Gaussian - Gaussian functionExperimental
Computes the gaussian function:
result = gaussian (x)
Elemental function
x: Shall be a scalar or array of any real kind.
The function returns a value with the same type and kind as input argument.
program example_gaussian
use stdlib_kinds, only: sp
use stdlib_math, only: linspace
use stdlib_specialfunctions, only: gaussian
implicit none
integer, parameter :: n = 10
real(sp) :: x(n), y(n)
x = linspace(-2._sp, 2._sp, n)
y = gaussian( x )
print *, y
end program example_gaussian
Gaussian_grad - Gradient of the Gaussian functionExperimental
Computes the gradient of the gaussian function:
result = gaussian_grad (x)
Elemental function
x: Shall be a scalar or array of any real kind.
The function returns a value with the same type and kind as input argument.
Elu - Exponential Linear Unit functionExperimental
Computes the gaussian function:
result = elu (x,a)
Elemental function
x: Shall be a scalar or array of any real kind.
a: Shall be a scalar or array of any real kind.
The function returns a value with the same type and kind as input argument.
program example_elu
use stdlib_kinds, only: sp
use stdlib_math, only: linspace
use stdlib_specialfunctions, only: elu
implicit none
integer, parameter :: n = 10
real(sp) :: x(n), y(n)
x = linspace(-2._sp, 2._sp, n)
y = elu( x , 1.0 )
print *, y
end program example_elu
Elu_grad - Gradient of the Exponential Linear Unit functionExperimental
Computes the gradient of the gaussian function:
result = elu_grad (x,a)
Elemental function
x: Shall be a scalar or array of any real kind.
a: Shall be a scalar or array of any real kind.
The function returns a value with the same type and kind as input argument.
Relu - Rectified Linear Unit functionExperimental
Computes the Rectified Linear Unit function:
result = relu (x)
Elemental function
x: Shall be a scalar or array of any real kind.
The function returns a value with the same type and kind as input argument.
program example_relu
use stdlib_kinds, only: sp
use stdlib_math, only: linspace
use stdlib_specialfunctions, only: relu
implicit none
integer, parameter :: n = 10
real(sp) :: x(n), y(n)
x = linspace(-2._sp, 2._sp, n)
y = relu( x )
print *, y
end program example_relu
Relu_grad - Gradient of the Rectified Linear Unit functionExperimental
Computes the gradient of the gaussian function:
result = relu_grad (x)
Elemental function
x: Shall be a scalar or array of any real kind.
The function returns a value with the same type and kind as input argument.
leaky_relu - leaky Rectified Linear Unit functionExperimental
Computes the gaussian function:
result = leaky_relu (x,a)
Elemental function
x: Shall be a scalar or array of any real kind.
a: Shall be a scalar or array of any real kind.
The function returns a value with the same type and kind as input argument.
program example_gelu
use stdlib_kinds, only: sp
use stdlib_math, only: linspace
use stdlib_specialfunctions, only: leaky_relu
implicit none
integer, parameter :: n = 10
real(sp) :: x(n), y(n)
x = linspace(-2._sp, 2._sp, n)
y = leaky_relu( x , 0.1_sp )
print *, y
end program example_gelu
leaky_relu_grad - Gradient of the leaky Rectified Linear Unit functionExperimental
Computes the gradient of the leaky_relu function:
result = leaky_relu_grad (x,a)
Elemental function
x: Shall be a scalar or array of any real kind.
a: Shall be a scalar or array of any real kind.
The function returns a value with the same type and kind as the input argument.
Gelu - Gaussian Error Linear Unit functionExperimental
Computes the Gaussian Error Linear Unit function:
result = gelu (x)
Elemental function
x: Shall be a scalar or array of any real kind.
The function returns a value with the same type and kind as input argument.
program example_gelu
use stdlib_kinds, only: sp
use stdlib_math, only: linspace
use stdlib_specialfunctions, only: gelu
implicit none
integer, parameter :: n = 10
real(sp) :: x(n), y(n)
x = linspace(-2._sp, 2._sp, n)
y = gelu( x )
print *, y
end program example_gelu
Gelu_grad - Gradient of the Gaussian Error Linear Unit functionExperimental
Computes the gradient of the gaussian error linear unit function:
result = gelu_grad (x)
Elemental function
x: Shall be a scalar or array of any real kind.
The function returns a value with the same type and kind as input argument.
Gelu_approx - Approximation of the Gaussian Error Linear Unit functionExperimental
Computes a fast approximation of the Gaussian Error Linear Unit function using a fast $\text{erf}$ approximation:
result = gelu_approx (x)
Elemental function
x: Shall be a scalar or array of any real kind.
The function returns a value with the same type and kind as input argument.
Gelu_approx_grad - Gradient of the Approximated Gaussian Error Linear Unit functionExperimental
Computes the gradient of the gaussian error linear unit function using a fast $\text{erf}$ approximation:
result = gelu_approx_grad (x)
Elemental function
x: Shall be a scalar or array of any real kind.
The function returns a value with the same type and kind as input argument.
Selu - Scaled Exponential Linear Unit functionExperimental
Applies the Scaled Exponential Linear Unit activation function: Where, and
result = selu (x)
Elemental function
x: Shall be a scalar or array of any real kind.
The function returns a value with the same type and kind as input argument.
program example_selu
use stdlib_kinds, only: sp
use stdlib_math, only: linspace
use stdlib_specialfunctions, only: selu
implicit none
integer, parameter :: n = 10
real(sp) :: x(n), y(n)
x = linspace(-2._sp, 2._sp, n)
y = selu( x )
print *, y
end program example_selu
selu_grad - Gradient of the Scaled Exponential Linear Unit functionExperimental
Applies the gradient of the Scaled Exponential Linear Unit activation function:
result = selu_grad (x)
Elemental function
x: Shall be a scalar or array of any real kind.
The function returns a value with the same type and kind as input argument.
Sigmoid - Sigmoid functionExperimental
Computes the sigmoid function:
result = sigmoid (x)
Elemental function
x: Shall be a scalar or array of any real kind.
The function returns a value with the same type and kind as input argument.
Sigmoid_grad - Gradient of the Sigmoid functionExperimental
Computes the gradient of the Sigmoid function:
result = sigmoid_grad (x)
Elemental function
x: Shall be a scalar or array of any real kind.
The function returns a value with the same type and kind as input argument.
SiLU - Sigmoid Linear Unit functionExperimental
Computes the Sigmoid Linear Unit function:
result = silu (x)
Elemental function
x: Shall be a scalar or array of any real kind.
The function returns a value with the same type and kind as input argument.
program example_silu
use stdlib_kinds, only: sp
use stdlib_math, only: linspace
use stdlib_specialfunctions, only: silu
implicit none
integer, parameter :: n = 10
real(sp) :: x(n), y(n)
x = linspace(-2._sp, 2._sp, n)
y = silu( x )
print *, y
end program example_silu
Silu_grad - Gradient of the Sigmoid Linear Unit functionExperimental
Computes the gradient of the Sigmoid function:
result = silu_grad (x)
Elemental function
x: Shall be a scalar or array of any real kind.
The function returns a value with the same type and kind as input argument.
Step - Step functionExperimental
Computes the step function:
result = step (x)
Elemental function
x: Shall be a scalar or array of any real kind.
The function returns a value with the same type and kind as input argument.
program example_step
use stdlib_kinds, only: sp
use stdlib_math, only: linspace
use stdlib_specialfunctions, only: step
implicit none
integer, parameter :: n = 10
real(sp) :: x(n), y(n)
x = linspace(-2._sp, 2._sp, n)
y = step( x )
print *, y
end program example_step
step_grad - Gradient of the Step functionExperimental
Computes the gradient of the Sigmoid function:
result = step_grad (x)
Elemental function
x: Shall be a scalar or array of any real kind.
The function returns a value with the same type and kind as input argument.
softmax - softmax functionExperimental
Computes the softmax function:
result = softmax (x,dim)
Pure function for ranks 1 to 4.
x: Shall be an array of rank 1 to 4 of any real kind.
dim: integer scalar indicating upon which dimension to apply the normalization.
The function returns an array with the same rank and kind as the input argument x.
program example_softmax
use stdlib_kinds, only: sp
use stdlib_math, only: linspace
use stdlib_specialfunctions, only: softmax
implicit none
integer, parameter :: n = 10
real(sp) :: x(n), y(n)
x = linspace(-2._sp, 2._sp, n)
y = softmax( x )
print *, y
end program example_softmax
softmax_grad - Gradient of the softmax functionExperimental
Computes the gradient of the softmax function:
result = softmax_grad (x,dim)
Pure function for ranks 1 to 4.
x: Shall be an array of rank 1 to 4 of any real kind.
dim: integer scalar indicating upon which dimension to apply the normalization.
The function returns a value with the same type and kind as input argument.
softplus - softplus functionExperimental
Computes the softplus function:
result = softplus (x)
Elemental function
x: Shall be a scalar or array of any real kind.
The function returns a value with the same type and kind as input argument.
program example_softplus
use stdlib_kinds, only: sp
use stdlib_math, only: linspace
use stdlib_specialfunctions, only: softplus
implicit none
integer, parameter :: n = 10
real(sp) :: x(n), y(n)
x = linspace(-2._sp, 2._sp, n)
y = softplus( x )
print *, y
end program example_softplus
softplus_grad - Gradient of the softplus functionExperimental
Computes the gradient of the softplus function:
result = softplus_grad (x)
Elemental function
x: Shall be a scalar or array of any real kind.
The function returns a value with the same type and kind as input argument.
Fast tanh - Approximation of the hyperbolic tangent functionExperimental
Computes an approximated but faster solution to:
result = fast_tanh (x)
Elemental function
x: Shall be a scalar or array of any real kind.
The function returns a value with the same type and kind as input argument.
fast_tanh_grad - Gradient of the approximation of the hyperbolic tangent functionExperimental
Computes the gradient of the fast_tanh function:
result = fast_tanh_grad (x)
Elemental function
x: Shall be a scalar or array of any real kind.
The function returns a value with the same type and kind as input argument.
Fast erf - Approximation of the error functionExperimental
Computes an approximated but faster solution to:
result = fast_erf (x)
Elemental function
x: Shall be a scalar or array of any real kind.
The function returns a value with the same type and kind as input argument.