale = (1.0, 2.)
print *, exp_pdf((1.5,1.0), scale)
! a complex expon probability density function at (1.5,1.0) with real part
!of lambda=1.0 and imaginary part of lambda=2.0
! 6.03947677E-02
end program demo_exponential_pdf
cdf_exp
- exponential cumulative distribution functionExperimental
Cumulative distribution function (cdf) of the single real variable exponential distribution:
For a complex variable (x + y i) with independent real x and imaginary y parts, the joint cumulative distribution function is the product of corresponding marginal cdf of real and imaginary cdf (for more details, see "Probability and Random Processes with Applications to Signal Processing and Communications", 2nd ed., Scott L. Miller and Donald Childers, 2012, p.197):
result = cdf_exp(x, lambda)
Elemental function
x
: has intent(in)
and is a scalar of type real
or complex
.
lambda
: has intent(in)
and is a scalar of type real
or complex
.
All arguments must have the same type.
The result is a scalar or an array, with a shape conformable to arguments, and has the same type of input arguments.
program demo_exponential_cdf
use stdlib_random, only : random_seed
use stdlib_stats_distribution_exponential, only : exp_cdf => cdf_exp, &
rexp => rvs_exp
implicit none
real :: x(2,3,4),a(2,3,4)
complex :: scale
integer :: seed_put, seed_get
seed_put = 1234567
call random_seed(seed_put, seed_get)
print *, exp_cdf(1.0, 1.0) ! a standard exponential cumulative at 1.0
! 0.632120550
print *, exp_cdf(2.0, 2.0) ! a cumulative at 2.0 with lambda=2
! 0.981684387
x = reshape(rexp(0.5, 24),[2,3,4])
! standard exponential random variates array
a(:,:,:) = 0.5
print *, exp_cdf(x, a) ! a rank 3 array of standard exponential cumulative
! 8.57694745E-02 9.70223546E-02 1.52170658E-02 2.95336246E-02
! 0.107568979 0.196659625 2.97447443E-02 0.366151094 0.163051903
! 3.36527228E-02 0.385267735 0.428375721 0.103964329 0.147119939
! 0.192206264 0.330693483 0.179247737 2.92580128E-02 0.332765043
! 0.472417951 0.500440359 8.56802464E-02 8.72612000E-03 3.55126858E-02
scale = (0.5,1.0)
print *, exp_cdf((0.5,0.5),scale)
!complex exponential cumulative distribution at (0.5,0.5) with real part of
!lambda=0.5 and imaginary part of lambda=1.0
! 8.70351046E-02
end program demo_exponential_cdf